1
|
Edache DO, Beyene TJ, Baruch J, Shi X, Sanderson MW, Nagaraja TG, Smolensky D, Cernicchiaro N. Sample Type and Processing Plant Differences in the Proportion of Enterohemorrhagic Escherichia coli O157 and Non-O157 Serogroups in Feces and on Hides of Cull Dairy Cattle at Slaughter. Foodborne Pathog Dis 2024; 21:698-707. [PMID: 39093865 DOI: 10.1089/fpd.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The study was conducted to determine the proportion and concentration of enterohemorrhagic Escherichia coli (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates. An isolate was considered EHEC O157 positive if it harbored serogroup-specific (rfbE), Shiga toxin (stx1 and/or stx2), and intimin (eae) genes and EHEC non-O157 positive if at least one of the non-O157 serogroup-specific, stx1 and/or stx2, and eae genes was identified. Generalized linear mixed models were fitted to estimate overall proportion of positives for EHEC O157 and non-O157 EHEC serogroups, as well as seasonal and processing plant differences in fecal and hide-on proportion of positives. The fecal EHEC proportion at the sample level was 1.8% (95% CI = 0.0-92.2%) and 4.2% (95% CI = 0.0-100.0%) for EHEC O157 and EHEC non-O157, respectively. Hide sample level proportion of positives was 3.0% (95% CI = 0.0-99.9%) for EHEC O157 and 1.6% (95% CI = 0.0-100.0%) for EHEC non-O157. The proportion of EHEC O157 and non-O157 significantly differed by processing plant and sample type (hide vs. feces), but not by season. The association between proportion of EHEC serogroups in feces with the proportion on hides collected from matched cattle was 7.8% (95% CI = 0.6-53.3%) and 3.8% (95% CI = 0.3-30.8%) for EHEC O157 and non-O157, respectively. Taken together, our findings provide evidence of a low proportion of EHEC serogroups in the feces and on hides of cull dairy cattle and that their proportion varies across processing plants.
Collapse
Affiliation(s)
- David O Edache
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Tariku J Beyene
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Carelon Research, Wilmington, Delaware, USA
| | - Joaquin Baruch
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Michael W Sanderson
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research, Center for Grain and Animal health Research, United States Department of Agriculture, Agricultural Research Service, Manhattan, Kansas, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
3
|
Lima BP, Maciel WC, Almeida AP, de Castro Teixeira RS, Marques AR, Filho NMP, de Freitas CMP, Beleza AJF, de Abreu KG. Detection of pathogenic, heteropathogenic and hybrid Escherichia coli strains in psittacines from zoos and breeders in the state of Ceará, Brazil. Comp Immunol Microbiol Infect Dis 2024; 112:102227. [PMID: 39173206 DOI: 10.1016/j.cimid.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
The current study aimed to detect virulence, hetero-pathogenicity, and hybridization genes in Escherichia coli strains, previously isolated from cloacal swabs in commercial breeding psittacines and zoological collections, via multiplex PCR. A total of 68 strains of E. coli, previously isolated from psittacines in zoos and commercial breeding facilities in Ceará, Brazil, were assessed for the presence of the following genes and/or probes: eae, bfpA (EPEC - Enteropathogenic E. coli), CVD432 (EAEC - Enteroaggregative E. coli); LT gene and ST gene (ETEC - Enterotoxigenic E. coli); ipaH (EIEC - Enteroinvasive E. coli); stx1 and stx2 (STEC - Shiga toxin-producing E. coli); iroN, ompT, hlyF, iss, and iutA (APEC - Avian pathogenic E. coli). Of the 68 E. coli strains analyzed, 61 (98.7 %) were positive for the following genes and/or probes: Stx1 (61/98.7 %), ST gene (54/79.4 %), CVD432 (49/72 %), bfpA (44/64.7 %), eae (42/61.8 %), Stx2 (41/60.3 %), ipaH (34/50 %), LT gene (33/48.5 %), iroN (21/30.9 %), hlyF (11/6.2 %), iss (06/8.8 %) and iutA (06/8.8 %). The following diarrheagenic pathotypes were identified: 66 (97 %) from STEC, 49 (72 %) from EAEC, 35 (52 %) from EIEC, 25 (37 %) from ETEC, and one (1.5 %) from EPEC. Regarding hetero-pathogenicity, 50 (74 %) heterogeneous strains were identified. Positivity for APEC was seen in four (6 %) strains, all characterized as pathogenic hybrids. This study describes significant associations of virulence factors in E. coli strains DEC/DEC and DEC/APEC, which were isolated from psittacines and may be potentially harmful to One Health.
Collapse
Affiliation(s)
- Bruno Pessoa Lima
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil.
| | - William Cardoso Maciel
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil.
| | | | | | - Adson Ribeiro Marques
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil
| | - Neilton Monteiro Pascoal Filho
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil
| | - Cibelle Mara Pereira de Freitas
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil
| | - Antônio Jackson Forte Beleza
- Laboratório de Estudos Ornitológicos (Labeo), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Brazil
| | | |
Collapse
|
4
|
Batinić P, Jovanović A, Stojković D, Zengin G, Cvijetić I, Gašić U, Čutović N, Pešić MB, Milinčić DD, Carević T, Marinković A, Bugarski B, Marković T. Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia. Pharmaceuticals (Basel) 2024; 17:518. [PMID: 38675478 PMCID: PMC11054981 DOI: 10.3390/ph17040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol-water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies.
Collapse
Affiliation(s)
- Petar Batinić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Gökhan Zengin
- Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Ilija Cvijetić
- Faculty of Chemistry, University of Belgrade, Students Square 10-13, 11000 Belgrade, Serbia;
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Natalija Čutović
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Tamara Carević
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Tatjana Marković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| |
Collapse
|
5
|
Melinte V, Radu AM, Văcăroiu CM, Cismaru MI, Oprescu Macovei AM, Mihăilă DE, Gheorghiță V. A Successful Approach to Diagnosing Shiga-like Toxin-Producing Escherichia coli-Induced Colitis. Diagnostics (Basel) 2024; 14:801. [PMID: 38667447 PMCID: PMC11049606 DOI: 10.3390/diagnostics14080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga-like toxin-producing Escherichia coli (STEC) is a well-known cause of foodborne acute diarrheic diseases, especially in children and the elderly. The potentially fatal complications associated with toxin production range from bloody diarrhea and ischemic colitis to kidney failure, hemolytic-uremic syndrome (HUS), and colon perforation. Here, we describe a case and literature review of STEC-induced colitis, highlighting the clinical features and the necessary tools for the best diagnostic approach and management. Facing challenging differential diagnosis, ranging from ischemic colitis and inflammatory bowel disease to infectious processes due to a pathogenic or opportunistic agent, we conducted a step-by-step exploration. Following bacteriological investigation, imagistic screening, and colonoscopy, we ruled out some of the initial suppositions and reached a final diagnosis, while also considering the pathological results. Although antibiotics are not indicated in this pathology, our patient did receive antibiotics, given the risk of translocation and colon perforation, without any associated complications such as HUS or peritonitis. Detailed and rigorous investigations conducted by a multi-specialty team are required for prompt medical support. Coping with the symptoms and refraining from further complications are the mainstem aims of treatment.
Collapse
Affiliation(s)
- Violeta Melinte
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.R.); (V.G.)
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| | - Adelina M. Radu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.R.); (V.G.)
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| | | | - Miriana I. Cismaru
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| | - Anca M. Oprescu Macovei
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.R.); (V.G.)
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| | - Daniela E. Mihăilă
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| | - Valeriu Gheorghiță
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.M.R.); (V.G.)
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania (D.E.M.)
| |
Collapse
|
6
|
Aditya A, Tabashsum Z, Martinez ZA, Biswas D. Effects of Metabolites of Lactobacillus casei on Expression and Neutralization of Shiga Toxin by Enterohemorrhagic Escherichia coli. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10212-8. [PMID: 38224447 DOI: 10.1007/s12602-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Shiga toxin (stx), produced by enterohemorrhagic Escherichia coli (EHEC) or Shigella, causes hemolytic uremic syndrome (HUS) in humans. EHEC-mediated illnesses are recommended to treat by immune supportive strategies, instead of antibiotic therapy. Widely used probiotic Lactobacillus casei produces many bioactive metabolites, i.e., conjugated linoleic acids (CLAs) which have potential to educate host immunity and control EHEC growth and expression of its virulence genes. In this study, it was found that total metabolites of L. casei exerted a protective effect on Gb3 receptor containing mammalian cells against stx exposure.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA
| | | | - Debabrata Biswas
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA.
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA.
- Centre for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Yinur D, Moges B, Hassen A, Tessema TS. Loop mediated isothermal amplification as a molecular diagnostic assay: Application and evaluation for detection of Enterohaemorrhagic Escherichia coli (O157:H7). Pract Lab Med 2023; 37:e00333. [PMID: 37693632 PMCID: PMC10492192 DOI: 10.1016/j.plabm.2023.e00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study aimed at evaluating the performance of the Loop Mediated Isothermal Amplification (LAMP) diagnostic test, which targets the putative Fimbria protein-encoding gene (Z3276) for rapid and specific detection of locally isolated enterohemorrhagic Escherichia coli (EHEC) O157:H7. Results A total number of 40 locally available bacteria isolates and standard strains, among them 6 entrohemorrhagic (O157:H7) and 10 entropathogenic E. coli, 7 non diarrheic E. coli strains and 13 non entrohemorrhagic shiga toxic (stx) E. coli isolates as well as 4 pathogenic non E. coli species were used to optimize and evaluate the LAMP assay. The LAMP amplified DNA samples were visualized as turbid DNA both by naked eye and gel electrophoresis followed by staining. The assay had a sensitivity of 100% (6/6), a specificity of 97.05% (33/34), and an efficiency of 97.5% (39/40). The assay was also exhibited with 100% negative predicted value and 85.7% positive predicted value. The LAMP assay was also 10-fold more sensitive than the conventional PCR assay; sensitivity was determined by serial dilution. The results of LAMP and the PCR tests showed very high agreement (k = 0.97) in the detection of the bacteria studied. Conclusion Compared with the performance of PCR and SMAC, LAMP assay was better in terms of efficiency, rapidity and cost-effectiveness, which can be used as a point-care diagnostic test in resource-limited laboratories.
Collapse
Affiliation(s)
- Degisew Yinur
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Biniam Moges
- Department of Biotechnology, Debre Berhan University, Debre Berhan, Ethiopia
| | - Aliyi Hassen
- Department of Biotechnology, Ambo University, Ambo, Ethiopia
| | | |
Collapse
|
8
|
Kulczyk AW, Sorzano COS, Grela P, Tchórzewski M, Tumer NE, Li XP. Cryo-EM structure of Shiga toxin 2 in complex with the native ribosomal P-stalk reveals residues involved in the binding interaction. J Biol Chem 2023; 299:102795. [PMID: 36528064 PMCID: PMC9823235 DOI: 10.1016/j.jbc.2022.102795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Shiga toxin 2a (Stx2a) is the virulence factor of enterohemorrhagic Escherichia coli. The catalytic A1 subunit of Stx2a (Stx2A1) interacts with the ribosomal P-stalk for loading onto the ribosome and depurination of the sarcin-ricin loop, which halts protein synthesis. Because of the intrinsic flexibility of the P-stalk, a structure of the Stx2a-P-stalk complex is currently unknown. We demonstrated that the native P-stalk pentamer binds to Stx2a with nanomolar affinity, and we employed cryo-EM to determine a structure of the 72 kDa Stx2a complexed with the P-stalk. The structure identifies Stx2A1 residues involved in binding and reveals that Stx2a is anchored to the P-stalk via only the last six amino acids from the C-terminal domain of a single P-protein. For the first time, the cryo-EM structure shows the loop connecting Stx2A1 and Stx2A2, which is critical for activation of the toxin. Our principal component analysis of the cryo-EM data reveals the intrinsic dynamics of the Stx2a-P-stalk interaction, including conformational changes in the P-stalk binding site occurring upon complex formation. Our computational analysis unveils the propensity for structural rearrangements within the C-terminal domain, with its C-terminal six amino acids transitioning from a random coil to an α-helix upon binding to Stx2a. In conclusion, our cryo-EM structure sheds new light into the dynamics of the Stx2a-P-stalk interaction and indicates that the binding interface between Stx2a and the P-stalk is the potential target for drug discovery.
Collapse
Affiliation(s)
- Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Department of Biochemistry and Microbiology, Rutgers University, Piscataway, New Jersey, USA.
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiao-Ping Li
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Sokolovic M, Šimpraga B, Amšel-Zelenika T, Berendika M, Krstulović F. Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms 2022; 10:1839. [PMID: 36144441 PMCID: PMC9505133 DOI: 10.3390/microorganisms10091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
A survey on prevalence and number of Shiga toxin-producing Escherichia (E.) coli (STEC) in animal feed was carried out over a period of nine years in the Republic of Croatia. A total of 1688 feed samples were collected from feed factories and poultry farms. Analysis included two standard procedures: sample enrichment and (a) immunomagnetic separation and plating on two selective media; or (b) plating on two selective media. Confirmation of STEC included morphological examination, biochemical tests, serotyping, and polymerase chain reaction. Morphological and biochemical characterization revealed 629 E. coli strains. Further serological screening method revealed 78 STEC and EPEC serotypes, while only 27 strains were confirmed as STEC with PCR. All positive samples (1.6%) originated from poultry farms and contained combination of virulence genes: eaeA, stx1, and/or stx2. Since the presence of stx (especially stx2) and eae are identified as risk factors for development of severe diseases in humans, results of this survey indicate that avian sources of STEC infections might be one of those "undefined sources" of human illnesses. Further research is necessary for evaluation of risks posed by contaminated feed, poultry, and environment.
Collapse
Affiliation(s)
- Marijana Sokolovic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
10
|
Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 2022; 65:183-190. [PMID: 34929548 PMCID: PMC9069446 DOI: 10.1016/j.mib.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
The formation of attaching and effacing (A/E) lesions on intestinal epithelium, combined with Shiga toxin production, are hallmarks of enterohemorrhagic Escherichia coli (EHEC) infection that can lead to lethal hemolytic uremic syndrome. Although an animal infection model that fully recapitulates human disease remains elusive, mice orally infected with Citrobacter rodentium(ϕStx2dact), a natural murine pathogen lysogenized with an EHEC-derived Shiga toxin 2-producing bacteriophage, develop intestinal A/E lesions and toxin-dependent systemic disease. This model has facilitated investigation of how: (A) phage gene expression and prophage induction contribute to disease and are potentially triggered by antibiotic treatment; (B) virulence gene expression is altered by microbiota and the colonic metabolomic milieu; and (C) innate immune signaling is affected by Stx. Thus, the model provides a unique tool for accessing diverse aspects of EHEC pathogenesis.
Collapse
|
11
|
Optimization of Multivalent Gold Nanoparticle Vaccines Eliciting Humoral and Cellular Immunity in an In Vivo Model of Enterohemorrhagic Escherichia coli O157:H7 Colonization. mSphere 2022; 7:e0093421. [PMID: 35044806 PMCID: PMC8769200 DOI: 10.1128/msphere.00934-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 remains a pathogen of significance and high consequence around the world. This outcome is due in part to the high economic impact associated with massive, contaminated product recalls, prevalence of the pathogen in carrier reservoirs, disease sequelae, and mortality associated with several outbreaks worldwide. Furthermore, the contraindication of antibiotic use for the treatment of EHEC-related infections makes this pathogen a primary candidate for the development of effective prophylactic vaccines. However, no vaccines are approved for human use, and many have failed to provide a high degree of efficacy or broad protection, thereby opening an avenue for the use of new technologies to produce a safe, effective, and protective vaccine. Building on our previous studies using reverse vaccinology-predicted antigens, we refine a formulation, evaluate new immunogenic antigens, and further expand our understanding about the mechanism of EHEC vaccine-mediated protection. In the current study, we exploit the use of the nanotechnology platform based on gold nanoparticles (AuNP), which can act as a scaffold for the delivery of various antigens. Our results demonstrate that a refined vaccine formulation incorporating EHEC antigen LomW, EscC, LpfA1, or LpfA2 and delivered using AuNPs can elicit robust antigen-specific cellular and humoral responses associated with reduced EHEC colonization in vivo. Furthermore, our in vitro mechanistic studies further support that antibody-mediated protection is primarily driven by inhibition of bacterial adherence onto intestinal epithelial cells and by promotion of macrophage uptake and killing. IMPORTANCE Enterohemorrhagic E. coli O157:H7 remains an important human pathogen that does not have an effective and safe vaccine available. We have made outstanding progress in the identification of novel protective antigens that have been incorporated into the gold nanoparticle platform and used as vaccines. In this study, we have refined our vaccine formulations to incorporate multiple antigens and further define the mechanism of antibody-mediated protection, including one vaccine that promotes macrophage uptake. We further define the cell-mediated responses elicited at the mucosal surface by our nanovaccine formulations, another key immune mechanism linked to protection.
Collapse
|
12
|
Hu B, Yang X, Liu Q, Zhang Y, Jiang D, Jiao H, Yang Y, Xiong Y, Bai X, Hou P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr Res Food Sci 2022; 5:1596-1602. [PMID: 36161222 PMCID: PMC9493282 DOI: 10.1016/j.crfs.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause severe human diseases such as hemolytic uremic syndrome (HUS). Human STEC infections are frequently caused through consumption of contaminated foods, especially raw meats. This study aimed to investigate the prevalence of STEC in raw meats and to characterize the meat-derived STEC strains using whole genome sequencing. Our study showed that 26.6% of raw mutton, and 7.5% of raw beef samples were culture-positive for STEC. Thirteen serotypes were identified in 22 meat-derived isolates in this study, including the virulent serotypes O157:H7 and O26:H11. Seven Shiga toxin (Stx) subtypes were found in 22 isolates, of these, stx1c and stx1c + stx2b were predominant. The recently-reported stx2k subtype was found in three mutton-sourced isolates. A number of other virulence genes such as genes encoding intimin (eae), enterohemorrhagic E. coli (EHEC) hemolysin (ehxA), EHEC factor for adherence (efa1), heat-stable enterotoxin 1 (astA), type III secretion system effectors, were detected in meat-derived STEC strains. One mutton-sourced isolate was resistant to three antibiotics, i.e., tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Whole-genome phylogeny indicated the genomic diversity of meat-derived strains in this study. O157:H7 and O26:H11 isolates in this study were phylogenetically grouped together with strains from HUS patients, suggesting their pathogenic potential. To conclude, our study reported high STEC contaminations in retail raw meats, particularly raw mutton, genomic characterization indicated pathogenic potential of meat-derived STEC strains. These findings highlight the critical need for increased monitoring of STEC in retail raw meats in China. High prevalence of Shiga toxin-producing E. coli (STEC) was detected in raw mutton, compared to beef. Virulent serotypes O157:H7 and O26:H11 were found in meat-sourced STEC isolates. Meat-sourced STEC isolates in the same region exhibited genetic diversity.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanqing Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Deshui Jiang
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Hongbo Jiao
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52, Stockholm, Sweden
- Corresponding author. State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
- Corresponding author. Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Yasmeen N, Etienne M, Sharma PS, El-Kirat-Chatel S, Helú MB, Kutner W. Molecularly imprinted polymer as a synthetic receptor mimic for capacitive impedimetric selective recognition of Escherichia coli K-12. Anal Chim Acta 2021; 1188:339177. [PMID: 34794582 DOI: 10.1016/j.aca.2021.339177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
We fabricated an electrochemical molecularly imprinted polymer (MIP) chemosensor for rapid identification and quantification of E. coli strain using 2-aminophenyl boronic acid as the functional monomer. This strain is a modified Gram-negative strain of Escherichia coli bacterium, an ordinary human gut component. The E. coli strongly interacts with a boronic acid because of porous and flexible polymers of the cell wall. The SEM imaging showed that the bacteria template was partially entrapped within the polymeric matrix in a single step. Moreover, this imaging confirmed E. coli K-12 cell template extraction effectiveness. The prepared MIP determined the E. coli K-12 strain up to 2.9 × 104 cells mL-1. The interference study performed in the presence of E. coli variants expressing different surface appendages (type 1 fimbriae or Antigen 43 protein) or Shewanella oneidensis MR1, another Gram-negative bacteria, demonstrated that the bacterial surface composition notably impacts sensing properties of the bacteria imprinted polymer.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mathieu Etienne
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815, Warsaw, Poland
| |
Collapse
|
14
|
S. Hoefler R, Kudva IT. EDL933 Strains of Escherichia coli O157 can Demonstrate Genetic Diversity and Differential Adherence to Bovine Recto-Anal Junction Squamous Epithelial Cells. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Differences between Escherichia coli O157 (O157) strains are well-established with some of these strains being associated with major outbreaks in the US. EDL933 is one such O157 strain that caused a multistate outbreak in 1982 and has since been used as a prototype in various O157-related experiments.
Objective:
As O157 can readily acquire genetic mutations, we sought to determine if the genetic and phenotypic profiles of EDL933 strains from different sources would be consistent.
Methods:
We evaluated wild-type O157 strains stocked as EDL933 from three different laboratories, in the strain typing Polymorphic Amplified Typing Sequence (PATS) and the bovine rectal-anal junction squamous epithelial (RSE) cell- and HEp-2 cell- adherence assays. In addition, we also verified if Shiga toxins (Stx), the Locus of Enterocyte Effacement (LEE) or curli fimbriae contributed to the adherence phenotypes observed using mutant and wild-type EDL933 isolates.
Results:
Our results showed differences in PATS profiles and RSE cell-adherence phenotype, with no influence from the Stx or LEE genes, between EDL933 from different sources. Interestingly, the EDL933 strain that demonstrated the most contrasting diffuse adherence phenotype on RSE cells, EDL933-T, had decreased curli production that may have contributed to this phenotype.
Conclusion:
Our observations suggest that a comprehensive characterization of bacterial isolates, even if assigned to the same strain type prior to use in experiments, is warranted to ensure consistency and reproducibility of results.
Collapse
|
15
|
Zhang H, Yamamoto E, Murphy J, Carrillo C, Locas A. Shiga Toxin-Producing Escherichia coli (STEC) and STEC-Associated Virulence Genes in Raw Ground Pork in Canada. J Food Prot 2021; 84:1956-1964. [PMID: 34197587 DOI: 10.4315/jfp-21-147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Shiga toxin-producing Escherichia coli (STEC) O157:H7/nonmotile and some non-O157 STEC strains are foodborne pathogens. In response to pork-associated O157 STEC outbreaks in Canada, we investigated the occurrence of STEC in Canadian retail raw ground pork during the period of 1 November 2014 to 31 March 2016. Isolated STEC strains were characterized to determine the Shiga toxin gene (stx) subtype and the presence of virulence genes encoding intimin (eae) and enterohemorrhagic E. coli hemolysin (hlyA). O157 STEC and non-O157 STEC strains were isolated from 1 (0.11%) of 879 and 13 (2.24%) of 580 pork samples, respectively. STEC virulence gene profiles containing both eae and hlyA were found only in the O157 STEC (stx2a, eae, hlyA) isolate. The eae gene was absent from all non-O157 STEC isolates. Of the 13 non-O157 STEC isolates, two virulence genes of stx1a and hlyA were found in four (30.8%) O91:H14 STEC isolates, whereas one virulence gene of stx2e, stx1a, and stx2a was identified in five (38.5%), two (15.4%), and one (7.7%) STEC isolates, respectively, of various serotypes. The remaining non-O157 STEC isolate carried stx2, but the subtype is unknown because this isolate could not be recovered for sequencing. O91:H14 STEC (stx1a, hlyA) was previously reported in association with diarrheal illnesses, whereas the other non-O157 STEC isolates identified in this study are not known to be associated with severe human illnesses. Virulence gene profiles identified in this study indicate that the occurrence of non-O157 STEC capable of causing severe human illness is rare in Canadian retail pork. However, O157 STEC in ground pork can occasionally occur; therefore, education regarding the potential risks associated with STEC contamination of pork would be beneficial for the public and those in the food industry to help reduce foodborne illnesses. HIGHLIGHTS
Collapse
Affiliation(s)
- Helen Zhang
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Johanna Murphy
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Building 22, CEF 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0Y9
| | - Annie Locas
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
16
|
Liu Y, Fu K, Wier EM, Lei Y, Hodgson A, Xu D, Xia X, Zheng D, Ding H, Sears CL, Yang J, Wan F. Bacterial genotoxin accelerates transient infection-driven murine colon tumorigenesis. Cancer Discov 2021; 12:236-249. [PMID: 34479870 DOI: 10.1158/2159-8290.cd-21-0912] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Chronic and low-grade inflammation associated with persistent bacterial infections has been linked to colon tumor development; however, the impact of transient and self-limited infections in bacterially-driven colon tumorigenesis has remained enigmatic. Here we report that UshA is a novel genotoxin in attaching/effacing (A/E) pathogens, which includes the human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR). UshA harbors direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. Injected via the Type III Secretion System (T3SS) into host cells, UshA triggers DNA damage and initiates tumorigenic transformation during infections in vitro and in vivo. Moreover, UshA plays an indispensable role in CR infection-accelerated colon tumorigenesis in genetically susceptible ApcMinΔ716/+ mice. Collectively, our results reveal that UshA, functioning as a bacterial T3SS-dependant genotoxin, plays a critical role in prompting transient and noninvasive bacterial infection-accelerated colon tumorigenesis in mice.
Collapse
Affiliation(s)
- Yue Liu
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Kai Fu
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Eric M Wier
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Yifan Lei
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Andrea Hodgson
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Dongqing Xu
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Xue Xia
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Dandan Zheng
- Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hua Ding
- Johns Hopkins Bloomberg School of Public Health
| | | | - Jian Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fengyi Wan
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|
17
|
Durso LM, Gilley JE, Miller DN. Differential Survival of Non-O157 Shiga Toxigenic Escherichia coli in Simulated Cattle Feedlot Runoff. Foodborne Pathog Dis 2021; 18:771-777. [PMID: 34242513 DOI: 10.1089/fpd.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental survival time is important when evaluating adverse health outcomes from foodborne pathogens. Although outbreaks associated with manure-impacted irrigation or runoff water are relatively infrequent, their broad scope, regulatory importance, and severe health outcomes highlight the need to better understand the environmental survival of manure-borne pathogens. Shiga toxigenic Escherichia coli (STEC) are excreted in feces and persist in the environment until they die or recolonize a new host. Surface waters contaminated with manure-borne STEC can infect humans through drinking and recreational water use or irrigated crops that are minimally cooked. In this study, manure-impacted water microcosms mimicking beef cattle feedlot runoff were used to assess survival of STEC strains representing seven STEC serotypes (O26, O45, O103, O111, O121, O145, and O157) and persistence of target O antigen genes. Microcosms were sampled over the course of 1 year, and the entire experiment was repeated in a second year. Culture and polymerase chain reaction (PCR)-based techniques were used for detection and enumeration. Serotype-specific survival results were observed. Both STEC O26 and O45 declined slowly and remained culturable at 24 months. In contrast, STEC O121 and O145 decreased rapidly (-0.84 and -1.99 log10 abundance per month, respectively) and were unculturable by months 4 and 5, but detectable by PCR for a mean of 4.5 and 8.3 months, respectively. STEC O103, O111, and O157 remained culturable for a mean of 11.6, 5.5, and 15 months and detectable by PCR for a mean of 12, 13.8, and 18.6 months after inoculation, respectively. Results document that some STEC serotypes have the biological potential to survive in manure-impacted waters for extended periods of time when competing microflora are eliminated. Serotype-specific differences in survival of target bacteria and persistence of target genes were observed in this sample set, with STEC O26 and O45 strains appearing the most robust in these microcosm studies.
Collapse
|
18
|
Lee KS, Jeong YJ, Lee MS. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins (Basel) 2021; 13:toxins13060416. [PMID: 34208170 PMCID: PMC8230793 DOI: 10.3390/toxins13060416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (Y.-J.J.); (M.-S.L.)
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (Y.-J.J.); (M.-S.L.)
| |
Collapse
|
19
|
Huang X, Yang X, Shi X, Erickson DL, Nagaraja TG, Meng J. Whole-genome sequencing analysis of uncommon Shiga toxin-producing Escherichia coli from cattle: Virulence gene profiles, antimicrobial resistance predictions, and identification of novel O-serogroups. Food Microbiol 2021; 99:103821. [PMID: 34119106 DOI: 10.1016/j.fm.2021.103821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Shiga toxin-producing E. coli (STEC) are major foodborne pathogens. While many studies have focused on the "top-7 STEC", little is known for minor serogroups. A total of 284 non-top-7 STEC strains isolated from cattle feces were subjected to whole-genome sequencing (WGS) to determine the serotypes, the presence of virulence genes and antimicrobial resistance (AMR) determinants. Nineteen typeable and three non-typeable serotypes with novel O-antigen loci were identified. Twenty-one AMR genes and point mutations in another six genes that conferred resistance to 10 antimicrobial classes were detected, as well as 46 virulence genes. The distribution of 33 virulence genes and 15 AMR determinants exhibited significant differences among serotypes (p < 0.05). Among all strains, 81.7% (n = 232) and 14.1% (n = 40) carried stx2 and stx1 only, respectively; only 4.2% (n = 12) carried both. Subtypes stx1a, stx1c, stx2a, stx2c, stx2d, and stx2g were identified. Forty-six strains carried eae and stx2a and therefore had the potential cause severe diseases; 47 strains were genetically related to human clinical strains inferred from a pan-genome phylogenetic tree. We were able to demonstrate the utility of WGS as a surveillance tool to characterize the novel serotypes, as well as AMR and virulence profiles of uncommon STEC that could potentially cause human illness.
Collapse
Affiliation(s)
- Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - Xun Yang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
20
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Zhang H, Yamamoto E, Murphy J, Carrillo C, Hardie K, Locas A. Microbiological Survey of Wheat Flour Sold at Retail in Canada, 2018 to 2019. J Food Prot 2021; 84:647-654. [PMID: 33159455 DOI: 10.4315/jfp-20-297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
ABSTRACT Following two O121 Shiga toxin-producing Escherichia coli (STEC) outbreaks linked to wheat flour, this study was conducted to gain baseline information on the occurrence of bacterial pathogens and levels of indicator organisms in wheat flour in Canada. A total of 347 prepackaged wheat flour samples were analyzed for Salmonella species, STEC, Listeria monocytogenes, aerobic colony count (ACC), total coliforms, and Escherichia coli. Salmonella spp. and O157 STEC were not detected in any of the samples. L. monocytogenes was identified in two samples (0.6%) at levels below the limit of detection (<0.7 log CFU/g). Non-O157 STEC were isolated from six samples (1.7%) and were characterized for the presence of STEC virulence genes: stx1, stx2, and their subtypes, eae, hlyA, and aggR. One O103:H25 STEC isolate carried virulence genes (stx1a+eae) that are known to be capable of causing diarrhea and/or bloody diarrhea in humans. Of the five remaining non-O157 STEC isolates, four carried single stx2a or stx2c genes and were considered to have the potential of causing diarrhea. The remaining non-O157 STEC isolate (stx2), while not a priority non-O157 STEC, was not available for sequencing; thus, its potential to cause illness is unknown. ACC, total coliforms, and E. coli were detected (≥0.48 log CFU/g) in 98.8, 72.6, and 0.6% of the flour samples. The mean counts of ACC were greater in whole wheat flour compared with the other flour types tested (P < 0.001). The results of this study suggest that the occurrence of O157 STEC and Salmonella is low but that the occurrence of non-O157 STEC in wheat flour with the potential to cause human illness of diarrhea is relatively common. Therefore, the consumption of raw flour could increase the likelihood of STEC infections. Further research is merited for potential risk mitigation strategies within the food production system and with consumers. HIGHLIGHTS
Collapse
Affiliation(s)
- Helen Zhang
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9.,ORCID: https://orcid.org/0000-0003-4786-3535 [H.Z.]
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9.,https://orcid.org/0000-0001-5533-4540 [E.Y.]
| | - Johanna Murphy
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Building 22, CEF 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0Y9 (ORCID: https://orcid.org/0000-0002-2334-8718 [C.C.])
| | - Kate Hardie
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9.,https://orcid.org/0000-0002-8448-1547 [K.H.]
| | - Annie Locas
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
22
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
23
|
Spilsberg B, Sekse C, Urdahl AM, Nesse LL, Johannessen GS. Persistence of a Stx-Encoding Bacteriophage in Minced Meat Investigated by Application of an Improved DNA Extraction Method and Digital Droplet PCR. Front Microbiol 2021; 11:581575. [PMID: 33552009 PMCID: PMC7855172 DOI: 10.3389/fmicb.2020.581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens with Shiga toxins as the main virulence factor. Shiga toxins are encoded on Shiga toxin-encoding bacteriophages (Stx phages). Stx phages may exist as free bacteriophages in the environment or in foods or as prophages integrated into the host genome. From a food safety perspective, it is important to have knowledge on the survival and persistence of Stx phages in food products since these may integrate into the bacterial hosts through transduction if conditions are right. Here, we present the results from a study investigating the survival of a Stx phage in minced meat from beef stored at a suboptimal temperature (8°C) for food storage along with modifications and optimizations of the methods applied. Minced meat from beef was inoculated with known levels of a labeled Stx phage prior to storage. Phage filtrates were used for plaque assays and DNA extraction, followed by real-time PCR and digital droplet PCR (ddPCR). The results from the pilot study suggested that the initial DNA extraction protocol was not optimal, and several modifications were tested before a final protocol was defined. The final DNA extraction protocol comprised ultra-centrifugation of the entire phage filtrate for concentrating phages and two times phenol–chloroform extraction. The protocol was used for two spiking experiments. The DNA extraction protocol resulted in flexibility in the amount of DNA available for use in PCR analyses, ultimately increasing the sensitivity of the method used for quantification of phages in a sample. All three quantification methods employed (i.e., plaque assays, real-time PCR, and ddPCR) showed similar trends in the development of the phages during storage, where ddPCR has the benefit of giving absolute quantification of DNA copies in a simple experimental setup. The results indicate that the Stx phages persist and remain infective for at least 20 days under the storage conditions used in the present study. Stx phages in foods might represent a potential risk for humans. Although it can be speculated that transduction may take place at 8°C with subsequent forming of STEC, it can be expected to be a rare event. However, such an event may possibly take place under more optimal conditions, such as an increase in storage temperature of foods or in the gastrointestinal tract of humans.
Collapse
Affiliation(s)
- B Spilsberg
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - C Sekse
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne M Urdahl
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Live L Nesse
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Gro S Johannessen
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
24
|
Francius G, Petit F, Clément E, Chekli Y, Ghigo JM, Beloin C, Duval JFL. On the strong connection between nanoscale adhesion of Yad fimbriae and macroscale attachment of Yad-decorated bacteria to glycosylated, hydrophobic and hydrophilic surfaces. NANOSCALE 2021; 13:1257-1272. [PMID: 33404575 DOI: 10.1039/d0nr06840c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Yad fimbriae are currently viewed as versatile bacterial adhesins able to significantly mediate host or plant-pathogen recognition and contribute to the persistence of Escherichia coli in both the environment and within hosts. To date, however, the underlying adhesion process of Yad fimbriae on surfaces defined by controlled coating chemistries has not been evaluated on the relevant molecular scale. In this work, the interaction forces operational between Yad fimbriae expressed by genetically modified E. coli and self-assembled monolayers (SAM) differing in terms of charge, hydrophobicity or the nature of decorating sugar units are quantified by Single Molecule Force Spectroscopy (SMFS) on the nanoscale. It is found that the adhesion of Yad fimbriae onto probes functionalized with xylose is as strong as that measured with probes decorated with anti-Yad antibodies (ca. 80 to 300 pN). In contrast, the interactions of Yad with galactose, lactose, mannose, -OH, -NH2, -COOH and -CH3 terminated SAMs are clearly non-specific. Interpretation of SMFS measurements on the basis of worm-like-chain modeling for polypeptide nanomechanics further leads to the estimates of the maximal extension of Yad fimbriae upon stretching, of their persistence length and of their polydispersity. Finally, we show for the first time a strong correlation between the adhesion properties of Yad-decorated bacteria determined from conventional macroscopic counting methods and the molecular adhesion capacity of Yad fimbriae. This demonstration advocates the effort that should be made to understand on the nanoscale level the interactions between fimbriae and their cognate ligands. The results could further help the design of potential anti-adhesive molecules or surfaces to better fight against the virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Grégory Francius
- Université de Lorraine, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Barth SA, Bauerfeind R, Berens C, Menge C. Shiga Toxin-Producing E. coli in Animals: Detection, Characterization, and Virulence Assessment. Methods Mol Biol 2021; 2291:19-86. [PMID: 33704748 DOI: 10.1007/978-1-0716-1339-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Gießen, Gießen, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
| |
Collapse
|
26
|
Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 2020; 18:491-506. [PMID: 32499497 PMCID: PMC7610499 DOI: 10.1038/s41579-020-0368-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Studying within-species variation has traditionally been limited to culturable bacterial isolates and low-resolution microbial community fingerprinting. Metagenomic sequencing and technical advances have enabled culture-free, high-resolution strain and subspecies analyses at high throughput and in complex environments. This holds great scientific promise but has also led to an overwhelming number of methods and terms to describe infraspecific variation. This Review aims to clarify these advances by focusing on the diversity within bacterial and archaeal species in the context of microbiomics. We cover foundational microevolutionary concepts relevant to population genetics and summarize how within-species variation can be studied and stratified directly within microbial communities with a focus on metagenomics. Finally, we describe how common applications of within-species variation can be achieved using metagenomic data. We aim to guide the selection of appropriate terms and analytical approaches to facilitate researchers in benefiting from the increasing availability of large, high-resolution microbiome genetic sequencing data.
Collapse
Affiliation(s)
- Thea Van Rossum
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Pamela Ferretti
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
27
|
Kim J, Park JY, Park YJ, Park SY, Lee MS, Koo C. A portable and high-sensitivity optical sensing system for detecting fluorescently labeled enterohaemorrhagic Escherichia coli Shiga toxin 2B-subunit. PLoS One 2020; 15:e0236043. [PMID: 32673369 PMCID: PMC7365435 DOI: 10.1371/journal.pone.0236043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/28/2020] [Indexed: 11/18/2022] Open
Abstract
We developed a stand-alone, real-time optical detection device capable of reading fluorescence intensities from cell samples with high sensitivity and precision, for use as a portable fluorescent sensor for sensing fluorescently labeled enterohemorrhagic Escherichia coli (EHEC) Shiga toxins (Stxs). In general, the signal intensity from the fluorescently labeled Stxs was weak due to the small number of molecules bound to each cell. To address this technical challenge, we used a highly sensitive light detector (photomultiplier tube: PMT) to measure fluorescence, and designed a portable optical housing to align optical parts precisely; the housing itself was fabricated on a 3D printer. In addition, an electric circuit that amplified PMT output was designed and integrated into the system. The system shows the toxin concentration in the sample on a liquid crystal display (LCD), and a microcontroller circuit is used to read PMT output, process data, and display results. In contrast to other portable fluorescent detectors, the system works alone, without any peripheral computer or additional apparatus; its total size is about 17 × 13 × 9 cm3, and it weighs about 770 g. The detection limit was 0.01 ppm of Alexa Fluor 488 in PBS, which is ten thousand times lower than those of other smartphone-based systems and sufficiently sensitive for use with a portable optical detector. We used the portable real-time optical sensing system to detect Alexa Fluor 488–tagged Stx2B-subunits bound to monocytic THP-1 cells expressing the toxin receptor globotriaosylceramide (Gb3). The device did not detect a signal from Gb3-negative PD36 cells, indicating that it was capable of specifically detecting Stxs bound to cells expressing the toxin receptor. Following the development of a rapid and autonomous method for fluorescently tagging cells in food samples, the optical detection system described here could be used for direct detection of Shiga toxins in food in the field.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Electronics and Control Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young-Jun Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seo-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- * E-mail: (MSL); (CK)
| | - Chiwan Koo
- Department of Electronics and Control Engineering, Hanbat National University, Daejeon, Republic of Korea
- * E-mail: (MSL); (CK)
| |
Collapse
|
28
|
Kim JS, Lee MS, Kim JH. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front Cell Infect Microbiol 2020; 10:273. [PMID: 32582571 PMCID: PMC7287036 DOI: 10.3389/fcimb.2020.00273] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Moo-Seung Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea.,Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
29
|
Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020; 10:169. [PMID: 32435624 PMCID: PMC7218068 DOI: 10.3389/fcimb.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| |
Collapse
|
30
|
Analysis of individual patient data to describe the incubation period distribution of Shiga-toxin producing Escherichia coli. Epidemiol Infect 2020; 147:e162. [PMID: 31063091 PMCID: PMC6518530 DOI: 10.1017/s0950268819000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is a pathogen that can cause bloody diarrhoea and severe complications. Cases occur sporadically but outbreaks are also common. Understanding the incubation period distribution and factors influencing it will help in the investigation of exposures and consequent disease control. We extracted individual patient data for STEC cases associated with outbreaks with a known source of exposure in England and Wales. The incubation period was derived and cases were described according to patient and outbreak characteristics. We tested for heterogeneity in reported incubation period between outbreaks and described the pattern of heterogeneity. We employed a multi-level regression model to examine the relationship between patient characteristics such as age, gender and reported symptoms; and outbreak characteristics such as mode of transmission with the incubation period. A total of 205 cases from 41 outbreaks were included in the study, of which 64 cases (31%) were from a single outbreak. The median incubation period was 4 days. Cases reporting bloody diarrhoea reported shorter incubation periods compared with cases without bloody diarrhoea, and likewise, cases aged between 40 and 59 years reported shorter incubation period compared with other age groups. It is recommended that public health officials consider the characteristics of cases involved in an outbreak in order to inform the outbreak investigation and the period of exposure to be investigated.
Collapse
|
31
|
Interactions of Shiga toxin-producing Escherichia coli with leafy green vegetables. Braz J Microbiol 2020; 51:797-803. [PMID: 32125677 DOI: 10.1007/s42770-020-00251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens responsible for a wide spectrum of diseases including diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). A considerable number of outbreaks and sporadic cases of HUS have been associated with ingestion of fresh ready-to-eat products. Maintenance and persistence of STEC in the environment and foods can be related to its ability to form biofilm. A non-O157 STEC strain isolated from bovine feces was distinguished by its great ability to form biofilm in abiotic surfaces. In the present study, we aimed to investigate the ability of this strain to adhere to rocket leaves (Eruca sativa). Adherence assays were carried out for 3 h at 28 °C and analyzed by scanning electron microscopy. The non-O157 STEC strain adhered to leaf surface and inside the stomata forming several bacterial aggregates. The number of adherent bacteria per square millimeter of leaf was eightfold higher compared with an O157 STEC strain. Deletion of the STEC autotransporter protein contributing to biofilm (Sab) reduced the adherence ability of the non-O157 strain in almost 50%, and deletion of antigen 43 (Ag43) almost abolished this interaction. Very few bacteria were seen on the leaf surface, and these differences were statistically significant, suggesting the role of both proteins and especially Ag43 in the interaction of the non-O157 STEC strain with leaves. The risk posed by non-O157 STEC adherence to leaves on fresh produce contamination should not be neglected, and measures that effectively control adherence should be included in strategies to control non-O157 STEC.
Collapse
|
32
|
Identification and characterization of atypical enteropathogenic and Shiga toxin-producing Escherichia coli isolated from ground beef and poultry breast purchased in Botucatu, Brazil. Braz J Microbiol 2019; 50:1099-1103. [PMID: 31187444 DOI: 10.1007/s42770-019-00101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atypical enteropathogenic (serotypes O4:H16, O8:H25, O68:H2, O105:H7, and OR:H25) and Shigatoxigenic (ONT:H46) Escherichia coli were isolated from samples of ground beef and poultry breast purchased in Botucatu, Brazil. Phenotypic and molecular characterization indicated the potential of these isolates to adhere to host epithelial cells and cause damage.
Collapse
|
33
|
|
34
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
35
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
36
|
Bianchi L, Gaiani F, Vincenzi F, Kayali S, Di Mario F, Leandro G, De' Angelis GL, Ruberto C. Hemolytic uremic syndrome: differential diagnosis with the onset of inflammatory bowel diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:153-157. [PMID: 30561409 PMCID: PMC6502198 DOI: 10.23750/abm.v89i9-s.7911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Shiga-toxin Escherichia coli productor (STEC) provokes frequently an important intestinal damage that may be considered in differential diagnosis with the onset of Inflammatory Bowel Disease (IBD). The aim of this work is to review in the current literature about Hemolytic Uremic Syndrome (HUS) and IBD symptoms at the onset, comparing the clinical presentation and symptoms, as the timing of diagnosis and of the correct treatment of both these conditions is a fundamental prognostic factor. A focus is made about the association between typical or atypical HUS and IBD and a possible renal involvement in patient with IBD (IgA-nephropathy). METHODS A systematic review of scientific articles was performed consulting the databases PubMed, Medline, Google Scholar, and consulting most recent textbooks of Pediatric Nephrology. RESULTS In STEC-associated HUS, that accounts for 90% of cases of HUS in children, the microangiopathic manifestations are usually preceded by gastrointestinal symptoms. Initial presentation may be considered in differential diagnosis with IBD onset. The transverse and ascending colon are the segments most commonly affected, but any area from the esophagus to the perianal area can be involved. The more serious manifestations include severe hemorrhagic colitis, bowel necrosis and perforation, rectal prolapse, peritonitis and intussusception. Severe gastrointestinal involvement may result in life-threatening complications as toxic megacolon and transmural necrosis of the colon with perforation, as in Ulcerative Colitis (UC). Transmural necrosis of the colon may lead to subsequent colonic stricture, as in Crohn Disease (CD). Perianal lesions and strictures are described. In some studies, intestinal biopsies were performed to exclude IBD. Elevation of pancreatic enzymes is common. Liver damage and cholecystitis are other described complications. There is no specific form of therapy for STEC HUS, but appropriate fluid and electrolyte management (better hyperhydration when possible), avoiding antidiarrheal drugs, and possibly avoiding antibiotic therapy, are recommended as the best practice. In atypical HUS (aHUS) gastrointestinal manifestation are rare, but recently a study evidenced that gastrointestinal complications are common in aHUS in presence of factor-H autoantibodies. Some report of patients with IBD and contemporary atypical-HUS were found, both for CD and UC. The authors conclude that deregulation of the alternative complement pathway may manifest in other organs besides the kidney. Finally, searching for STEC-infection, or broadly for Escherichia coli (E. coli) infection, and IBD onset, some reviews suggest a possible role of adherent invasive E. coli (AIEC) on the pathogenesis of IBD. CONCLUSIONS The current literature shows that gastrointestinal complications of HUS are quite exclusive of STEC-associated HUS, whereas aHUS have usually mild or absent intestinal involvement. Severe presentation as toxic megacolon, perforation, ulcerative colitis, peritonitis is similar to IBD at the onset. Moreover, some types of E. coli (AIEC) have been considered a risk factor for IBD. Recent literature on aHUS shows that intestinal complications are more common than described before, particularly for patients with anti-H factor antibodies. Moreover, we found some report of patient with both aHUS and IBD, who benefit from anti-C5 antibodies injection (Eculizumab).
Collapse
Affiliation(s)
- Laura Bianchi
- Pediatric Emergency Unit, University Hospital of Parma, Maternal and Infant Department, Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Howard-Varona C, Vik DR, Solonenko NE, Li YF, Gazitua MC, Chittick L, Samiec JK, Jensen AE, Anderson P, Howard-Varona A, Kinkhabwala AA, Abedon ST, Sullivan MB. Fighting Fire with Fire: Phage Potential for the Treatment of E. coli O157 Infection. Antibiotics (Basel) 2018; 7:E101. [PMID: 30453470 PMCID: PMC6315980 DOI: 10.3390/antibiotics7040101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Hemolytic⁻uremic syndrome is a life-threating disease most often associated with Shiga toxin-producing microorganisms like Escherichia coli (STEC), including E. coli O157:H7. Shiga toxin is encoded by resident prophages present within this bacterium, and both its production and release depend on the induction of Shiga toxin-encoding prophages. Consequently, treatment of STEC infections tend to be largely supportive rather than antibacterial, in part due to concerns about exacerbating such prophage induction. Here we explore STEC O157:H7 prophage induction in vitro as it pertains to phage therapy-the application of bacteriophages as antibacterial agents to treat bacterial infections-to curtail prophage induction events, while also reducing STEC O157:H7 presence. We observed that cultures treated with strictly lytic phages, despite being lysed, produce substantially fewer Shiga toxin-encoding temperate-phage virions than untreated STEC controls. We therefore suggest that phage therapy could have utility as a prophylactic treatment of individuals suspected of having been recently exposed to STEC, especially if prophage induction and by extension Shiga toxin production is not exacerbated.
Collapse
Affiliation(s)
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - M Consuelo Gazitua
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Lauren Chittick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer K Samiec
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Aubrey E Jensen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Paige Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Fogolari M, Mavian C, Angeletti S, Salemi M, Lampel KA, Maurelli AT. Distribution and characterization of Shiga toxin converting temperate phages carried by Shigella flexneri in Hispaniola. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:321-328. [PMID: 30075254 PMCID: PMC6260934 DOI: 10.1016/j.meegid.2018.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 01/29/2023]
Abstract
Shigella infections account for a considerable burden of acute diarrheal diseases worldwide and remain a major cause of childhood mortality in developing countries. Although, all four species of Shigella (S. dysenteriae, S. flexneri, S. boydii, and S. sonnei) cause bacillary dysentery, historically only S. dysenteriae type 1 has been recognized as carrying the genes for Shiga toxin (stx). Recent epidemiological data, however, have suggested that the emergence of stx carrying S. flexneri strains may have originated from bacteriophage-mediated inter-species horizontal gene transfer in one specific geographical area, Hispaniola. To test this hypothesis, we analyzed whole genome sequences of stx-encoding phages carried by S. flexneri strains isolated in Haiti and S. flexneri S. boydii and S. dysenteriae strains isolated from international travelers who likely acquired the infection in Haiti or the Dominican Republic. Phylogenetic analysis showed that phage sequences encoded in the Shigella strains from Hispaniola were bacteriophage φPOC-J13 and they were all closely related to a phage isolated from a USA isolate, E. coli 2009C-3133 serotype O119:H4. In addition, despite the low genetic heterogeneity of phages from different Shigella spp. circulating in the Caribbean island between 2001 and 2014, two distinct clusters emerged in Haiti and the Dominican Republic. Each cluster possibly originated from phages isolated from S. flexneri 2a, and within each cluster several instances of horizontal phage transfer from S. flexneri 2a to other species were detected. The implications of the emergence of stx-producing non-S. dysenteriae type 1 Shigella species, such as S. flexneri, spans not only the basic science behind horizontal phage spread, but also extends to medical treatment of patients infected with this pathogen.
Collapse
Affiliation(s)
- Marta Fogolari
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA.
| | | | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
39
|
Segura A, Bertoni M, Auffret P, Klopp C, Bouchez O, Genthon C, Durand A, Bertin Y, Forano E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genomics 2018; 19:766. [PMID: 30352567 PMCID: PMC6199705 DOI: 10.1186/s12864-018-5167-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Background The cattle gastrointestinal tract (GIT) is the main enterohemorrhagic Escherichia coli (EHEC) reservoir. In order to identify nutrients required for the survival or multiplication of EHEC in the bovine GIT, we compared the transcriptomes of the EHEC O157:H7 reference strain EDL933 cultured in vitro in bovine digestive contents (DCs) (rumen, small intestine and rectum) using RNA-sequencing. Results Gene expression profiles showed that EHEC EDL933 activated common but also specific metabolic pathways to survive in the different bovine DCs. Mucus-derived carbohydrates seem important in EHEC nutrition in posterior DCs (small intestine and rectum) but not in rumen content. Additional carbohydrates (xylose, ribose, mannitol, galactitol) as well as gluconeogenic substrates (aspartate, serine, glycerol) would also be used by EHEC as carbon and/or nitrogen sources all along the bovine GIT including the rumen. However, xylose, GalNac, ribose and fucose transport and/or assimilation encoding genes were over-expressed during incubation in rectum content compared with rumen and intestine contents, and genes coding for maltose transport were only induced in rectum. This suggests a role for these carbohydrates in the colonization of the cattle rectum, considered as the major site for EHEC multiplication. In contrast, the transcription of the genes associated with the assimilation of ethanolamine, an important nitrogen source for EHEC, was poorly induced in EHEC growing in rectum content, suggesting that ethanolamine is mainly assimilated in the cattle rumen and small intestine. Respiratory flexibility would also be required for EHEC survival because of the redundancy of dehydrogenases and reductases simultaneously induced in the bovine DCs, probably in response to the availability of electron donors and acceptors. Conclusion EHEC EDL933 showed a high flexibility in the activation of genes involved in respiratory pathways and assimilation of carbon and nitrogen sources, most of them from animal origin. This may allow the bacterium to adapt and survive in the various bovine GIT compartments. Obtaining a better understanding of EHEC physiology in bovine GIT is a key step to ultimately propose strategies to limit EHEC carriage and shedding by cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5167-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Marine Bertoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Institut National de Police Scientifique - Laboratoire de Police Scientifique de Marseille, Marseille, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Ifremer, UMR 241 EIO, Tahiti, French Polynesia
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Alexandra Durand
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
40
|
Hernandez-Doria JD, Sperandio V. Bacteriophage Transcription Factor Cro Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli. Cell Host Microbe 2018; 23:607-617.e6. [PMID: 29746832 DOI: 10.1016/j.chom.2018.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
Abstract
Bacteriophage-encoded genetic elements control bacterial biological functions. Enterohemorrhagic Escherichia coli (EHEC) strains harbor lambda-phages encoding the Shiga-toxin (Stx), which is expressed during the phage lytic cycle and associated with exacerbated disease. Phages also reside dormant within bacterial chromosomes through their lysogenic cycle, but how this impacts EHEC virulence remains unknown. We find that during lysogeny the phage transcription factor Cro activates the EHEC type III secretion system (T3SS). EHEC lambdoid phages are lysogenic under anaerobic conditions when Cro binds to and activates the promoters of T3SS genes. Interestingly, the Cro sequence varies among phages carried by different EHEC outbreak strains, and these changes affect Cro-dependent T3SS regulation. Additionally, infecting mice with the related pathogen C. rodentium harboring the bacteriophage cro from EHEC results in greater T3SS gene expression and enhanced virulence. Collectively, these findings reveal the role of phages in impacting EHEC virulence and their potential to affect outbreak strains.
Collapse
Affiliation(s)
- Juan D Hernandez-Doria
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.
| |
Collapse
|
41
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Bertin Y, Segura A, Jubelin G, Dunière L, Durand A, Forano E. Aspartate metabolism is involved in the maintenance of enterohaemorrhagicEscherichia coliO157:H7 in bovine intestinal content. Environ Microbiol 2018; 20:4473-4485. [DOI: 10.1111/1462-2920.14380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Gregory Jubelin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Lysiane Dunière
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
- Lallemand Animal Nutrition Blagnac France
| | - Alexandra Durand
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| |
Collapse
|
43
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection. Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen’s key virulence factors.
Collapse
|
44
|
Köckerling E, Karrasch L, Schweitzer A, Razum O, Krause G. Public Health Research Resulting from One of the World's Largest Outbreaks Caused by Entero-Hemorrhagic Escherichia coli in Germany 2011: A Review. Front Public Health 2017; 5:332. [PMID: 29312915 PMCID: PMC5732330 DOI: 10.3389/fpubh.2017.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023] Open
Abstract
In 2011, Germany experienced one of the largest outbreaks of entero-hemorrhagic Escherichia coli (EHEC) ever reported. Four years thereafter, we systematically searched for scientific publications in PubMed and MEDPILOT relating to this outbreak in order to assess the pattern of respective research activities and to assess the main findings and recommendations in the field of public health. Following PRISMA guidelines, we selected 133 publications, half of which were published within 17 months after outbreak onset. Clinical medicine was covered by 71, microbiology by 60, epidemiology by 46, outbreak reporting by 11, and food safety by 9 papers. Those on the last three topics drew conclusions on methods in surveillance, diagnosis, and outbreak investigation, on resources in public health, as well as on inter-agency collaboration, and public communication. Although the outbreak primarily affected Germany, most publications were conducted by multinational cooperations. Our findings document how soon and in which fields research was conducted with respect to this outbreak.
Collapse
Affiliation(s)
- Elena Köckerling
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany.,Department Münster, Institute for Rehabilitation Research IfR, Münster, Germany
| | - Laura Karrasch
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany
| | - Aparna Schweitzer
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Razum
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Shiga Toxin (Verotoxin)-producing
Escherichia coli and Foodborne Disease:
A Review. Food Saf (Tokyo) 2017; 5:35-53. [PMID: 32231928 DOI: 10.14252/foodsafetyfscj.2016029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin (verotoxin)-producing Escherichia coli (STEC) is an important cause of foodborne disease. Since outcomes of the infections with STEC have a broad range of manifestation from asymptomatic infection or mild intestinal discomfort, to bloody diarrhea, hemolytic uremic syndrome (HUS), end-stage renal disease (ESRD), and death, the disease is a serious burden in public health and classified as a notifiable infectious disease in many countries. Cattle and other ruminants are considered to be the major reservoirs of STEC though isolation of STEC from other animals have been reported. Hence, the source of contamination extends to a wide range of foods, not only beef products but also fresh produce, water, and environment contaminated by excretes from the animals, mainly cattle. A low- infectious dose of STEC makes the disease relatively contagious, and causes outbreaks with unknown contamination sources and, therefore, as a preventive measure against STEC infection, it is important to obtain characteristics of prevailing STEC isolates in the region through robust surveillance. Analysis of the isolates by pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) could help finding unrecognized foodborne outbreaks due to consumption of respective contaminated sources. However, though the results of molecular analysis of the isolates could indicate linkage of sporadic cases of STEC infection, it is hardly concluded that the cases are related via contaminated food source if it were not for epidemiological information. Therefore, it is essential to combine the results of strain analysis and epidemiological investigation rapidly to detect rapidly foodborne outbreaks caused by bacteria. This article reviews STEC infection as foodborne disease and further discusses key characteristics of STEC including pathogenesis, clinical manifestation, prevention and control of STEC infection. We also present the recent situation of the disease in Japan based on the surveillance of STEC infection.
Collapse
|
46
|
Moxley RA, Francis DH, Tamura M, Marx DB, Santiago-Mateo K, Zhao M. Efficacy of Urtoxazumab (TMA-15 Humanized Monoclonal Antibody Specific for Shiga Toxin 2) Against Post-Diarrheal Neurological Sequelae Caused by Escherichia coli O157:H7 Infection in the Neonatal Gnotobiotic Piglet Model. Toxins (Basel) 2017; 9:toxins9020049. [PMID: 28134751 PMCID: PMC5331429 DOI: 10.3390/toxins9020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is the most common cause of hemorrhagic colitis and hemolytic uremic syndrome in human patients, with brain damage and dysfunction the main cause of acute death. We evaluated the efficacy of urtoxazumab (TMA-15, Teijin Pharma Limited), a humanized monoclonal antibody against Shiga toxin (Stx) 2 for the prevention of brain damage, dysfunction, and death in a piglet EHEC infection model. Forty-five neonatal gnotobiotic piglets were inoculated orally with 3 × 109 colony-forming units of EHEC O157:H7 strain EDL933 (Stx1+, Stx2+) when 22–24 h old. At 24 h post-inoculation, piglets were intraperitoneally administered placebo or TMA-15 (0.3, 1.0 or 3.0 mg/kg body weight). Compared to placebo (n = 10), TMA-15 (n = 35) yielded a significantly greater probability of survival, length of survival, and weight gain (p <0.05). The efficacy of TMA-15 against brain lesions and death was 62.9% (p = 0.0004) and 71.4% (p = 0.0004), respectively. These results suggest that TMA-15 may potentially prevent or reduce vascular necrosis and infarction of the brain attributable to Stx2 in human patients acutely infected with EHEC. However, we do not infer that TMA-15 treatment will completely protect human patients infected with EHEC O157:H7 strains that produce both Stx1 and Stx2.
Collapse
Affiliation(s)
- Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Mizuho Tamura
- Teijin Pharma Limited, Pharmacology Research Department, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan.
| | - David B Marx
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Kristina Santiago-Mateo
- Canadian Food Inspection Agency, Lethbridge Laboratory, Box 640 TWP Rd 9-1, Lethbridge, AB T1J 3Z4, Canada.
| | - Mojun Zhao
- Valley Pathologists, Inc., 1100 South Main Street, Suite 308, Dayton, OH 45409, USA.
| |
Collapse
|
47
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
48
|
Flowers LJ, Bou Ghanem EN, Leong JM. Synchronous Disease Kinetics in a Murine Model for Enterohemorrhagic E. coli Infection Using Food-Borne Inoculation. Front Cell Infect Microbiol 2016; 6:138. [PMID: 27857935 PMCID: PMC5093121 DOI: 10.3389/fcimb.2016.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
Upon colonization of the intestinal epithelium, the attaching and effacing (AE) pathogen Enterohemorrhagic Escherichia coli (EHEC) effaces microvilli and forms pedestal-like structures beneath the adherent bacterium. The production of one of its virulence factors, the phage-encoded Shiga toxin (Stx) results in systemic disease, including the development of renal failure. Although EHEC does not productively infect conventional mice, EHEC infection can be modeled in mice utilizing a derivative of the natural murine AE pathogen Citrobacter rodentium (CR). Gavage of mice with CR(ΦStx2dact), a C. rodentium lysogenized by a phage encoding an Stx variant with high potency in mice, features AE lesion formation on intestinal epithelium and Stx-mediated systemic disease, including renal damage. This model is somewhat limited by mouse-to-mouse variation in the course of disease, with the time to severe morbidity (and required euthanasia) varying by as many as 5 days, a feature that limits pathological analysis at defined stages of disease. In the current study, we altered and optimized the preparation, dose, and mode of delivery of CR(ΦStx2dact), using food-borne route of infection to generate highly synchronous disease model. We found that food-borne inoculation of as few as 3 × 104 CR(ΦStx2dact) resulted in productive colonization and severe systemic disease. Upon inoculation of 1 × 108 bacteria, the majority of infected animals suffered weight loss beginning 5 days post-infection and all required euthanasia on day 6 or 7. This enhanced murine model for EHEC infection should facilitate characterization of the pathology associated with specific phases of Stx-mediated disease.
Collapse
Affiliation(s)
- Laurice J Flowers
- Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
49
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
50
|
The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 2015; 84:149-61. [PMID: 26483409 DOI: 10.1128/iai.00994-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.
Collapse
|