1
|
Vermeulen S, Forsman AM, de Bekker C. Consequences of "zombie-making" and generalist fungal pathogens on carpenter ant microbiota. CURRENT RESEARCH IN INSECT SCIENCE 2024; 7:100102. [PMID: 39720458 PMCID: PMC11665668 DOI: 10.1016/j.cris.2024.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The bacterial microbiome of the ant Camponotus floridanus has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes. We characterized the effects of two entomopathogens with different infection strategies on the gut micro- and mycobiota of C. floridanus over time; Ophiocordyceps camponoti-floridani and Beauveria bassiana. Specialist, 'zombie-making' O. camponoti-floridani fungi hijack the behavior of C. floridanus ants over three weeks, leading them to find an elevated position and fix themselves in place with their mandibles. This summiting behavior is adaptive to Ophiocordyceps as the ant transports the fungus to conditions that favor fruiting body development, spore production, dispersal, and transmission. In contrast, the generalist entomopathogen B. bassiana infects and kills the ant within a few days, without the induction of obvious fungus-adaptive behaviors. By comparing healthy ants with Beauveria- and Ophiocordyceps-infected ants we aimed to 1) describe the dynamics of the micro- and mycobiome of C. floridanus during infection, and 2) determine if the effects on gut microbiota are distinctive between fungi that have different infection strategies. While Beauveria did not measurably affect the ant host micro-and mycobiome, Ophiocordyceps did, especially for the mycobiome. Moreover, ants that were sampled during Ophiocordyceps-adaptive summiting behavior had a significantly different micro- and mycobiome composition compared to healthy controls and those sampled before and after manipulation took place. This suggests that the host microbiome might have a role to play in the manipulation strategy of Ophiocordyceps.
Collapse
Affiliation(s)
- Sophia Vermeulen
- Department of Biology, University of Central Florida, Orlando FL 32816, USA
| | - Anna M Forsman
- Department of Biology, University of Central Florida, Orlando FL 32816, USA
- Department of Biology, Colby University, Waterville ME 04901, USA
| | - Charissa de Bekker
- Department of Biology, University of Central Florida, Orlando FL 32816, USA
- Microbiology, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Kwak S, Wang C, Usyk M, Wu F, Freedman ND, Huang WY, McCullough ML, Um CY, Shrubsole MJ, Cai Q, Li H, Ahn J, Hayes RB. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024; 10:1537-1547. [PMID: 39325441 PMCID: PMC11428028 DOI: 10.1001/jamaoncol.2024.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/21/2024] [Indexed: 09/27/2024]
Abstract
Importance The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. Objective To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. Design, Setting, and Participants Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. Exposures Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. Main Outcomes and Measures The primary outcome was HNSCC incidence. Results The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. Conclusions and Relevance This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Richard B. Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| |
Collapse
|
3
|
Ali MU, Chaudhary BN, Panja S, Gendelman HE. Theranostic Diagnostics. Results Probl Cell Differ 2024; 73:551-578. [PMID: 39242393 DOI: 10.1007/978-3-031-62036-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Diagnosing and then treating disease defines theranostics. The approach holds promise by facilitating targeted disease outcomes. The simultaneous analysis of finding the presence of disease pathophysiology while providing a parallel in treatment is a novel and effective strategy for seeking improved medical care. We discuss how theranostics improves disease outcomes is discussed. The chapter reviews the delivery of targeted therapies. Bioimaging techniques are highlighted as early detection and tracking systems for microbial infections, degenerative diseases, and cancers.
Collapse
Affiliation(s)
- Mohammad Uzair Ali
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharat N Chaudhary
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Huertas MG, Rodríguez M, Castro P, Cruz SD, Cifuentes EA, Yepes AF, Zambrano MM, Baldión AM. Description of the colonizing mycobiota of endotracheal tubes from patients admitted to two intensive care units in Bogotá, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:181-193. [PMID: 37721909 PMCID: PMC10586799 DOI: 10.7705/biomedica.6884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 09/20/2023]
Abstract
Introduction. Medical device colonization by pathogenic microorganisms is a risk factor for increasing infections associated with health care and, consequently, the morbidity and mortality of intubated patients. In Colombia, fungal colonization of endotracheal tubes has not been described, and this information could lead to new therapeutic options for the benefit of patients. Objective. To describe the colonizing fungi of the endotracheal tubes from patients in the intensive care unit, along with its antifungal sensitivity profile. Materials and methods. We conducted a descriptive, observational study in two health centers for 12 months. Endotracheal tubes were collected from patients in intensive care units. Samples were processed for culture, fungi identification, and antifungal sensitivity profile assessment. Results. A total of 121 endotracheal tubes, obtained from 113 patients, were analyzed: 41.32 % of the tubes were colonized by Candida albicans (64.62%), C. non‑albicans (30.77%), Cryptococcus spp. (3.08%) or molds (1.54%). All fungi evaluated showed a high sensitivity to antifungals, with a mean of 91%. Conclusion. Fungal colonization was found in the endotracheal tubes of patients under invasive mechanical ventilation. The antifungal sensitivity profile in these patients was favorable. A clinical study is required to find possible correlations between the colonizing microorganisms and infectivity.
Collapse
Affiliation(s)
- Mónica Gabriela Huertas
- Genética Molecular, Corporación CorpoGen, Bogotá, D.C., Colombia; Escuela de Medicina, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| | - Miguel Rodríguez
- Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia.
| | - Patricia Castro
- Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia.
| | - Sergio Danilo Cruz
- Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia.
| | | | - Andrés Felipe Yepes
- Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia.
| | | | - Ana Margarita Baldión
- Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia.
| |
Collapse
|
5
|
Giorgio M, Niccolò BGM, Benedetta T, Luisa M, Leonardo BF, Gregory B, Pietro B, Alberto A, Domizia D, Emidio A. Fungal and Bacterial Diversity in the Tuber magnatum Ecosystem and Microbiome. MICROBIAL ECOLOGY 2023; 85:508-521. [PMID: 35237850 DOI: 10.1007/s00248-021-01950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Fungi belonging to the genus Tuber produce edible ascocarps known as truffles. Tuber magnatum Picco may be the most appreciated truffle species given its peculiar aroma. While its life cycle is not yet fully elucidated, some studies demonstrated an active role of microorganisms. The main goal of this study was to determine how the T. magnatum microbiome varies across space and time. To address this, we characterized microbial communities associated with T. magnatum through high-throughput amplicon sequencing of internal transcribed spacer (ITS) and 16S rDNAs in three productive natural sites in Italy across 2 years. At each site, four truffles were sampled as well as the soil underneath and at 40, 100, and 200 cm from the harvesting points, to assess for microbial variation between substrates, years, and sites. A statistically significant site-related effect on microbial communities was identified, whereas only the prokaryotic community was significantly affected by the distance of soil from the truffle. Significant differences between sampling years were also found, demonstrating a possible relation among rainfall precipitation and Firmicutes and Actinobacteria. Thirty-six bacterial OTUs in truffles and 11 bacterial OTUs in soils beneath truffles were identified as indicator taxa. As shown for other truffle species, the dominance of Bradyrhizobium, Rhizobium, and Ensifer spp. within the truffle fruiting body suggests an evolutionary adaptation of this microorganism to the genus Tuber. The present work offers novel and relevant insights into the microbial ecology of T. magnatum ecosystems and fruiting bodies. The function and role of these bacteria in the truffle microbiome and life cycle are in need of further investigation.
Collapse
Affiliation(s)
- Marozzi Giorgio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Benucci Gian Maria Niccolò
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Turchetti Benedetta
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Massaccesi Luisa
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100, Viterbo, Italy
| | - Baciarelli Falini Leonardo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Bonito Gregory
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Buzzini Pietro
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Agnelli Alberto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Donnini Domizia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Albertini Emidio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| |
Collapse
|
6
|
Li BZ, Wang H, Li XB, Zhang QR, Huang RG, Wu H, Wang YY, Li KD, Chu XJ, Cao NW, Zhou HY, Fang XY, Leng RX, Fan YG, Tao JH, Shuai ZW, Ye DQ. Altered gut fungi in systemic lupus erythematosus - A pilot study. Front Microbiol 2022; 13:1031079. [PMID: 36545195 PMCID: PMC9760866 DOI: 10.3389/fmicb.2022.1031079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Gut fungi, as symbiosis with the human gastrointestinal tract, may regulate physiology via multiple interactions with host cells. The plausible role of fungi in systemic lupus erythematosus (SLE) is far from clear and need to be explored. Methods A total of 64 subjects were recruited, including SLE, rheumatoid arthritis (RA), undifferentiated connective tissue diseases (UCTDs) patients and healthy controls (HCs). Fecal samples of subjects were collected. Gut fungi and bacteria were detected by ITS sequencing and 16S rRNA gene sequencing, respectively. Alpha and beta diversities of microbiota were analyzed. Linear discriminant analysis effect size analysis was performed to identify abundance of microbiota in different groups. The correlation network between bacterial and fungal microbiota was analyzed based on Spearman correlation. Results Gut fungal diversity and community composition exhibited significant shifts in SLE compared with UCTDs, RA and HCs. Compared with HCs, the alpha and beta diversities of fungal microbiota decreased in SLE patients. According to principal coordinates analysis results, the constitution of fungal microbiota from SLE, RA, UCTDs patients and HCs exhibited distinct differences with a clear separation between fungal microbiota. There was dysbiosis in the compositions of fungal and bacterial microbiota in the SLE patients, compared to HCs. Pezizales, Cantharellales and Pseudaleuria were enriched in SLE compared with HCs, RA and UCTDs. There was a complex relationship network between bacterial and fungal microbiota, especially Candida which was related to a variety of bacteria. Conclusion This study presents a pilot analysis of fungal microbiota with diversity and composition in SLE, and identifies several gut fungi with different abundance patterns taxa among SLE, RA, UCTDs and HCs. Furthermore, the gut bacterial-fungal association network in SLE patients was altered compared with HCs.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,*Correspondence: Dong-Qing Ye,
| |
Collapse
|
7
|
Theofilou VI, Alfaifi A, Montelongo-Jauregui D, Pettas E, Georgaki M, Nikitakis NG, Jabra-Rizk MA, Sultan AS. The oral mycobiome: Oral epithelial dysplasia and oral squamous cell carcinoma. J Oral Pathol Med 2022; 51:413-420. [PMID: 35347760 DOI: 10.1111/jop.13295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Fungi, a diverse group of eukaryotic organisms, play distinct roles in health and disease. Recent advances in the field of mycobiology have enabled the characterization of the "human mycobiome." The human mycobiome has extensively been studied in various disease models. However, to date, the role of the oral mycobiome in oral carcinogenesis has yet to be elucidated. Candida albicans, the most common oral colonizer, has been speculated to display tumorigenic effects; however, the literature lacks consistent documentation from mechanistic studies on whether oral mycobiota act as drivers, facilitators, or passive colonizers of oral premalignancy and cancer. This review article provides an overview of existing hypothesis-driven mechanistic models that outline the complex interplay between the oral mycobiome and oral epithelial dysplasia as well as their potential clinical implications.
Collapse
Affiliation(s)
- Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA.,Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Areej Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA.,Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Efstathios Pettas
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mary-Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA.,Program in Oncology, University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radic Biol Med 2021; 176:265-285. [PMID: 34610364 DOI: 10.1016/j.freeradbiomed.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
The role of the intestine in human health and disease has historically been neglected and was mostly attributed to digestive and absorptive functions. In the past two decades, however, discoveries related to human nutrition and intestinal host-microbe reciprocal interaction have established the essential role of intestinal health in the pathogenesis of chronic diseases and the overall wellbeing. That transfer of gut microbiota could be a means of disease phenotype transfer has revolutionized our understanding of chronic disease pathogenesis. This narrative review highlights the major concepts related to intestinal microbiota, metabolism, and metabolome (3M) that have facilitated our fundamental understanding of the association between the intestine, and human health and disease. In line with increased interest of microbiota-dependent modulation of human health by dietary phytochemicals, we have also discussed the emerging concepts beyond the phytochemical bioactivities which emphasizes the integral role of microbial metabolites of parent phytochemicals at extraintestinal tissues. Finally, this review concludes with challenges and future prospects in defining the 3M interactions and has emphasized the fact that, it takes 'guts' to stay healthy.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sirshendu Pal
- Mukherjee Hospital, Mitra's Clinic and Nursing Home, Siliguri, West Bengal, India
| |
Collapse
|
9
|
Shoemaker R, Kim J. Urobiome: An outlook on the metagenome of urological diseases. Investig Clin Urol 2021; 62:611-622. [PMID: 34729961 PMCID: PMC8566783 DOI: 10.4111/icu.20210312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
The urinary tract likely plays a role in the development of various urinary diseases due to the recently recognized notion that urine is not sterile. In this mini review, we summarize the current literature regarding the urinary microbiome and mycobiome and its relationship to various urinary diseases. It has been recently discovered that the healthy urinary tract contains a host of microorganisms, creating a urinary microbiome. The relative abundance and type of bacteria varies, but generally, deviations in the standard microbiome are observed in individuals with urologic diseases, such as bladder cancer, benign prostatic hyperplasia, urgency urinary incontinence, overactive bladder syndrome, interstitial cystitis, bladder pain syndrome, and urinary tract infections. However, whether this change is causative, or correlative has yet to be determined. In summary, the urinary tract hosts a complex microbiome. Changes in this microbiome may be indicative of urologic diseases and can be tracked to predict, prevent, and treat them in individuals. However, current analytical and sampling collection methods may present limitations to the development in the understanding of the urinary microbiome and its relationship with various urinary diseases. Further research on the differences between healthy and diseased microbiomes, the long-term effects of antibiotic treatments on the urobiome, and the effect of the urinary mycobiome on general health will be important in developing a comprehensive understanding of the urinary microbiome and its relationship to the human body.
Collapse
Affiliation(s)
- Rachel Shoemaker
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
10
|
Pierre JF, Phillips GJ, Chandra LC, Rendina DN, Thomas-Gosain NF, Lubach GR, Lyte M, Coe CL, Gosain A. Lyticase Facilitates Mycobiome Resolution Without Disrupting Microbiome Fidelity in Primates. J Surg Res 2021; 267:336-341. [PMID: 34186310 PMCID: PMC8678161 DOI: 10.1016/j.jss.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples. METHODS With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso. RESULTS Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase. CONCLUSIONS We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.
Collapse
Affiliation(s)
- Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.
| | - Greg J Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Lawrance C Chandra
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Danielle N Rendina
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Neena F Thomas-Gosain
- Department. of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabriele R Lubach
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Christopher L Coe
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Ankush Gosain
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
11
|
Phenotypic and Genotypic Characterization of Intestinal Candida spp. in Tunisia. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Yeasts naturally colonize the mammalian digestive tract and play an important role in health and disease. This community is composed of commensal yeasts, mostly Candida and Saccharomyces described as a part of the intestinal mycobiome and could be associated with resident or transient flora. Objectives: The aim of our study was to perform the phenotypic and genotypic characterization of culturable Candida isolates present in stool specimens of healthy Tunisian individuals and to evaluate their antifungal susceptibility. Methods: Yeasts were recovered from 46 stool samples cultured on Sabouraud dextrose agar at 37°C. Species were identified using conventional methods and ITS-PCR sequencing. Candida isolates were tested by exploring their tolerance to oxidative stress and extreme acidic conditions. In addition, their biofilm formation ability and in vitro resistance to antifungals was determined by the VITEK 2 system. Results: The identification by sequencing the ITS1-5.8S-ITS2 region of the 56 yeast strains isolated from 37 stool samples revealed that Candida was the dominant genus and was represented by Candida albicans (n = 21), C. parapsilosis (n = 10), C. glabrata (n = 9), and C. krusei (n = 9). In contrast, the other genera, including Trichosporon, Geotrichum, and Rhodotorula, were sporadically occurring. We found that most Candida isolates were able to form biofilms under oxidative stress and extreme pH conditions. Regarding antifungal susceptibility, a higher resistance rate to fluconazole was revealed in comparison to caspofungin and micafungin. However, no resistance was revealed against voriconazole, amphotericin B, and 5-flucytosine. Conclusions: This is the first work-generated data on cultivable yeasts from stool specimens of healthy individuals in Tunisia. Further metagenomic studies with a larger sample size are needed to better characterize the intestinal mycobiota.
Collapse
|
12
|
Dirajlal-Fargo S, El-Kamari V, Weiner L, Shan L, Sattar A, Kulkarni M, Funderburg N, Nazzinda R, Karungi C, Kityo C, Musiime V, McComsey GA. Altered Intestinal Permeability and Fungal Translocation in Ugandan Children With Human Immunodeficiency Virus. Clin Infect Dis 2021; 70:2413-2422. [PMID: 31260509 DOI: 10.1093/cid/ciz561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Children with perinatally acquired human immunodeficiency virus (HIV; PHIVs) face a lifelong cumulative exposure to HIV and antiretroviral therapy (ART). The relationship between gut integrity, microbial translocation, and inflammation in PHIV is poorly understood. METHODS This is a cross-sectional study in 57 PHIVs, 59 HIV-exposed but uninfected children, and 56 HIV-unexposed and -uninfected children aged 2-10 years old in Uganda. PHIVs were on stable ART with HIV-1 RNA <400 copies/mL. We measured markers of systemic inflammation, monocyte activation, and gut integrity. Kruskal-Wallis tests were used to compare markers by group and the Spearman correlation was used to assess correlations between biomarkers. RESULTS The mean age of all participants was 7 years and 55% were girls. Among PHIVs, the mean CD4 % was 34%, 93% had a viral load ≤20 copies/mL, and 79% were on a nonnucleoside reverse transcriptase inhibitor regimen. Soluble cluster of differentiation 14 (sCD14), beta-D-glucan (BDG), and zonulin were higher in the PHIV group (P ≤ .01). Intestinal fatty acid binding protein (I-FABP) and lipopolysaccharide binding protein (LBP) did not differ between groups (P > .05). Among PHIVs who were breastfed, levels of sCD163 and interleukin 6 (IL6) were higher than levels in PHIV who were not breastfed (P < .05). Additionally, in PHIVs with a history of breastfeeding, sCD14, BDG, LBP, zonulin, and I-FABP correlated with several markers of systemic inflammation, including high-sensitivity C-reactive protein, IL6, d-dimer, and systemic tumor necrosis factor receptors I and II (P ≤ .05). CONCLUSIONS Despite viral suppression, PHIVs have evidence of altered gut permeability and fungal translocation. Intestinal damage and the resultant bacterial and fungal translocations in PHIVs may play a role in the persistent inflammation that leads to many end-organ diseases in adults.Despite viral suppression, children with perinatally acquired human immunodeficiency virus (HIV) in Uganda have evidence of alterations in intestinal permeability and fungal translocation, compared to HIV-exposed but uninfected and HIV-unexposed children, which may play a role in HIV-associated chronic inflammation.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- University Hospitals Cleveland Medical Center, Columbus.,Rainbow Babies and Children's Hospital, Columbus.,Case Western Reserve University, Columbus
| | | | | | | | | | - Manjusha Kulkarni
- Ohio State University School of Health and Rehabilitation Sciences, Columbus
| | - Nicholas Funderburg
- Ohio State University School of Health and Rehabilitation Sciences, Columbus
| | | | | | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda.,Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center, Columbus.,Rainbow Babies and Children's Hospital, Columbus.,Case Western Reserve University, Columbus
| |
Collapse
|
13
|
Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020; 11:e00449-20. [PMID: 32371596 PMCID: PMC7403777 DOI: 10.1128/mbio.00449-20] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom includes at least 6 million eukaryotic species and is remarkable with respect to its profound impact on global health, biodiversity, ecology, agriculture, manufacturing, and biomedical research. Approximately 625 fungal species have been reported to infect vertebrates, 200 of which can be human associated, either as commensals and members of our microbiome or as pathogens that cause infectious diseases. These organisms pose a growing threat to human health with the global increase in the incidence of invasive fungal infections, prevalence of fungal allergy, and the evolution of fungal pathogens resistant to some or all current classes of antifungals. More broadly, there has been an unprecedented and worldwide emergence of fungal pathogens affecting animal and plant biodiversity. Approximately 8,000 species of fungi and Oomycetes are associated with plant disease. Indeed, across agriculture, such fungal diseases of plants include new devastating epidemics of trees and jeopardize food security worldwide by causing epidemics in staple and commodity crops that feed billions. Further, ingestion of mycotoxins contributes to ill health and causes cancer. Coordinated international research efforts, enhanced technology translation, and greater policy outreach by scientists are needed to more fully understand the biology and drivers that underlie the emergence of fungal diseases and to mitigate against their impacts. Here, we focus on poignant examples of emerging fungal threats in each of three areas: human health, wildlife biodiversity, and food security.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Eva H Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - David W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Bruce S Klein
- Department of Pediatrics, Department of Internal Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Canada
| | - John W Taylor
- University of California-Berkeley, Department of Plant and Microbial Biology, Berkeley, California, USA
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Poh TY, Ali NABM, Chan LL, Tiew PY, Chotirmall SH. Evaluation of Droplet Digital Polymerase Chain Reaction (ddPCR) for the Absolute Quantification of Aspergillus species in the Human Airway. Int J Mol Sci 2020; 21:E3043. [PMID: 32357408 PMCID: PMC7247686 DOI: 10.3390/ijms21093043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prior studies illustrate the presence and clinical importance of detecting Aspergillus species in the airways of patients with chronic respiratory disease. Despite this, a low fungal biomass and the presence of PCR inhibitors limits the usefulness of quantitative PCR (qPCR) for accurate absolute quantification of Aspergillus in specimens from the human airway. Droplet digital PCR (ddPCR) however, presents an alternative methodology allowing higher sensitivity and accuracy of such quantification but remains to be evaluated in head-to-head fashion using specimens from the human airway. Here, we implement a standard duplex TaqMan PCR protocol, and assess if ddPCR is superior in quantifying airway Aspergillus when compared to standard qPCR. METHODS The molecular approaches of qPCR and ddPCR were applied to DNA fungal extracts in n = 20 sputum specimens obtained from non-diseased (n = 4), chronic obstructive pulmonary disease (COPD; n = 8) and non-cystic fibrosis bronchiectasis (n = 8) patients where Aspergillus status was known. DNA was extracted and qPCR and ddPCR performed on all specimens with appropriate controls and head-to-head comparisons performed. RESULTS Standard qPCR and ddPCR were both able to detect, even at low abundance, Aspergillus species (Aspergillus fumigatus - A. fumigatus and Aspergillus terreus - A. terreus) from specimens known to contain the respective fungi. Importantly, however, ddPCR was superior for the detection of A. terreus particularly when present at very low abundance and demonstrates greater resistance to PCR inhibition compared to qPCR. CONCLUSION ddPCR has greater sensitivity for A. terreus detection from respiratory specimens, and is more resistant to PCR inhibition, important attributes considering the importance of A. terreus species in chronic respiratory disease states such as bronchiectasis.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Nur A’tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Louisa L.Y. Chan
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Pei Yee Tiew
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Sanjay H. Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
15
|
Observational Cohort Study of Oral Mycobiome and Interkingdom Interactions over the Course of Induction Therapy for Leukemia. mSphere 2020; 5:5/2/e00048-20. [PMID: 32295867 PMCID: PMC7160678 DOI: 10.1128/msphere.00048-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the term "microbiome" refers to all microorganisms, the majority of microbiome studies focus on the bacteriome. Here, we characterize the oral mycobiome, including mycobiome-bacteriome interactions, in the setting of remission-induction chemotherapy (RIC) for acute myeloid leukemia (AML). Oral samples (n = 299) were prospectively collected twice weekly from 39 AML patients during RIC until neutrophil recovery. Illumina MiSeq 16S rRNA gene (V4) and internal transcribed spacer 2 (ITS2) sequencing were used to determine bacterial and fungal diversity and community composition. Intrakingdom and interkingdom network connectivity at baseline (T1) and at midpoint (T3) and a later time point (T6) were assessed via SPIEC-EASI (sparse inverse covariance estimation for ecological association inference). In this exploratory study, mycobiome α-diversity was not significantly associated with antibiotic or antifungal receipt. However, postchemotherapy mycobiome α-diversity was lower in subjects receiving high-intensity chemotherapy. Additionally, greater decreases in Malassezia levels were seen over time among patients on high-intensity RIC compared to low-intensity RIC (P = 0.003). A significantly higher relative abundance of Candida was found among patients who had infection (P = 0.008), while a significantly higher relative abundance of Fusarium was found among patients who did not get an infection (P = 0.03). Analyses of intrakingdom and interkingdom relationships at T1, T3, and T6 indicated that interkingdom connectivity increased over the course of IC as bacterial α-diversity diminished. In (to our knowledge) the first longitudinal mycobiome study performed during AML RIC, we found that mycobiome-bacteriome interactions are highly dynamic. Our study data suggest that inclusion of mycobiome analysis in the design of microbiome studies may be necessary to optimally understand the ecological and functional role of microbial communities in clinical outcomes.IMPORTANCE This report highlights the importance of longitudinal, parallel characterization of oral fungi and bacteria in order to better elucidate the dynamic changes in microbial community structure and interkingdom functional interactions during the injury of chemotherapy and antibiotic exposure as well as the clinical consequences of these interrelated alterations.
Collapse
|
16
|
Galloway-Peña JR, Kontoyiannis DP. The gut mycobiome: The overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS Pathog 2020; 16:e1008353. [PMID: 32240277 PMCID: PMC7117661 DOI: 10.1371/journal.ppat.1008353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jessica R. Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| |
Collapse
|
17
|
Ackerman AL, Chai TC. The Bladder is Not Sterile: an Update on the Urinary Microbiome. CURRENT BLADDER DYSFUNCTION REPORTS 2019; 14:331-341. [PMID: 32612735 DOI: 10.1007/s11884-019-00543-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose of Review The article discusses (1) techniques used to study bacterial urinary microbiota; (2) existence of non-bacterial urinary microbiota; (3) associations between changes in urinary microbiota and various benign lower urinary tract disorders. Recent Findings Urine harbors a diverse microbial community that resides within it. A multitude of studies have identified differences in these communities associated with urologic conditions, suggesting that microbial communities may maintain normal bladder homeostasis. Technological advances in analytic approaches have improved our understanding of the urinary microbiome. The choice of urine sampling method (voided, catheterized, or aspirated) will significantly influence microbiome findings. Sex and age highly influence urinary microbiota; in addition to rigorous inclusion criteria, microbial studies must be sufficiently powered to overcome the substantial interindividual variability of urinary microbiota. Regardless of these complicating factors, studies have identified microbial patterns correlating with both urologic diagnoses and treatment responses. Summary Without a clear understanding of the variability of and exogenous influences on the urinary microbiota in the absence of disease, it has been challenging to reveal the microbial patterns responsible for disease pathophysiology. Host mechanisms in response to the urinary microbiome are also poorly understood. Additional research can address whether the manipulation of urinary microbiota will benefit lower urinary tract health.
Collapse
Affiliation(s)
- A Lenore Ackerman
- Cedars-Sinai Medical Center, 99 N. La Cienega Blvd. Suite M102, Beverly Hills, CA 90211, USA
| | - Toby C Chai
- Boston Medical Center, Boston University School of Medicine, 725 Albany St., Suite 3B, Shapiro Building, Boston, MA 02118, USA
| |
Collapse
|
18
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|