1
|
Wang H, Guan Y, Lin L, Qiang Z, Huo Y, Zhu L, Yan B, Shao S, Liu W, Yang J. DEC1 deficiency promotes osteoclastic activity by augmenting NFATc1 signaling via transactivation and the Ca 2+/calcineurin pathway. Biochem Pharmacol 2025; 233:116754. [PMID: 39824467 DOI: 10.1016/j.bcp.2025.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/30/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq. Our results showed that NFATc1, a master regulator of osteoclast differentiation, and PPP3CB, a member of the calcineurin family, were significantly upregulated in DEC1-/- mice. In vitro experiments revealed that osteoclast differentiation significantly increased both the number and size of osteoclasts in DEC1-/- bone marrow macrophages (BMMs) compared to DEC1+/+ BMMs. Additionally, NFATc1 expression was notably higher in DEC1-/- BMMs than in DEC1+/+ BMMs. Overexpression of DEC1 reduced NFATc1 promoter activity, while knockout increased it. Furthermore, intracellular free Ca2+ levels and calcineurin activity were elevated (∼150 %) in DEC1-/- BMMs compared to DEC1+/+ BMMs. Importantly, the use of calcineurin inhibitors and calcium channel blockers effectively abolished the increased osteoclast differentiation observed in DEC1-/- BMMs. In summary, DEC1 deficiency promotes osteoclast differentiation by enhancing NFATc1 signaling through transcriptional regulation and the Ca2+/calcineurin pathway. Clinically, the mRNA levels of DEC1 were reduced by up to 75 % in patients with osteoporosis. The findings of this study establish that inducing DEC1 expression, alongside attenuators of the Ca2+/calcineurin pathway, offers a molecular basis for preventing and treating osteoporosis associated with DEC1 deficiency.
Collapse
Affiliation(s)
- Haobin Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yu Guan
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Lan Lin
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Zhiyi Qiang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Ying Huo
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Ling Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH 45229, USA
| | - Shulin Shao
- Nanjing Pukou District Traditional Chinese Medicine Hospital, Nanjing 210000, PR China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
2
|
Das BK, Minocha T, Kunika MD, Kannan A, Gao L, Mohan S, Xing W, Varughese KI, Zhao H. Molecular and functional mapping of Plekhm1-Rab7 interaction in osteoclasts. JBMR Plus 2024; 8:ziae034. [PMID: 38586475 PMCID: PMC10994564 DOI: 10.1093/jbmrpl/ziae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Mutations in PLEKHM1 cause osteopetrosis in humans and rats. The germline and osteoclast conditional deletions of Plekhm1 gene in mice lead to defective osteoclast bone resorption and increased trabecular bone mass without overt abnormalities in other organs. As an adaptor protein, pleckstrin homology and RUN domain containing M1 (PLEKHM1) interacts with the key lysosome regulator small GTPase RAB7 via its C-terminal RUBICON homologous (RH) domain. In this study, we have conducted a structural-functional study of the PLEKHM1 RH domain and RAB7 interaction in osteoclasts in vitro. The single mutations of the key residues in the Plekhm1 RH predicted from the crystal structure of the RUBICON RH domain and RAB7 interface failed to disrupt the Plekhm1-Rab7 binding, lysosome trafficking, and bone resorption. The compound alanine mutations at Y949-R954 and L1011-I1018 regions decreased Plekhm1 protein stability and Rab7-binding, respectively, thereby attenuated lysosome trafficking and bone resorption in osteoclasts. In contrast, the compound alanine mutations at R1060-Q1068 region were dispensable for Rab7-binding and Plekhm1 function in osteoclasts. These results indicate that the regions spanning Y949-R954 and L1011-I1018 of Plekhm1 RH domain are functionally important for Plekhm1 in osteoclasts and offer the therapeutic targets for blocking bone resorption in treatment of osteoporosis and other metabolic bone diseases.
Collapse
Affiliation(s)
- Bhaba K Das
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Tarun Minocha
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Mikaela D Kunika
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Aarthi Kannan
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, United States
| | - Ling Gao
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, United States
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, United States
| | - Kottayil I Varughese
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock 72205, AR, United States
| | - Haibo Zhao
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|
3
|
Tao H, Li X, Wang Q, Yu L, Yang P, Chen W, Yang X, Zhou J, Geng D. Redox signaling and antioxidant defense in osteoclasts. Free Radic Biol Med 2024; 212:403-414. [PMID: 38171408 DOI: 10.1016/j.freeradbiomed.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Zhong M, Wu Z, Chen Z, Ren Q, Zhou J. Advances in the interaction between endoplasmic reticulum stress and osteoporosis. Biomed Pharmacother 2023; 165:115134. [PMID: 37437374 DOI: 10.1016/j.biopha.2023.115134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the main site for protein synthesis, folding, and secretion, and accumulation of the unfolded/misfolded proteins in the ER may induce ER stress. ER stress is an important participant in various intracellular signaling pathways. Prolonged- or high-intensity ER stress may induce cell apoptosis. Osteoporosis, characterized by imbalanced bone remodeling, is a global disease caused by many factors, such as ER stress. ER stress stimulates osteoblast apoptosis, increases bone loss, and promotes osteoporosis development. Many factors, such as the drug's adverse effects, metabolic disorders, calcium ion imbalance, bad habits, and aging, have been reported to activate ER stress, resulting in the pathological development of osteoporosis. Increasing evidence shows that ER stress regulates osteogenic differentiation, osteoblast activity, and osteoclast formation and function. Various therapeutic agents have been developed to counteract ER stress and thereby suppress osteoporosis development. Thus, inhibition of ER stress has become a potential target for the therapeutic management of osteoporosis. However, the in-depth understanding of ER stress in the pathogenesis of osteoporosis still needs more effort.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
5
|
Maisuria R, Norton A, Shao C, Bradley EW, Mansky K. Conditional Loss of MEF2C Expression in Osteoclasts Leads to a Sex-Specific Osteopenic Phenotype. Int J Mol Sci 2023; 24:12686. [PMID: 37628864 PMCID: PMC10454686 DOI: 10.3390/ijms241612686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myocyte enhancement factor 2C (MEF2C) is a transcription factor studied in the development of skeletal and smooth muscles. Bone resorption studies have exhibited that the reduced expression of MEF2C contributes to osteopetrosis and the dysregulation of pathological bone remodeling. Our current study aims to determine how MEF2C contributes to osteoclast differentiation and to analyze the skeletal phenotype of Mef2c-cKO mice (Cfms-cre; Mef2cfl/fl). qRT-PCR and Western blot demonstrated that Mef2c expression is highest during the early days of osteoclast differentiation. Osteoclast genes, including c-Fos, c-Jun, Dc-stamp, Cathepsin K, and Nfatc1, had a significant reduction in expression, along with a reduction in osteoclast size. Despite reduced CTX activity, female Mef2c cKO mice were osteopenic, with decreased bone formation as determined via a P1NP ELISA, and a reduced number of osteoblasts. There was no difference between male WT and Mef2c-cKO mice. Our results suggest that Mef2c is critical for osteoclastogenesis, and that its dysregulation leads to a sex-specific osteopenic phenotype.
Collapse
Affiliation(s)
- Ravi Maisuria
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Cynthia Shao
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kim Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| |
Collapse
|
6
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B, Du M. STAT3/Mitophagy Axis Coordinates Macrophage NLRP3 Inflammasome Activation and Inflammatory Bone Loss. J Bone Miner Res 2023; 38:335-353. [PMID: 36502520 DOI: 10.1002/jbmr.4756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a cytokine-responsive transcription factor, is known to play a role in immunity and bone remodeling. However, whether and how STAT3 impacts macrophage NLR family pyrin domain containing 3 (NLRP3) inflammasome activation associated with inflammatory bone loss remains unknown. Here, STAT3 signaling is hyperactivated in macrophages in the context of both non-sterile and sterile inflammatory osteolysis, and this was highly correlated with the cleaved interleukin-1β (IL-1β) expression pattern. Strikingly, pharmacological inhibition of STAT3 markedly blocks macrophage NLRP3 inflammasome activation in vitro, thereby relieving inflammatory macrophage-amplified osteoclast formation and bone-resorptive activity. Mechanistically, STAT3 inhibition in macrophages triggers PTEN-induced kinase 1 (PINK1)-dependent mitophagy that eliminates dysfunctional mitochondria, reverses mitochondrial membrane potential collapse, and inhibits mitochondrial reactive oxygen species release, thus inactivating the NLRP3 inflammasome. In vivo, STAT3 inhibition effectively protects mice from both infection-induced periapical lesions and aseptic titanium particle-mediated calvarial bone erosion with potent induction of PINK1 and downregulation of inflammasome activation, macrophage infiltration, and osteoclast formation. This study reveals the regulatory role of the STAT3/mitophagy axis at the osteo-immune interface and highlights a potential therapeutic intervention to prevent inflammatory bone loss. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
9
|
He S, Zhang K, Cao Y, Liu G, Zou H, Song R, Liu Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1608-1617. [PMID: 35257471 DOI: 10.1002/tox.23510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 μM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 μM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 μM and 5 μM Cd blocked the fusion of precursor cells; and 5 μM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
11
|
Xu H, Jia Y, Li J, Huang X, Jiang L, Xiang T, Xie Y, Yang X, Liu T, Xiang Z, Sheng J. Niloticin inhibits osteoclastogenesis by blocking RANKL-RANK interaction and suppressing the AKT, MAPK, and NF-κB signaling pathways. Biomed Pharmacother 2022; 149:112902. [PMID: 35364377 DOI: 10.1016/j.biopha.2022.112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Dysregulation of osteoclasts or excessive osteoclastogenesis significantly -contributes to the occurrence and development of osteolytic diseases, including osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. The protein-protein interaction between the receptor activator of nuclear factor (NF)-κB (RANK) and its ligand (RANKL) mediates the differentiation and activation of osteoclasts, making it a key therapeutic target for osteoclastogenesis inhibition. However, very few natural compounds exerting anti-osteoclastogenesis activity by inhibiting the RANKL-RANK interaction have been found. Niloticin is a natural tetracyclic triterpenoid compound with anti-viral, antioxidative, and mosquitocidal activities. However, its role in osteoclastogenesis remains unknown. The present study found that niloticin directly binds to RANK with an equilibrium dissociation constant of 5.8 μM, blocking RANKL-RANK interaction, thereby inhibiting RANKL-induced AKT, MAPK (p38, JNK, and ERK1/2), and NF-κB (IKKα/β, IκBα, and p65) pathways activation, and reducing the expression of key osteoclast differentiation-related regulatory factors (NFATc1, c-Fos, TRAP, c-Src, β3-Integrin, and cathepsin K) in osteoclast precursors, ultimately negatively regulating osteoclastogenesis. These findings suggest that niloticin could serve as a novel osteoclastogenesis inhibitor and might have beneficial effects on bone health.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuankan Jia
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanhao Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaomei Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
12
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
13
|
Dang L, Li N, Wu X, Li D, Zhang Z, Zhang BT, Lyu A, Chen L, Zhang G, Liu J. A Rapid Protocol for Direct Isolation of Osteoclast Lineage Cells from Mouse Bone Marrow. Bio Protoc 2022; 12:e4338. [PMID: 35592608 PMCID: PMC8918216 DOI: 10.21769/bioprotoc.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/30/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Osteoclast lineage cells (OLCs), including osteoclast precursors (OCPs) and mature osteoclasts (MOCs), participate in bone remodeling and mediate pathologic bone loss. Thus, it is essential to obtain OLCs for exploring their molecular features in both physiological and pathological conditions in vivo. However, the conventional protocols for obtaining OLCs ex vivo are not only time-consuming, but also unable to capture the cellular status of OLCs in vivo. In addition, the current antibody-based isolation approaches, such as fluorescence-/ magnetic-activated cell sorting, are not able to obtain pure osteoclasts because no unique surface antigen for osteoclasts has been identified. Here, we develop a rapid protocol for directly isolating OLCs from mouse bone marrow through magnetic-activated cell sorting (MACS). This protocol can rapidly enrich OCPs and MOCs, respectively, depending on the expression of the distinctive surface markers at their differentiation stages. It is optimized to isolate OLCs from four mice concurrently, of which sorting procedure could be completed within ~5 h.
Collapse
Affiliation(s)
- Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaohao Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Sun K, Wang C, Xiao J, Brodt MD, Yuan L, Yang T, Alippe Y, Hu H, Hao D, Abu-Amer Y, Silva MJ, Shen J, Mbalaviele G. Fracture healing is delayed in the absence of gasdermin - interleukin-1 signaling. eLife 2022; 11:75753. [PMID: 35244027 PMCID: PMC8923664 DOI: 10.7554/elife.75753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Amino-terminal fragments from proteolytically cleaved gasdermins (GSDMs) form plasma membrane pores that enable the secretion of interleukin-1β (IL-1β) and IL-18. Excessive GSDM-mediated pore formation can compromise the integrity of the plasma membrane thereby causing the lytic inflammatory cell death, pyroptosis. We found that GSDMD and GSDME were the only GSDMs that were readily expressed in bone microenvironment. Therefore, we tested the hypothesis that GSDMD and GSDME are implicated in fracture healing owing to their role in the obligatory inflammatory response following injury. We found that bone callus volume and biomechanical properties of injured bones were significantly reduced in mice lacking either GSDM compared with wild-type (WT) mice, indicating that fracture healing was compromised in mutant mice. However, compound loss of GSDMD and GSDME did not exacerbate the outcomes, suggesting shared actions of both GSDMs in fracture healing. Mechanistically, bone injury induced IL-1β and IL-18 secretion in vivo, a response that was mimicked in vitro by bone debris and ATP, which function as inflammatory danger signals. Importantly, the secretion of these cytokines was attenuated in conditions of GSDMD deficiency. Finally, deletion of IL-1 receptor reproduced the phenotype of Gsdmd or Gsdme deficient mice, implying that inflammatory responses induced by the GSDM-IL-1 axis promote bone healing after fracture.
Collapse
Affiliation(s)
- Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Michael D Brodt
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, United States
| | - Luorongxin Yuan
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Huimin Hu
- Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
15
|
Multitarget-Based Virtual Screening for Identification of Herbal Substances toward Potential Osteoclastic Targets. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Osteoporosis is a complex bone disease indicating porous bone with low bone mass density and fragility. Cathepsin K, V-ATPase, and αVβ3 integrin are exhibited as novel targets for osteoporosis treatment. Our preliminary study uses a state-of-the-art method, including target-based virtual screening and clustering methods to determine promising candidates with multitarget properties. Phytochemicals with osteoprotective properties from the literature are used to elucidate the molecular interactions toward three targets. The binding scores of compounds are normalized and rescored. The K-means and hierarchical clustering methods are applied to filter and define the promising compounds, and the silhouette analysis is supposed to validate the clustering method. We explore 108 herbal compounds by virtual screening and the cluster approach, and find that rutin, sagittatoside A, icariin, and kaempferitrin showed strong binding affinities against Cathepsin K, V-ATPase, and αVβ3 integrin. Dockings of candidates toward three targets also provide the protein-ligand interactions and crucial amino acids for binding. Our study provides a straightforward and less time-consuming approach to exploring the new multitarget candidates for further investigations, using a combination of in silico methods.
Collapse
|
16
|
Vitale M, Ligorio C, McAvan B, Hodson NW, Allan C, Richardson SM, Hoyland JA, Bella J. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture. Acta Biomater 2022; 138:144-154. [PMID: 34781025 PMCID: PMC8756142 DOI: 10.1016/j.actbio.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels are water-swollen networks with great potential for tissue engineering applications. However, their use in bone regeneration is often hampered due to a lack of materials' mineralization and poor mechanical properties. Moreover, most studies are focused on osteoblasts (OBs) for bone formation, while osteoclasts (OCs), cells involved in bone resorption, are often overlooked. Yet, the role of OCs is pivotal for bone homeostasis and aberrant OC activity has been reported in several pathological diseases, such as osteoporosis and bone cancer. For these reasons, the aim of this work is to develop customised, reinforced hydrogels to be used as material platform to study cell function, cell-material interactions and ultimately to provide a substrate for OC differentiation and culture. Here, Fmoc-based RGD-functionalised peptide hydrogels have been modified with hydroxyapatite nanopowder (Hap) as nanofiller, to create nanocomposite hydrogels. Atomic force microscopy showed that Hap nanoparticles decorate the peptide nanofibres with a repeating pattern, resulting in stiffer hydrogels with improved mechanical properties compared to Hap- and RGD-free controls. Furthermore, these nanocomposites supported adhesion of Raw 264.7 macrophages and their differentiation in 2D to mature OCs, as defined by the adoption of a typical OC morphology (presence of an actin ring, multinucleation, and ruffled plasma membrane). Finally, after 7 days of culture OCs showed an increased expression of TRAP, a typical OC differentiation marker. Collectively, the results suggest that the Hap/Fmoc-RGD hydrogel has a potential for bone tissue engineering, as a 2D model to study impairment or upregulation of OC differentiation. STATEMENT OF SIGNIFICANCE: Altered osteoclasts (OC) function is one of the major cause of bone fracture in the most commonly skeletal disorders (e.g. osteoporosis). Peptide hydrogels can be used as a platform to mimic the bone microenvironment and provide a tool to assess OC differentiation and function. Moreover, hydrogels can incorporate different nanofillers to yield hybrid biomaterials with enhanced mechanical properties and improved cytocompatibility. Herein, Fmoc-based RGD-functionalised peptide hydrogels were decorated with hydroxyapatite (Hap) nanoparticles to generate a hydrogel with improved rheological properties. Furthermore, they are able to support osteoclastogenesis of Raw264.7 cells in vitro as confirmed by morphology changes and expression of OC-markers. Therefore, this Hap-decorated hydrogel can be used as a template to successfully differentiate OC and potentially study OC dysfunction.
Collapse
Affiliation(s)
- Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cosimo Ligorio
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bethan McAvan
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel W Hodson
- BioAFM Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chris Allan
- Biogelx Ltd-BioCity Scotland, Bo'Ness Rd, Newhouse, Chapelhall, Motherwell ML1 5UH, United Kingdom
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
17
|
Wu WJ, Xia CL, Ou SJ, Yang Y, Ma YF, Hou YL, Yang QP, Zhang J, Li JW, Qi Y, Xu CP. Novel Elongator Protein 2 Inhibitors Mitigating Tumor Necrosis Factor- α Induced Osteogenic Differentiation Inhibition. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3664564. [PMID: 34853789 PMCID: PMC8629650 DOI: 10.1155/2021/3664564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Tumor necrosis factor-α is a common cytokine that increases in inflammatory processes, slows the differentiation of bone formation, and induces osteodystrophy in the long-term inflammatory microenvironment. Our previous study confirmed that the Elongation protein 2 (ELP2) plays a significant role in osteogenesis and osteogenic differentiation, which is considered a drug discovery target in diseases related to bone formation and differentiation. In this study, we applied an in silico virtual screening method to select molecules that bind to the ELP2 protein from a chemical drug molecule library and obtained 95 candidates. Then, we included 11 candidates by observing the docking patterns and the noncovalent bonds. The binding affinity of the ELP2 protein with the candidate compounds was examined by SPR analysis, and 5 out of 11 compounds performed good binding affinity to the mouse ELP2 protein. After in vitro cell differentiation assay, candidates 2# and 5# were shown to reduce differentiation inhibition after tumor necrosis factor-α stimulation, allowing further optimization and development for potential clinical treatment of inflammation-mediated orthopedic diseases.
Collapse
Affiliation(s)
- Wen-Jiao Wu
- Department of Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chang-Liang Xia
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Shuan-Ji Ou
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yun-Fei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Long Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing-Po Yang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang, China
| | - Jun Zhang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang, China
| | - Jian-Wei Li
- Department of Orthopaedics, Shenzhen Shekou People's Hospital, Shenzhen, Guangdong, China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
19
|
Alippe Y, Kress D, Ricci B, Sun K, Yang T, Wang C, Xiao J, Abu-Amer Y, Mbalaviele G. Actions of the NLRP3 and NLRC4 inflammasomes overlap in bone resorption. FASEB J 2021; 35:e21837. [PMID: 34383985 DOI: 10.1096/fj.202100767rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Overwhelming evidence indicates that excessive stimulation of innate immune receptors of the NOD-like receptor (NLR) family causes significant damage to multiple tissues, yet the role of these proteins in bone metabolism is not well known. Here, we studied the interaction between the NLRP3 and NLRC4 inflammasomes in bone homeostasis and disease. We found that loss of NLRP3 or NLRC4 inflammasome attenuated osteoclast differentiation in vitro. At the tissue level, lack of NLRP3, or NLRC4 to a lesser extent, resulted in higher baseline bone mass compared to wild-type (WT) mice, and conferred protection against LPS-induced inflammatory osteolysis. Bone mass accrual in mutant mice correlated with lower serum IL-1β levels in vivo. Unexpectedly, the phenotype of Nlrp3-deficient mice was reversed upon loss of NLRC4 as bone mass was comparable between WT mice and Nlrp3;Nlrc4 knockout mice. Thus, although bone homeostasis is perturbed to various degrees by the lack of NLRP3 or NLRC4, this tissue appears to function normally upon compound loss of the inflammasomes assembled by these receptors.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Dustin Kress
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Biancamaria Ricci
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospital for Children, St. Louis, MO, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Wang L, He Y, Ning W. Role of enhancer of zeste homolog 2 in osteoclast formation and periodontitis development by downregulating microRNA-101-regulated VCAM-1. J Tissue Eng Regen Med 2021; 15:534-545. [PMID: 33686766 DOI: 10.1002/term.3187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) represents a potential target for periodontitis treatment; however, its role in the development of periodontitis remains unclear. The current study aimed to elucidate the role of EZH2 in osteoclasts (OCs) growth as well as the mechanism underpinning the related process. The potential interaction among EZH2, microRNA-101 (miR-101), and vascular cell adhesion molecule 1 (VCAM-1) was evaluated using chromatin immunoprecipitation and dual-luciferase reporter gene assay. The expressions of EZH2 and miR-101 in OCs were examined by Western blot analysis and reverse transcription squantitative polymerase chain reaction. Loss- and gain-function assays were then performed to determine the role of EZH2/miR-101/VCAM-1 in periodontitis and OCs proliferation, followed by OC growth and proliferation detected using tartrate resistant acid phosphatase (TRAP) and 5-ethynyl-2'-deoxyuridine staining. Enzyme-linked immunoassay was conducted to determine the expression of interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α). A periodontitis rat model was established to investigate the effect of EZH2 and VCAM-1 in vivo. EZH2 was overexpressed, while miR-101 was downregulated in the OCs of periodontitis. Silencing of EZH2, VCAM-1 repression, or miR-101 elevation suppressed the growth and proliferation of OC while acting to encumber the release of IL-1β and TNF-α. EZH2 negatively targeted miR-101, while miR-101 negatively targeted VCAM-1. Moreover, silencing of EZH2 or VCAM-1 was observed to attenuate periodontitis which was evidenced by an increase in BMD, BV/TV, and BS/BV as well as reduction in TRAP and cathepsin K in vivo. Taken together, the key findings of the current study demonstrate that EZH2 knockdown inhibited OC formation by elevating the expression of miR-101 via suppression of VCAM-1, ultimately attenuating periodontitis.
Collapse
Affiliation(s)
- Li Wang
- Department of Periodontology, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanyan He
- Department of Stomatology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wanchen Ning
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
21
|
Povoroznyuk VV, Dedukh NV, Bystrytska MA, Shapovalov VS. Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.
Collapse
|
22
|
Lee JM, Kim MJ, Lee SJ, Kim BG, Choi JY, Lee SM, Ham HJ, Koh JM, Jeon JH, Lee IK. PDK2 Deficiency Prevents Ovariectomy-Induced Bone Loss in Mice by Regulating the RANKL-NFATc1 Pathway During Osteoclastogenesis. J Bone Miner Res 2021; 36:553-566. [PMID: 33125772 DOI: 10.1002/jbmr.4202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Estrogen deficiency leads to osteoporosis as a result of an imbalance in bone remodeling due to greater bone resorption. Estrogen deficiency increases the osteoclastic resorption of bone, and many of the FDA-approved therapies for osteoporosis are antiresorptive drugs that mainly act by reducing osteoclast activity. The mitochondrial enzyme pyruvate dehydrogenase kinase (PDK) is a critical regulator of aerobic glycolysis that exerts its effects by phosphorylating the pyruvate dehydrogenase complex (PDC), which is responsible for oxidative phosphorylation. In the present study, we found that during osteoclast differentiation, PDK2 expression increased more than that of the other PDK isoenzymes. Bone loss was delayed and the number of osteoclasts was lower in ovariectomized (OVX) Pdk2-/- mice than in OVX wild-type mice. The differentiation of osteoclasts was suppressed in Pdk2-/- bone marrow-derived monocyte/macrophage lineage cells, which was associated with lower phosphorylation of cAMP response element-binding protein (CREB) and c-FOS, and a consequent reduction in NFATc1 transcription. Administration of AZD7545, a specific inhibitor of PDK2, prevented the OVX-induced bone loss and reduced the phosphorylation of CREB and c-FOS, and the protein expression of NFATc1, in osteoclasts. Collectively, these results indicate that the inhibition of PDK2 prevents osteoporosis in estrogen-deficient mice by reducing aberrant osteoclast activation, probably via inhibition of the RANKL-CREB-cFOS-NFATc1 pathway. These findings imply that PDK2 inhibitors might be repurposed for the therapy of estrogen deficiency-induced osteoporosis. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ji-Min Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea.,BK21 plus KNU Biomedical Convergence Programs, Department of Biomedical Science, Kyungpook National University Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Mi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hye Jin Ham
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Han Jeon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
23
|
Cooney OD, Nagareddy PR, Murphy AJ, Lee MKS. Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Front Endocrinol (Lausanne) 2021; 11:620466. [PMID: 33679604 PMCID: PMC7933548 DOI: 10.3389/fendo.2020.620466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, the use of probiotics to modify the gut microbiome has become a public spotlight in reducing the severity of a number of chronic diseases such as autoimmune disease, diabetes, cancer and cardiovascular disease. Recently, the gut microbiome has been shown to play an important role in regulating bone mass. Therefore, targeting the gut microbiome may be a potential alternative avenue for those with osteopenia or osteoporosis. In this mini-review, we take the opportunity to delve into how the different components of the gut work together and how the gut-related diseases impact on bone health.
Collapse
Affiliation(s)
- Olivia D. Cooney
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Prabhakar R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH, United States
| | - Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Man K. S. Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. RNF219/ α-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001961. [PMID: 33643786 PMCID: PMC7887580 DOI: 10.1002/advs.202001961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients. Overexpression of LGALS3 enhances the metastatic capability of HCC cells to bone and induces skeletal-related events by forming a bone pre-metastatic niche via promoting osteoclast fusion and podosome formation. Mechanically, ubiquitin ligaseRNF219-meidated α-catenin degradation prompts YAP1/β-catenin complex-dependent epigenetic modifications of LGALS3 promoter, resulting in LGALS3 upregulation and metastatic bone diseases. Importantly, treatment with verteporfin, a clinical drug for macular degeneration, decreases LGALS3 expression and effectively inhibits skeletal complications of HCC. These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Liangliang Ren
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Geyan Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xingui Wu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Yameng Hu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ziwen Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ruyuan Yu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xinyi Liao
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Shuang Mo
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Jueheng Wu
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Mengfeng Li
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Erwei Song
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yanfei Qi
- Centenary InstituteUniversity of SydneySydney2000Australia
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
25
|
Multitasking by the OC Lineage during Bone Infection: Bone Resorption, Immune Modulation, and Microbial Niche. Cells 2020; 9:cells9102157. [PMID: 32987689 PMCID: PMC7598711 DOI: 10.3390/cells9102157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Bone infections, also known as infectious osteomyelitis, are accompanied by significant inflammation, osteolysis, and necrosis. Osteoclasts (OCs) are the bone-resorbing cells that work in concert with osteoblasts and osteocytes to properly maintain skeletal health and are well known to respond to inflammation by increasing their resorptive activity. OCs have typically been viewed merely as effectors of pathologic bone resorption, but recent evidence suggests they may play an active role in the progression of infections through direct effects on pathogens and via the immune system. This review discusses the host- and pathogen-derived factors involved in the in generation of OCs during infection, the crosstalk between OCs and immune cells, and the role of OC lineage cells in the growth and survival of pathogens, and highlights unanswered questions in the field.
Collapse
|
26
|
Blixt N, Norton A, Zhang A, Aparicio C, Prasad H, Gopalakrishnan R, Jensen ED, Mansky KC. Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes. Bone 2020; 138:115466. [PMID: 32512162 PMCID: PMC7443313 DOI: 10.1016/j.bone.2020.115466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
Osteoclasts are multinuclear cells that resorb bone. Osteoclast differentiation is regulated by multiple transcription factors which may be acting in a single or multiple factor complex to regulate gene expression. Myocyte enhancer factor 2 (MEF2) is a family of transcription factors whose role during osteoclast differentiation has not been well characterized. Because MEF2A and MEF2D are the family members most highly expressed during osteoclast differentiation, we created conditional knockout mice models for MEF2A and/or MEF2D. In vitro cultures of A- and D-KO osteoclasts were smaller and less numerous than wild type cultures, while AD-KO osteoclasts were almost completely devoid of TRAP positive mononuclear cells. Female A-KO mice are osteopetrotic while male A- and D-KO mice of either sex had no significant in vivo skeletal phenotype, suggesting a sex-specific regulation of osteoclasts by MEF2A. Lastly, in vivo male AD-KO mice are osteopenic, indicating while MEF2 is required for M-CSF and RANKL-stimulated osteoclastogenesis in vitro, osteoclasts can form in the absence of MEF2 in vivo via a RANKL-alternative pathway.
Collapse
Affiliation(s)
- Nicholas Blixt
- Departmment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Anqi Zhang
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Conrado Aparicio
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Hari Prasad
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| |
Collapse
|
27
|
Xiao J, Wang C, Yao JC, Alippe Y, Yang T, Kress D, Sun K, Kostecki KL, Monahan JB, Veis DJ, Abu-Amer Y, Link DC, Mbalaviele G. Radiation causes tissue damage by dysregulating inflammasome-gasdermin D signaling in both host and transplanted cells. PLoS Biol 2020; 18:e3000807. [PMID: 32760056 PMCID: PMC7446913 DOI: 10.1371/journal.pbio.3000807] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is a commonly used conditioning regimen for bone marrow transplantation (BMT). Cytotoxicity limits the use of this life-saving therapy, but the underlying mechanisms remain poorly defined. Here, we use the syngeneic mouse BMT model to test the hypothesis that lethal radiation damages tissues, thereby unleashing signals that indiscriminately activate the inflammasome pathways in host and transplanted cells. We find that a clinically relevant high dose of radiation causes severe damage to bones and the spleen through mechanisms involving the NLRP3 and AIM2 inflammasomes but not the NLRC4 inflammasome. Downstream, we demonstrate that gasdermin D (GSDMD), the common effector of the inflammasomes, is also activated by radiation. Remarkably, protection against the injury induced by deadly ionizing radiation occurs only when NLRP3, AIM2, or GSDMD is lost simultaneously in both the donor and host cell compartments. Thus, this study reveals a continuum of the actions of lethal radiation relayed by the inflammasome-GSDMD axis, initially affecting recipient cells and ultimately harming transplanted cells as they grow in the severely injured and toxic environment. This study also suggests that therapeutic targeting of inflammasome-GSDMD signaling has the potential to prevent the collateral effects of intense radiation regimens.
Collapse
Affiliation(s)
- Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Juo-Chin Yao
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dustin Kress
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Joseph B. Monahan
- Aclaris Therapeutics, Inc., St. Louis, Missouri, United Sates of America
| | - Deborah J. Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Shriners Hospital for Children, St. Louis, Missouri, United Sates of America
| | - Daniel C. Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| |
Collapse
|
28
|
De Pasquale V, Moles A, Pavone LM. Cathepsins in the Pathophysiology of Mucopolysaccharidoses: New Perspectives for Therapy. Cells 2020; 9:cells9040979. [PMID: 32326609 PMCID: PMC7227001 DOI: 10.3390/cells9040979] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsins (CTSs) are ubiquitously expressed proteases normally found in the endolysosomal compartment where they mediate protein degradation and turnover. However, CTSs are also found in the cytoplasm, nucleus, and extracellular matrix where they actively participate in cell signaling, protein processing, and trafficking through the plasma and nuclear membranes and between intracellular organelles. Dysregulation in CTS expression and/or activity disrupts cellular homeostasis, thus contributing to many human diseases, including inflammatory and cardiovascular diseases, neurodegenerative disorders, diabetes, obesity, cancer, kidney dysfunction, and others. This review aimed to highlight the involvement of CTSs in inherited lysosomal storage disorders, with a primary focus to the emerging evidence on the role of CTSs in the pathophysiology of Mucopolysaccharidoses (MPSs). These latter diseases are characterized by severe neurological, skeletal and cardiovascular phenotypes, and no effective cure exists to date. The advance in the knowledge of the molecular mechanisms underlying the activity of CTSs in MPSs may open a new challenge for the development of novel therapeutic approaches for the cure of such intractable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463043
| |
Collapse
|
29
|
Iyer S, Melendez-Suchi C, Han L, Baldini G, Almeida M, Jilka RL. Elevation of the unfolded protein response increases RANKL expression. FASEB Bioadv 2020; 2:207-218. [PMID: 32259048 PMCID: PMC7133738 DOI: 10.1096/fba.2019-00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increased production of the osteoclastogenic cytokine RANKL is a common feature of pathologic bone loss, but the underlying cause of this increase is poorly understood. The unfolded protein response (UPR) is activated in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Failure to resolve misfolding results in excess UPR signaling that stimulates cytokine production and cell death. We therefore investigated whether RANKL is one of the cytokines stimulated in response to elevated UPR in bone cells. Pharmacologic induction of UPR with tunicamycin (Tm)-stimulated RANKL expression in cultures of primary osteoblastic cells and in osteoblast and osteocyte cell lines. Pharmacologic inhibition of the UPR blunted Tm-induced RANKL production. Silencing Edem1 or Sel1l, proteins that aid in degradation of misfolded proteins, also induced UPR and increased RANKL mRNA. Moreover, Tm or hypoxia increased RANKL and bone resorption in cultures of neonatal murine calvaria. Administration of Tm to adult mice caused dilation of ER in osteoblasts and osteocytes, elevated the UPR, and increased RANKL expression and osteoclast number. These findings support the hypothesis that excessive UPR signaling stimulates the expression of RANKL by osteoblasts and osteocytes, and thereby facilitates excessive bone resorption and bone loss in pathologic conditions.
Collapse
Affiliation(s)
- Srividhya Iyer
- Department of Orthopaedic Surgery University of Arkansas Medical Sciences Little Rock AR USA
| | | | - Li Han
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology University of Arkansas Medical Sciences Little Rock AR USA
| | - Maria Almeida
- Department of Orthopaedic Surgery University of Arkansas Medical Sciences Little Rock AR USA
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
- Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
30
|
Maximova N, Zennaro F, Gregori M, Boz G, Zanon D, Mbalaviele G. Hematopoietic stem cell transplantation-induced bone remodeling in autosomal recessive osteopetrosis: Interaction between skeleton and hematopoietic and sensory nervous systems. Bone 2020; 130:115144. [PMID: 31706050 DOI: 10.1016/j.bone.2019.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Autosomal recessive osteopetrosis (ARO) is a rare congenital disorder of defective bone resorption. The inability of osteoclasts to resorb bone compromises the development of bone marrow cavity, and ultimately, leads to defective hematopoiesis and death within the first decade. The only curative treatment currently available for certain forms of ARO is hematopoietic stem cell transplantation (HSCT). Infants over ten months of age suffering from ARO are defined as patients with advanced disease; HSCT to these patients is associated with high risk of transplant-related mortality (TRM). Because of the extreme variability of ARO clinical phenotypes, the most reliable predictive factor of TRM and graft failure risk is the residual bone marrow space volume. CASE REPORT We report clinical and radiological outcomes of one patient affected by ARO and treated with HSCT at advance stage of the disease. We describe the anomalies in various tissues, including bone marrow and bones at the moment of the diagnosis and document their gradual disappearance after HSCT until their complete resolution based on magnetic resonance imaging (MRI) observations. We provided radiological images of the cranial vault bone structure modifications, correlating the radiological appearance of the optical canals and nerves and of the cerebellum with the neurological manifestations of the disease. CONCLUSIONS Our results demonstrate that MRI is a highly sensitive technique that provides excellent images of bone marrow space before and after HSCT without exposing children to ionizing radiation. MRI also permits us to evaluate post-transplant skeletal remodeling and the deriving changes in the hematopoietic and sensory system.
Collapse
Affiliation(s)
- Natalia Maximova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Floriana Zennaro
- Hôpitaux Pédiatriques de Nice, CHU Lenval, 57 Avenue de la Californie, 06200 Nice, France
| | - Massimo Gregori
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Giulia Boz
- University of Cagliari, Cittadella Universitaria di Monserrato, S. P. Monserrato Sestu Km 0.700 CA, 09042 Monserrato, Cagliari, Italy
| | - Davide Zanon
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave, CB 8301, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Lee SH, Lee SH, Lee JH, Park JW, Kim JE. IDH2 deficiency increases bone mass with reduced osteoclastogenesis by limiting RANKL expression in osteoblasts. Bone 2019; 129:115056. [PMID: 31479775 DOI: 10.1016/j.bone.2019.115056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
Abstract
Mitochondria are not only responsible for cellular energy production but are also involved in signaling, cellular differentiation, cell death, and aging. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the decarboxylation of isocitrate to α-ketoglutarate, accompanied by NADPH production. IDH2 plays a central role in mitochondrial function in multiple cell types and various organs, including the heart, kidneys, and brain. However, the function of IDH2 in bone tissue is yet to be elucidated. Here, we report that disruption of IDH2 in mice results in high bone mass due to decreased osteoclast number and resorption activity. Although IDH2 played no cell-intrinsic role in osteoclasts, IDH2-deficient animals showed decreased serum markers of osteoclast activity and bone resorption. Bone marrow stromal cells/osteoblasts from Idh2 knockout mice were defective in promoting osteoclastogenesis due to a reduced expression of a key osteoclastogenic factor, receptor activator of nuclear factor-κB ligand (RANKL), in osteoblasts in vivo and in vitro through the attenuation of ATF4-NFATc1 signaling. Our findings suggest that IDH2 is a novel regulator of osteoblast-to-osteoclast communication and bone metabolism, acting via the ATF4-NFATc1-RANKL signaling axis in osteoblasts, and they provide a rationale for further study of IDH2 as a potential therapeutic target for the prevention of bone loss.
Collapse
Affiliation(s)
- Suk Hee Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
32
|
Wang C, Mbalaviele G. Role of APD-Ribosylation in Bone Health and Disease. Cells 2019; 8:cells8101201. [PMID: 31590342 PMCID: PMC6829334 DOI: 10.3390/cells8101201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The transfer of adenosine diphosphate (ADP)-ribose unit(s) from nicotinamide adenine dinucleotide (NAD+) to acceptor proteins is known as ADP-ribosylation. This post-translational modification (PTM) unavoidably alters protein functions and signaling networks, thereby impacting cell behaviors and tissue outcomes. As a ubiquitous mechanism, ADP-ribosylation affects multiple tissues, including bones, as abnormal ADP-ribosylation compromises bone development and remodeling. In this review, we describe the effects of ADP-ribosylation in bone development and maintenance, and highlight the underlying mechanisms.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Gu J, Tong X, Chen Y, Zhang C, Ma T, Li S, Min W, Yuan Y, Liu X, Bian J, Liu Z. Vitamin D Inhibition of TRPV5 Expression During Osteoclast Differentiation. Int J Endocrinol Metab 2019; 17:e91583. [PMID: 31998380 PMCID: PMC6948119 DOI: 10.5812/ijem.91583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vitamin D is an important steroid that can regulate bone metabolism including osteoclast (OC) differentiation. Transient receptor potential cation channel subfamily V member 5 (TRPV5), is a calcium channel protein involved in OC differentiation. However, the impact of vitamin D on TRPV5 expression during OC differentiation is not clear. OBJECTIVES To determine if 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates the expression of TRPV5 during OC differentiation. METHODS Bone marrow mononuclear macrophage (BMMs) were induced to differentiate into OC with or without treatment with 10 nM 1,25(OH)2D3. The expression levels of vitamin D receptor (VDR) and TRPV5 were examined. The expression of several OC markers, including tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (Ca II), cathepsin K (CTSK), and vacuolar-type H+-ATPase (V-ATPase) were also detected. RESULTS We found that the VDR was expressed in murine bone marrow-derived macrophages at the early stage of OC differentiation. TRPV5 expression was increased during OC differentiation, which was down-regulated by 1,25(OH)2D3 after a prolonged exposure. The 1,25(OH)2D3 and TRPV5 inhibitors inhibited OC differentiation. CONCLUSIONS 1,25(OH)2D3 can inhibit TRPV5 expression as well as TRPV5 inhibitors during OC differentiation. This suggests that 1,25(OH)2D3 may suppress OC differentiation by inhibiting TRPV5 expression.
Collapse
Affiliation(s)
- Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tianhong Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Saihui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenyan Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Corresponding Author: College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48#, Yangzhou, China. Tel: +86-51487991448,
| |
Collapse
|
34
|
Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol 2019; 41:607-618. [PMID: 31520179 PMCID: PMC6814643 DOI: 10.1007/s00281-019-00753-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc Natl Acad Sci U S A 2019; 116:11988-11996. [PMID: 31138692 PMCID: PMC6575181 DOI: 10.1073/pnas.1821770116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Identifying components of breast milk that influence postnatal development though their effects on the gut microbiota and immune system could provide new therapeutic approaches for childhood undernutrition, including heretofore treatment-refractory linear growth faltering (stunting). Plasma biomarkers of osteoclast-mediated bone resorption and osteoblast-driven bone formation in stunted Bangladeshi children provided evidence for elevated osteoclastic activity. Gnotobiotic mice, colonized with a stunted infant’s gut microbiota, exhibited decreased bone resorption when consuming diets supplemented with a purified bovine oligosaccharide mixture dominated by sialylated structures found in human breast milk. Supplementation decreased osteoclastogenesis while sparing osteoblast activity; the microbiota, intestinal cell populations, and immune mediators contribute to these responses. The influence of milk oligosaccharides on the gut microbiota–bone axis has diagnostic and therapeutic implications. Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2′-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting.
Collapse
|
36
|
Regulation of Osteoclast Differentiation and Skeletal Maintenance by Histone Deacetylases. Molecules 2019; 24:molecules24071355. [PMID: 30959867 PMCID: PMC6479495 DOI: 10.3390/molecules24071355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Bone is a dynamic tissue that must respond to developmental, repair, and remodeling cues in a rapid manner with changes in gene expression. Carefully-coordinated cycles of bone resorption and formation are essential for healthy skeletal growth and maintenance. Osteoclasts are large, multinucleated cells that are responsible for breaking down bone by secreting acids to dissolve the bone mineral and proteolytic enzymes that degrade the bone extracellular matrix. Increased osteoclast activity has a severe impact on skeletal health, and therefore, osteoclasts represent an important therapeutic target in skeletal diseases, such as osteoporosis. Progression from multipotent progenitors into specialized, terminally-differentiated cells involves carefully-regulated patterns of gene expression to control lineage specification and emergence of the cellular phenotype. This process requires coordinated action of transcription factors with co-activators and co-repressors to bring about proper activation and inhibition of gene expression. Histone deacetylases (HDACs) are an important group of transcriptional co-repressors best known for reducing gene expression via removal of acetyl modifications from histones at HDAC target genes. This review will cover the progress that has been made recently to understand the role of HDACs and their targets in regulating osteoclast differentiation and activity and, thus, serve as potential therapeutic target.
Collapse
|
37
|
Xu CP, Sun HT, Yang YJ, Cui Z, Wang J, Yu B, Wang FZ, Yang QP, Qi Y. ELP2 negatively regulates osteoblastic differentiation impaired by tumor necrosis factor α in MC3T3-E1 cells through STAT3 activation. J Cell Physiol 2019; 234:18075-18085. [PMID: 30847950 PMCID: PMC6618314 DOI: 10.1002/jcp.28440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor‐α (TNF‐α) is a pluripotent signaling molecule. The biological effect of TNF‐α includes slowing down osteogenic differentiation, which can lead to bone dysplasia in long‐term inflammatory microenvironments. Signal transducer and activator of transcription 3 (STAT3)‐interacting protein 1 (StIP1, also known as elongator complex protein 2, ELP2) play a role in inhibiting TNF‐α‐induced osteoblast differentiation. In the present study, we investigated whether and how ELP2 activation mediates the effects of TNF‐α on osteoblastic differentiation. Using in vitro cell cultures of preosteoblastic MC3T3‐E1 cells, we found that TNF‐α inhibited osteoblastic differentiation accompanied by an increase in ELP2 expression and STAT3 activation. Forced ELP2 expression inhibited osteogenic differentiation of MC3T3‐E1 cells, with a decrease in the expression of osteoblast marker genes, alkaline phosphatase activity, and matrix mineralization capacity. In contrast, ELP2 silencing ameliorated osteogenic differentiation in MC3T3‐E1 cells, even after TNF‐α stimulation. The TNF‐α‐induced inhibitory effect on osteoblastic differentiation was therefore mediated by ELP2, which was associated with Janus kinase 2 (JAK2)/STAT3 activation. These results suggest that ELP2 is upregulated at the differentiation of MC3T3‐E1 cells into osteoblasts and inhibits osteogenic differentiation in response to TNF‐α through STAT3 activation.
Collapse
Affiliation(s)
- Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Hong-Tao Sun
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Ya-Jun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Wang
- Department of Orthopaedics, The Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fa-Zheng Wang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang, People's Republic of China
| | - Qing-Po Yang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang, People's Republic of China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
38
|
Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI. Foxp3 + Regulatory T Cells in Bone and Hematopoietic Homeostasis. Front Endocrinol (Lausanne) 2019; 10:578. [PMID: 31551927 PMCID: PMC6746882 DOI: 10.3389/fendo.2019.00578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.
Collapse
Affiliation(s)
- Luise Fischer
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Caroline Herkner
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Reni Kitte
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dohnke
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe
| |
Collapse
|
39
|
Chaugule S, Kashipathi Sureshbabu S, Dakave S, Krishna CM, Chaudhari P, Indap M, Chiplunkar S. Hexane Fraction of Turbo brunneus Inhibits Intermediates of RANK-RANKL Signaling Pathway and Prevent Ovariectomy Induced Bone Loss. Front Endocrinol (Lausanne) 2019; 10:608. [PMID: 31555218 PMCID: PMC6742724 DOI: 10.3389/fendo.2019.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a "silent disease" characterized by fragile and impaired bone quality. Bone fracture results in increased mortality and poor quality of life in aged people particularly in postmenopausal women. Bone is maintained through the delicate balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The imbalance is caused most often by overly active osteoclasts due to estrogen deficiency. Natural products have long been used to prevent and treat osteoporosis since they have fewer side effects. The marine environment is a potential source of biologically and structurally novel biomolecules with promising biological activities but is less explored for the treatment of bone-related diseases. The present study aims to evaluate the antiosteoporotic effect of Hexane fraction of Turbo brunneus methanolic extract (HxTME) and to investigate its role in RANK-RANKL signaling pathway using in vitro osteoclasts cultures and in vivo ovariectomized (OVX) Swiss mice model. The present study demonstrated that the HxTME significantly inhibited RANKL induced osteoclast differentiation and maturation in vitro. HxTME completely downregulated the mRNA expression of key transcription factors such as NFATc1, c-FOS, and osteoclasts related genes involved in osteoclastogenesis. In vivo studies also depicted the effectiveness of HxTME in ovariectomized mice by preserving bone microarchitecture, mineral content, and inhibiting bone loss in treated mice as analyzed by Histomorphometry, MicroCT, and Raman spectroscopy. Oral administration of HxTME fraction resulted in the decreased percentage of F4/80+, CD11b+, and CD4+ RANKL+ T cells in OVX mice whereas pro-osteoclastic cytokine, IL6 was markedly reduced upon treatment with HxTME. On stimulation with PMA/Io and PHA, a significant decrease in proliferative response in the splenocytes of HxTME treated OVX mice was observed. Fatty acid profiling revealed that HxTME is rich in ω3 and ω6 polyunsaturated fatty acids (PUFAs), which have high nutraceutical properties and are known to play important role in growth, development and maintenance of health. Therefore, HxTME may be a good source of nutraceutical in the treatment of bone-related diseases particularly in postmenopausal osteoporosis and may be pursued as a potential candidate for treatment and management of osteoporosis.
Collapse
Affiliation(s)
- Sachin Chaugule
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Central Research Laboratory, D. G. Ruparel College, Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Suresh Dakave
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - C. Murali Krishna
- Homi Bhabha National Institute, Mumbai, India
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Mumbai, India
- Comparative Oncology Program and Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Madhavi Indap
- Central Research Laboratory, D. G. Ruparel College, Mumbai, India
- *Correspondence: Madhavi Indap
| | - Shubhada Chiplunkar
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
- Shubhada Chiplunkar
| |
Collapse
|
40
|
Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol 2018; 9:2263. [PMID: 30323820 PMCID: PMC6172306 DOI: 10.3389/fimmu.2018.02263] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023] Open
Abstract
Skeletal health is maintained by bone remodeling, a process in which microscopic sites of effete or damaged bone are degraded on bone surfaces by osteoclasts and subsequently replaced by new bone, which is laid down by osteoblasts. This normal process can be disturbed in a variety of pathologic processes, including localized or generalized inflammation, metabolic and endocrine disorders, primary and metastatic cancers, and during aging as a result of low-grade chronic inflammation. Osteoclast formation and activity are promoted by factors, including cytokines, hormones, growth factors, and free radicals, and require expression of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by accessory cells in the bone marrow, including osteoblastic and immune cells. Expression of TNF receptor-associated factor 6 (TRAF6) is required in osteoclast precursors to mediate RANKL-induced activation of NF-κB, which is also necessary for osteoclast formation and activity. TRAF3, in contrast is not required for osteoclast formation, but it limits RANKL-induced osteoclast formation by promoting proteasomal degradation of NF-κB-inducing kinase in a complex with TRAF2 and cellular inhibitor of apoptosis proteins (cIAP). TRAF3 also limits osteoclast formation induced by TNF, which mediates inflammation and joint destruction in inflammatory diseases, including rheumatoid arthritis. Chloroquine and hydroxychloroquine, anti-inflammatory drugs used to treat rheumatoid arthritis, prevent TRAF3 degradation in osteoclast precursors and inhibit osteoclast formation in vitro. Chloroquine also inhibits bone destruction induced by ovariectomy and parathyroid hormone in mice in vivo. Mice genetically engineered to have TRAF3 deleted in osteoclast precursors and macrophages develop early onset osteoporosis, inflammation in multiple tissues, infections, and tumors, indicating that TRAF3 suppresses inflammation and tumors in myeloid cells. Mice with TRAF3 conditionally deleted in mesenchymal cells also develop early onset osteoporosis due to a combination of increased osteoclast formation and reduced osteoblast formation. TRAF3 protein levels decrease in bone and bone marrow during aging in mice and humans. Development of drugs to prevent TRAF3 degradation in immune and bone cells could be a novel therapeutic approach to prevent or reduce bone loss and the incidence of several common diseases associated with aging.
Collapse
Affiliation(s)
- Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | | |
Collapse
|
41
|
Novack DV. Editorial: Inflammatory Osteoclasts: A Different Breed of Bone Eaters? Arthritis Rheumatol 2018; 68:2834-2836. [PMID: 27575608 DOI: 10.1002/art.39835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
|
42
|
Kubatzky KF, Uhle F, Eigenbrod T. From macrophage to osteoclast - How metabolism determines function and activity. Cytokine 2018; 112:102-115. [PMID: 29914791 DOI: 10.1016/j.cyto.2018.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022]
Abstract
Osteoclasts are specialised cells that resorb bone and develop from the monocyte/macrophage lineage. While there is a wealth of information on the regulation of macrophage function through metabolic activity, the connection between osteoclast differentiation and metabolism is less well understood. Recent data show that mitochondria participate in switching macrophages from an inflammatory phenotype towards differentiation into osteoclasts. Additionally, it was found that reactive oxygen species (ROS) actively take place in osteoclast differentiation by acting as secondary signalling molecules. Bone resorption is an energy demanding process and differentiating osteoclasts triggers the biogenesis of mitochondria. In addition, the activity of specific OXPHOS components of macrophages and osteoclasts is differentially regulated. This review summarises our knowledge on macrophage-mediated inflammation, its impact on a cell's metabolic activity and its effect on osteoclast differentiation.
Collapse
Affiliation(s)
- Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Florian Uhle
- Klinik für Anaesthesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Brunetti G, Faienza MF, Colaianni G, Gigante I, Oranger A, Pignataro P, Ingravallo G, Di Benedetto A, Bortolotti S, Di Comite M, Storlino G, Lippo L, Ward-Kavanagh L, Mori G, Reseland JE, Passeri G, Schipani E, Tamada K, Ware CF, Colucci S, Grano M. Impairment of Bone Remodeling in LIGHT/TNFSF14-Deficient Mice. J Bone Miner Res 2018; 33:704-719. [PMID: 29178458 DOI: 10.1002/jbmr.3345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/08/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
Multiple cytokines produced by immune cells induce remodeling and aid in maintaining bone homeostasis through differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. Here, we investigate bone remodeling controlled by the tumor necrosis factor (TNF) superfamily cytokine LIGHT. LIGHT-deficient mice (Tnfsf14-/- ) exhibit spine deformity and reduced femoral cancellous bone mass associated with an increase in the osteoclast number and a slight decrease of osteoblasts compared with WT mice. The effect of LIGHT in bone cells can be direct or indirect, mediated by both the low expression of the anti-osteoclastogenic osteoprotegerin (OPG) in B and T cells and reduced levels of the pro-osteoblastogenic Wnt10b in CD8+ T cells in Tnfsf14-/- mice. LIGHT stimulation increases OPG levels in B, CD8+ T, and osteoblastic cells, as well as Wnt10b expression in CD8+ T cells. The high bone mass in Light and T- and B-cell-deficient mice (Rag- /Tnfsf14- ) supports the cooperative role of the immune system in bone homeostasis. These results implicate LIGHT as a potential target in bone disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Isabella Gigante
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Paolo Pignataro
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari, Bari, Italy
| | - Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sara Bortolotti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciana Lippo
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Lindsay Ward-Kavanagh
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, Oslo, Norway
| | - Giovanni Passeri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ernestina Schipani
- Departments of Medicine and Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Koji Tamada
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
44
|
Merolli A, Fung S, Murthy NS, Pashuck ET, Mao Y, Wu X, Steele JAM, Martin D, Moghe PV, Bromage T, Kohn J. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:38. [PMID: 29564568 PMCID: PMC5862932 DOI: 10.1007/s10856-018-6046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/05/2018] [Indexed: 05/02/2023]
Abstract
Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.
Collapse
Affiliation(s)
- Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Universita Cattolica del Sacro Cuore, Clinica Ortopedica, Rome, Italy
| | - Stephanie Fung
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - E Thomas Pashuck
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yong Mao
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaohuan Wu
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Joseph A M Steele
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Daniel Martin
- High Resolution Microscopy, Biomedical Engineering, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Prabhas V Moghe
- High Resolution Microscopy, Biomedical Engineering, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy Bromage
- Hard Tissue Research Unit. Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, 10010, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
45
|
Chen H, Guo T, Wang D, Qin R. Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed Pharmacother 2017; 97:1155-1163. [PMID: 29136954 DOI: 10.1016/j.biopha.2017.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Osteoclasts are sole bone-resorbing cells which exert a profound effect on skeletal metabolism. The search for medicines that affect the differentiation and function of osteoclasts is crucial in developing therapies for osteoclast-based diseases. Vaccaria hypaphorine, the main active compound of the traditionally used Chinese herb Vaccaria segetalis, has anti-inflammatory activity. The present study demonstrated for the first time that vaccaria hypaphorine could significantly inhibit the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation in vitro and alleviate lipopolysaccharide (LPS)-induced bone loss in vivo. Further study showed that vaccaria hypaphorine decreased osteoclastogenesis in a dose-dependent manner. Furthermore, vaccaria hypaphorine was confirmed to inhibit osteoclasts differentiation at early stage but not at later stage. Pit formation assay and F-actin ring staining showed that vaccaria hypaphorine inhibited the bone-resorbing activity of osteoclasts. Mechanistically, vaccaria hypaphorine impaired RANKL-induced osteoclastogenesis through reduction of extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinase (JNK) and NF-κB p65 phosphorylation. Taken together, our results provided evidences that vaccaria hypaphorine might be considered as potential therapeutic agent for treating osteoclast-based bone loss.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Tongya Guo
- Department of Bone and Joint Surgery, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Dianrong Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Rujie Qin
- Department of Spine Surgery, The First People's Hospital of Lianyungang, No.182, Tongguan North Road, Lianyungang, Jiangsu 222002, P.R. China.
| |
Collapse
|
46
|
Morris JA, Tsai PC, Joehanes R, Zheng J, Trajanoska K, Soerensen M, Forgetta V, Castillo-Fernandez JE, Frost M, Spector TD, Christensen K, Christiansen L, Rivadeneira F, Tobias JH, Evans DM, Kiel DP, Hsu YH, Richards JB, Bell JT. Epigenome-wide Association of DNA Methylation in Whole Blood With Bone Mineral Density. J Bone Miner Res 2017; 32:1644-1650. [PMID: 28394087 PMCID: PMC5615229 DOI: 10.1002/jbmr.3148] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
Abstract
Genetic and environmental determinants of skeletal phenotypes such as bone mineral density (BMD) may converge through the epigenome, providing a tool to better understand osteoporosis pathophysiology. Because the epigenetics of BMD have been largely unexplored in humans, we performed an epigenome-wide association study (EWAS) of BMD. We undertook a large-scale BMD EWAS using the Infinium HumanMethylation450 array to measure site-specific DNA methylation in up to 5515 European-descent individuals (NDiscovery = 4614, NValidation = 901). We associated methylation at multiple cytosine-phosphate-guanine (CpG) sites with dual-energy X-ray absorptiometry (DXA)-derived femoral neck and lumbar spine BMD. We performed sex-combined and stratified analyses, controlling for age, weight, smoking status, estimated white blood cell proportions, and random effects for relatedness and batch effects. A 5% false-discovery rate was used to identify CpGs associated with BMD. We identified one CpG site, cg23196985, significantly associated with femoral neck BMD in 3232 females (p = 7.9 × 10-11 ) and 4614 females and males (p = 3.0 × 10-8 ). cg23196985 was not associated with femoral neck BMD in an additional sample of 474 females (p = 0.64) and 901 males and females (p = 0.60). Lack of strong consistent association signal indicates that among the tested probes, no large-effect epigenetic changes in whole blood associated with BMD, suggesting future epigenomic studies of musculoskeletal traits measure DNA methylation in a different tissue with extended genome coverage. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John A Morris
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Department of Medicine, Jewish General Hospital, McGill University, Montreal, Canada
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Roby Joehanes
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Katerina Trajanoska
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mette Soerensen
- The Danish Twin Registry and The Danish Aging Research Center, Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Department of Medicine, Jewish General Hospital, McGill University, Montreal, Canada
| | | | - Morten Frost
- Endocrine Research Unit, KMEB, University of Southern Denmark, Odense, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kaare Christensen
- The Danish Twin Registry and The Danish Aging Research Center, Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- The Danish Twin Registry and The Danish Aging Research Center, Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Fernando Rivadeneira
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jonathan H Tobias
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Brent Richards
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Department of Medicine, Jewish General Hospital, McGill University, Montreal, Canada.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Departments of Epidemiology and Biostatistics and Medicine, McGill University, Montreal, Canada
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
47
|
Alippe Y, Wang C, Ricci B, Xiao J, Qu C, Zou W, Novack DV, Abu-Amer Y, Civitelli R, Mbalaviele G. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 2017; 7:6630. [PMID: 28747793 PMCID: PMC5529467 DOI: 10.1038/s41598-017-07014-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation. To determine the relevance of these findings to bone homeostasis, we studied the impact of Nlrp3 deficiency on bone using pre-clinical mouse models of high bone turnover, including estrogen deficiency and sustained exposure to parathyroid hormone or RANKL. Despite comparable baseline indices of bone mass, bone loss caused by hormonal or RANKL perturbations is significantly reduced in Nlrp3 deficient than in wild type mice. Consistent with the notion that osteolysis releases DAMPs from bone matrix, pharmacologic inhibition of bone resorption by zoledronate attenuates inflammasome activation in mice. Thus, signals originating from bone matrix activate the NLRP3 inflammasome in the osteoclast lineage, and may represent a bone-restricted positive feedback mechanism that amplifies bone resorption in pathologic conditions of accelerated bone turnover.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Biancamaria Ricci
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chao Qu
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| |
Collapse
|
48
|
Horváthová M, Ilavská S, Štefíková K, Szabová M, Krivošíková Z, Jahnová E, Tulinská J, Spustová V, Gajdoš M. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070751. [PMID: 28696349 PMCID: PMC5551189 DOI: 10.3390/ijerph14070751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.
Collapse
Affiliation(s)
- Mira Horváthová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Silvia Ilavská
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Kornélia Štefíková
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Michaela Szabová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Zora Krivošíková
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Eva Jahnová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Jana Tulinská
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Viera Spustová
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Martin Gajdoš
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| |
Collapse
|
49
|
Abstract
Macrophages are present in all vertebrate tissues, from mid-gestation throughout life, constituting a widely dispersed organ system. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes in defence against microbes and in clearance of dead and senescent cells, but also through trophic, regulatory and repair functions. In this review, we describe macrophage phenotypic heterogeneity in different tissue environments, drawing particular attention to organ-specific functions.
Collapse
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan. .,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
50
|
Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease. Int J Mol Sci 2017; 18:ijms18010112. [PMID: 28098793 PMCID: PMC5297746 DOI: 10.3390/ijms18010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD.
Collapse
|