1
|
Omar S, Woodman ZL. The evolution of envelope function during coinfection with phylogenetically distinct human immunodeficiency virus. BMC Infect Dis 2024; 24:934. [PMID: 39251948 PMCID: PMC11385138 DOI: 10.1186/s12879-024-09805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Coinfection with two phylogenetically distinct Human Immunodeficiency Virus-1 (HIV-1) variants might provide an opportunity for rapid viral expansion and the emergence of fit variants that drive disease progression. However, autologous neutralising immune responses are known to drive Envelope (Env) diversity which can either enhance replicative capacity, have no effect, or reduce viral fitness. This study investigated whether in vivo outgrowth of coinfecting variants was linked to pseudovirus and infectious molecular clones' infectivity to determine whether diversification resulted in more fit virus with the potential to increase disease progression. RESULTS For most participants, emergent recombinants displaced the co-transmitted variants and comprised the major population at 52 weeks postinfection with significantly higher entry efficiency than other co-circulating viruses. Our findings suggest that recombination within gp41 might have enhanced Env fusogenicity which contributed to the increase in pseudovirus entry efficiency. Finally, there was a significant correlation between pseudovirus entry efficiency and CD4 + T cell count, suggesting that the enhanced replicative capacity of recombinant variants could result in more virulent viruses. CONCLUSION Coinfection provides variants with the opportunity to undergo rapid recombination that results in more infectious virus. This highlights the importance of monitoring the replicative fitness of emergent viruses.
Collapse
Affiliation(s)
- Shatha Omar
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, TB Genomics Group, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zenda L Woodman
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
García-Porras M, Torralba J, Insausti S, Valle J, Andreu D, Apellániz B, Nieva JL. A two-step mechanism for the binding of the HIV-1 MPER epitope by the 10E8 antibody onto biosensor-supported lipid bilayers. FEBS Lett 2024; 598:787-800. [PMID: 38339834 DOI: 10.1002/1873-3468.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
HIV-1 antibodies targeting the carboxy-terminal area of the membrane-proximal external region (ctMPER) are close to exerting viral pan-neutralization. Here, we reconstituted the ctMPER epitope as the N-terminal extremity of the Env glycoprotein transmembrane domain helix and immobilized it onto biosensor-supported lipid bilayers. We assessed the binding mechanism of anti-MPER antibody 10E8 through Surface Plasmon Resonance, and found, through equilibrium and kinetic binding analyses as a function of bilayer thickness, peptide length, and paratope mutations, that 10E8 engages first with the epitope peptide (encounter), limited by ctMPER helix accessibility at the membrane surface, and then inserts into the lipid bilayer assisted by favorable Fab-membrane interactions (docking). This mechanistic information may help in devising new strategies to develop more efficient MPER-targeting vaccines.
Collapse
Affiliation(s)
- Miguel García-Porras
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Javier Valle
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
3
|
Rujas E, Apellániz B, Torralba J, Andreu D, Caaveiro JMM, Wang S, Lu S, Nieva JL. Liposome-based peptide vaccines to elicit immune responses against the membrane active domains of the HIV-1 Env glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184235. [PMID: 37793559 DOI: 10.1016/j.bbamem.2023.184235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
The fusion peptide (FP) and the Trp-rich membrane proximal external region (MPER) display membrane activity during HIV-1 fusion. These domains are highly conserved in the envelope glycoprotein (Env) and, consequently, antibodies targeting these regions block entry of divergent HIV strains and isolates into target cells. With the aim of recovering concurrent responses against the membrane-active Env domains, we have produced hybrid peptides that connect FP and MPER sequences via flexible aminohexanoic acid tethers, and tested their potential as immunogens. We demonstrate that liposome-based formulations containing FP-MPER hybrid peptides could elicit in rabbits, antibodies with the binding sequence specificity of neutralizing antibodies that engage with the N-terminal MPER sub-region. Determination of the thermodynamic parameters of binding using the Fab 2F5 as an N-terminal MPER antibody model, revealed that the hydrophobic interaction surface for epitope engagement appears to be optimal in the FP-MPER hybrid. In general, our data support: i) the use of liposomes as carriers for membrane active peptides; ii) the capacity of these liposome-based vaccines to focus humoral responses to N-terminal MPER epitopes; and iii) the need to include lipid membranes in immunogens to elicit such specific responses.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Jose L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
4
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
5
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. J Virol 2023; 97:e0164722. [PMID: 36541800 PMCID: PMC9888200 DOI: 10.1128/jvi.01647-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Collapse
|
7
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
8
|
Torralba J, de la Arada I, Partida-Hanon A, Rujas E, Arribas M, Insausti S, Valotteau C, Valle J, Andreu D, Caaveiro JMM, Jiménez MA, Apellániz B, Redondo-Morata L, Nieva JL. Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope. Commun Biol 2022; 5:1265. [DOI: 10.1038/s42003-022-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractAntibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.
Collapse
|
9
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
10
|
Morozov V, Lagaye S, Morozov A. The TZM-bl Reporter Cell Line Expresses Kynureninase That Can Neutralize 2F5-like Antibodies in the HIV-1 Neutralization Assay. Int J Mol Sci 2022; 23:ijms23020641. [PMID: 35054825 PMCID: PMC8775840 DOI: 10.3390/ijms23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Induction of broadly neutralizing antibodies targeting ectodomain of the transmembrane (TM) glycoprotein gp41 HIV-1 provides a basis for the development of a universal anti-viral vaccine. The HeLa cell-derived TZM-bl reporter cell line is widely used for the estimation of lentiviruses neutralization by immune sera. The cell line is highly permissive to infection by most strains of HIV, SIV, and SHIV. Here we demonstrated that TZM-bl cells express a 48 kDa non-glycosylated protein (p48) recognized by broadly neutralizing monoclonal antibody (mAb) 2F5 targeting the ELDKWA (aa 669–674) epitope of gp41TM of HIV-1. A significant amount of p48 was found in the cell supernatant. The protein was identified as human kynureninase (KYNU), which has the ELDKWA epitope. The protein is further called “p48 KYNU”. The HIV-1 neutralization by mAb 2F5 and 4E10 in the presence of p48KYNU was tested on Jurkat and TZM-bl cells. It was demonstrated that p48KYNU reduces neutralization by 2F5-like antibodies, but it has almost no effect on mAb 4E10. Therefore, p48KYNU can attenuate HIV-1 neutralization by 2F5-like antibodies and hence create false-negative results. Thus, previously tested immune sera that recognized the ELDKWA-epitope and demonstrated a “weak neutralization” of HIV-1 in TZM-bl assay should be reevaluated.
Collapse
Affiliation(s)
- Vladimir Morozov
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Correspondence: (V.M.); (A.M.)
| | - Sylvie Lagaye
- Centre de Recherche Saint-Antoine (CRSA), INSERM—UMR-S 938/Sorbonne Université, CEDEX 12, 75571 Paris, France;
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (V.M.); (A.M.)
| |
Collapse
|
11
|
Reverted HIV-1 Mutants in CD4 + T-Cells Reveal Critical Residues in the Polar Region of Viral Envelope Glycoprotein. Microbiol Spectr 2021; 9:e0165321. [PMID: 34935422 PMCID: PMC8693918 DOI: 10.1128/spectrum.01653-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) interacts with cell surface receptors and induces membrane fusion to enter cells and initiate infection. HIV-1 Env on virions comprises trimers of the gp120 and gp41 subunits. The polar region (PR) in the N-terminus of gp41 is composed of 17 conserved residues, including seven polar amino acids. We have reported that the PR is crucial for Env trimer stability and fusogenicity. Mutations of three highly conserved residues (S534P, T536A, or T538A) in the PR of HIV-1NL4-3 significantly decrease or eliminate viral infectivity due to defective fusion and increased gp120 shedding. To identify compensatory Env mutations that restore viral infectivity, we infected a CD4+ T-cell line with PR mutants pseudotyped with wild-type (WT) HIV-1 Env or vesicular stomatitis virus envelope glycoprotein (VSV-G). We found that PR mutant-infected CD4+ T-cells produced infectious viruses at 7 days postinfection (dpi). Sequencing of the env cDNA from cells infected with the recovered HIV-1 revealed that the S534P mutant reverted to serine or threonine at residue 534. Interestingly, the combined PR-mutant HIV-1 (S534P/T536A or S534P/T536A/T538A) recovered its infectivity and reverted to S534, but maintained the T536A or T538A mutation, suggesting that HIV-1 replication in CD4+ T-cells can tolerate T536A and T538A Env mutations, but not S534P. Moreover, VSV-G-pseudotyped HIV-1 mutants with a fusion-defective Env also recovered infectivity in CD4+ T-cells through reverted Env mutations. These new observations help define the Env residues critical for HIV-1 infection and demonstrate that Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells. IMPORTANCE Our previous mutagenesis study revealed that serine at position 534 of HIV-1 Env is critical for viral infectivity. We found that HIV-1 Env containing serine to proline mutation at position 534 (S534P) are incapable of supporting virus-cell and cell-cell fusion. To investigate whether these mutant viruses can recover infectivity and what amino acid changes account for recovered infectivity, we infected CD4+ T-cells with Env-mutant HIV-1 pseudotyped with WT HIV-1 Env or VSV-G and monitored cultures for the production of infectious viruses. Our results showed that most of the pseudotyped viruses recovered their infectivity within 1-week postinfection, and all the recovered viruses mutated proline at position 534. These observations help define the Env residues critical for HIV-1 replication. Because Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells, it is important to carefully monitor viral mutations for biosafety consideration when using HIV-1-derived lentivirus vectors pseudotyped with Env.
Collapse
|
12
|
A Comprehensive Analysis of Human Endogenous Retroviruses HERV-K (HML.2) from Teratocarcinoma Cell Lines and Detection of Viral Cargo in Microvesicles. Int J Mol Sci 2021; 22:ijms222212398. [PMID: 34830279 PMCID: PMC8619701 DOI: 10.3390/ijms222212398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
About 8% of our genome is composed of sequences from Human Endogenous Retroviruses (HERVs). The HERV-K (HML.2) family, here abbreviated HML.2, is able to produce virus particles that were detected in cell lines, malignant tumors and in autoimmune diseases. Parameters and properties of HML.2 released from teratocarcinoma cell lines GH and Tera-1 were investigated in detail. In most experiments, analyzed viruses were purified by density gradient centrifugation. HML.2 structural proteins, reverse transcriptase (RT) activity, viral RNA (vRNA) and particle morphology were analyzed. The HML.2 markers were predominantly detected in fractions with a buoyant density of 1.16 g/cm3. Deglycosylation of TM revealed truncated forms of transmembrane (TM) protein. Free virions and extracellular vesicles (presumably microvesicles—MVs) with HML.2 elements, including budding intermediates, were detected by electron microscopy. Viral elements and assembled virions captured and exported by MVs can boost specific immune responses and trigger immunomodulation in recipient cells. Sequencing of cDNA clones demonstrated exclusive presence of HERV-K108 env in HML.2 from Tera-1 cells. Not counting two recombinant variants, four known env sequences were found in HML.2 from GH cells. Obtained results shed light on parameters and morphology of HML.2. A possible mechanism of HML.2-induced diseases is discussed.
Collapse
|
13
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
14
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
15
|
The high-affinity immunoglobulin receptor FcγRI potentiates HIV-1 neutralization via antibodies against the gp41 N-heptad repeat. Proc Natl Acad Sci U S A 2021; 118:2018027118. [PMID: 33431684 PMCID: PMC7826338 DOI: 10.1073/pnas.2018027118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite decades of research, an effective HIV-1 vaccine remains elusive. One potential vaccine target is the N-heptad repeat (NHR) region of gp41, which is the target of the FDA-approved drug enfuvirtide. However, monoclonal antibodies and antisera targeting this region have only been modestly neutralizing to date. Here, we show that the neutralization potency of the well-characterized anti-NHR antibody D5 is increased >5,000-fold by expression of FcγRI (CD64) on cells. Since FcγRI is expressed on macrophages and dendritic cells, which are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important to HIV-1 vaccine development. The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1–infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1–infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36)3 neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.
Collapse
|
16
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
17
|
de la Arada I, Torralba J, Tascón I, Colom A, Ubarretxena-Belandia I, Arrondo JLR, Apellániz B, Nieva JL. Conformational plasticity underlies membrane fusion induced by an HIV sequence juxtaposed to the lipid envelope. Sci Rep 2021; 11:1278. [PMID: 33446748 PMCID: PMC7809034 DOI: 10.1038/s41598-020-80156-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/13/2020] [Indexed: 01/05/2023] Open
Abstract
Envelope glycoproteins from genetically-divergent virus families comprise fusion peptides (FPs) that have been posited to insert and perturb the membranes of target cells upon activation of the virus-cell fusion reaction. Conserved sequences rich in aromatic residues juxtaposed to the external leaflet of the virion-wrapping membranes are also frequently found in viral fusion glycoproteins. These membrane-proximal external regions (MPERs) have been implicated in the promotion of the viral membrane restructuring event required for fusion to proceed, hence, proposed to comprise supplementary FPs. However, it remains unknown whether the structure–function relationships governing canonical FPs also operate in the mirroring MPER sequences. Here, we combine infrared spectroscopy-based approaches with cryo-electron microscopy to analyze the alternating conformations adopted, and perturbations generated in membranes by CpreTM, a peptide derived from the MPER of the HIV-1 Env glycoprotein. Altogether, our structural and morphological data support a cholesterol-dependent conformational plasticity for this HIV-1 sequence, which could assist cell-virus fusion by destabilizing the viral membrane at the initial stages of the process.
Collapse
Affiliation(s)
- Igor de la Arada
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Adai Colom
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L R Arrondo
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006, Vitoria-Gasteiz, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain. .,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
| |
Collapse
|
18
|
Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. JOURNAL OF CLINICAL PEDIATRICS AND NEONATOLOGY 2021; 1:9-20. [PMID: 34553192 PMCID: PMC8454918 DOI: 10.46439/pediatrics.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Sabin Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maureen M. Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. NPJ Vaccines 2020; 5:41. [PMID: 32435515 PMCID: PMC7235025 DOI: 10.1038/s41541-020-0190-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
The main objective of the MACIVIVA European consortium was to develop new Good Manufacturing Practice pilot lines for manufacturing thermostable vaccines with stabilized antigens on influenza virosomes as enveloped virus-like particles. The HIV-1 gp41-derived antigens anchored in the virosome membrane, along with the adjuvant 3M-052 (TLR7/8 agonist) on the same particle, served as a candidate vaccine for the proof of concept for establishing manufacturing processes, which can be directly applied or adapted to other virosomal vaccines or lipid-based particles. Heat spray-dried powders suitable for nasal or oral delivery, and freeze-dried sublingual tablets were successfully developed as solid dosage forms for mucosal vaccination. The antigenic properties of vaccinal antigens with key gp41 epitopes were maintained, preserving the original immunogenicity of the starting liquid form, and also when solid forms were exposed to high temperature (40 °C) for up to 3 months, with minimal antigen and adjuvant content variation. Virosomes reconstituted from the powder forms remained as free particles with similar size, virosome uptake by antigen-presenting cells in vitro was comparable to virosomes from the liquid form, and the presence of excipients specific to each solid form did not prevent virosome transport to the draining lymph nodes of immunized mice. Virosome integrity was also preserved during exposure to <−15 °C, mimicking accidental freezing conditions. These “ready to use and all-in-one” thermostable needle-free virosomal HIV-1 mucosal vaccines offer the advantage of simplified logistics with a lower dependence on the cold chain during shipments and distribution.
Collapse
|
20
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
21
|
Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS, Chou JJ, Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 2020; 16:529-537. [PMID: 32152540 PMCID: PMC7723321 DOI: 10.1038/s41589-020-0496-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Rudometov AP, Rudometova NB, Shcherbakov DN, Lomzov AA, Kaplina ON, Shcherbakova NS, Ilyichev AA, Bakulina AY, Karpenko LI. The Structural and Immunological Properties of Chimeric Proteins Containing HIV-1 MPER Sites. Acta Naturae 2019; 11:56-65. [PMID: 31720017 PMCID: PMC6826149 DOI: 10.32607/20758251-2019-11-3-56-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) poses a serious risk to global public health. The development of a safe and effective vaccine could stop the HIV/AIDS pandemic. Much of the research focused on HIV-1 prevention through vaccination is aimed at developing immunogens and immunization strategies to induce the formation of antibodies with neutralizing activity against a broad range of HIV-1 isolates (bNAbs). The objective of this study was to develop immunogens capable of targeting an immune response to MPER, one of the regions of bNAb binding in Env. Two immunogens carrying MPER fragments on their scaffolds (protein YkuJ Bacillus subtilis and artificial polypeptide TBI) were constructed. Circular dichroism spectroscopy was used to show that the secondary structure of the immunogens was consistent with their theoretical models. The antigenic structure of the MPER-TBI and YkuJ-MPER proteins was characterized using bNAbs that recognize HIV-1 MPER (2F5, 4E10, and 10E8). The rabbit model made it possible to show the immunogenicity of the constructed recombinant proteins. The resulting serum was found to be cross-reactive with immunogens carrying MPER. The constructs designed and characterized in this study can be used for targeting the humoral immune response to MPER, which is known to be one of the sites of HIV-1 vulnerability.
Collapse
Affiliation(s)
- A. P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - N. B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - D. N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
- Altai State University, Lenin Ave. 61, Barnaul, 656049, Russia
| | - A. A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Ac. Lavrentieva Ave. 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| | - O. N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - N. S. Shcherbakova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - A. A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - A. Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| |
Collapse
|
23
|
Reverse Immunology Approach to Define a New HIV-gp41-Neutralizing Epitope. J Immunol Res 2019; 2019:9804584. [PMID: 31019982 PMCID: PMC6451809 DOI: 10.1155/2019/9804584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023] Open
Abstract
The design of immunogens susceptible to elicit potent and broadly neutralizing antibodies against the human immunodeficiency virus type 1 (HIV-1) remains a veritable challenge in the course of vaccine development. Viral envelope proteins adopt different conformational states during the entry process, allowing the presentation of transient neutralizing epitopes. We focused on the highly conserved 3S motif of gp41, which is exposed to the surface envelope in its trimeric prefusion state. Vaccination with a W614A-modified 3S peptide induces in animals neutralizing anti-HIV-1 antibodies among which we selected clone F8. We used F8 as bait to select for W614A-3S phage-peptide mimics. Binding and molecular docking studies revealed that F8 interacts similarly with W614A-3S and a Mim_F8-1 mimotope, despite their lack of sequence homology, suggesting structural mimicry. Finally, vaccination of mice with the purified Mim_F8-1 phage elicited HIV-1-neutralizing antibodies that bound to the cognate W614A-3S motif. Collectively, our findings provide new insights into the molecular design of immunogens to elicit antibodies with neutralizing properties.
Collapse
|
24
|
Williams KL, Stumpf M, Naiman NE, Ding S, Garrett M, Gobillot T, Vézina D, Dusenbury K, Ramadoss NS, Basom R, Kim PS, Finzi A, Overbaugh J. Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLoS Pathog 2019; 15:e1007572. [PMID: 30779811 PMCID: PMC6396944 DOI: 10.1371/journal.ppat.1007572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.
Collapse
Affiliation(s)
- Katherine L. Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Megan Stumpf
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Nicole Elise Naiman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Shilei Ding
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Meghan Garrett
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
| | - Theodore Gobillot
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Dani Vézina
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Katharine Dusenbury
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
- Divisions of Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Nitya S. Ramadoss
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Peter S. Kim
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Andrés Finzi
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| |
Collapse
|
25
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
26
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
27
|
Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc Natl Acad Sci U S A 2018; 115:E8892-E8899. [PMID: 30185554 DOI: 10.1073/pnas.1807259115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane-proximal external region (MPER) of the HIV-1 envelope glycoprotein (Env) bears epitopes of broadly neutralizing antibodies (bnAbs) from infected individuals; it is thus a potential vaccine target. We report an NMR structure of the MPER and its adjacent transmembrane domain in bicelles that mimic a lipid-bilayer membrane. The MPER lies largely outside the lipid bilayer. It folds into a threefold cluster, stabilized mainly by conserved hydrophobic residues and potentially by interaction with phospholipid headgroups. Antigenic analysis and comparison with published images from electron cryotomography of HIV-1 Env on the virion surface suggest that the structure may represent a prefusion conformation of the MPER, distinct from the fusion-intermediate state targeted by several well-studied bnAbs. Very slow bnAb binding indicates that infrequent fluctuations of the MPER structure give these antibodies occasional access to alternative conformations of MPER epitopes. Mutations in the MPER not only impede membrane fusion but also influence presentation of bnAb epitopes in other regions. These results suggest strategies for developing MPER-based vaccine candidates.
Collapse
|
28
|
Flemming J, Wiesen L, Herschhorn A. Conformation-Dependent Interactions Between HIV-1 Envelope Glycoproteins and Broadly Neutralizing Antibodies. AIDS Res Hum Retroviruses 2018; 34:794-803. [PMID: 29905080 DOI: 10.1089/aid.2018.0102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV type 1 (HIV-1) envelope glycoproteins (Env) mediate virus entry and are the target of neutralizing antibodies. Binding of the metastable HIV-1 Env trimer to the CD4 receptor triggers structural rearrangements that mediate Env conformational transitions from a closed conformation to a more open state through an intermediate step. Recent studies have revealed new insights on the dynamics, regulation, and molecular mechanisms of Env transitions along the entry pathway. In this study, we provide an overview of the current knowledge on Env conformational dynamics and the relationship between Env conformational states and neutralization selectivity of the broadly neutralizing antibodies that develop in 10%-20% of infected individuals and may provide guidance for the development of an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Juliana Flemming
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lisa Wiesen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
29
|
Ivleva VB, Schneck NA, Gollapudi D, Arnold F, Cooper JW, Lei QP. Investigation of Sequence Clipping and Structural Heterogeneity of an HIV Broadly Neutralizing Antibody by a Comprehensive LC-MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1512-1523. [PMID: 29736600 PMCID: PMC6652184 DOI: 10.1007/s13361-018-1968-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/07/2018] [Accepted: 04/14/2018] [Indexed: 05/11/2023]
Abstract
CAP256 is one of the highly potent, broadly neutralizing monoclonal antibodies (bNAb) designed for HIV-1 therapy. During the process development of one of the constructs, an unexpected product-related impurity was observed via microfluidics gel electrophoresis. A panel of complementary LC-MS analyses was applied for the comprehensive characterization of CAP256 which included the analysis of the intact and reduced protein, the middle-up approach, and a set of complementary peptide mapping techniques and verification of the disulfide bonds. The designed workflow allowed to identify a clip within a protruding acidic loop in the CDR-H3 region of the heavy chain, which can lead to the decrease of bNAb potency. This characterization explained the origin of the additional species reflected by the reducing gel profile. An intra-loop disulfide bond linking the two fragments was identified, which explained why the non-reducing capillary electrophoresis (CE) profile was not affected. The extensive characterization of CAP256 post-translational modifications was performed to investigate a possible cause of CE profile complexity and to illustrate other structural details related to this molecule's biological function. Two sites of the engineered Tyr sulfation were verified in the antigen-binding loop, and pyroglutamate formation was used as a tool for monitoring the extent of antibody clipping. Overall, the comprehensive LC-MS study was crucial to (1) identify the impurity as sequence clipping, (2) pinpoint the clipping location and justify its susceptibility relative to the molecular structure, (3) lead to an upstream process optimization to mitigate product quality risk, and (4) ultimately re-engineer the sequence to be clip-resistant. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| | - Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Deepika Gollapudi
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Frank Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
30
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
31
|
Flyak AI, Kuzmina N, Murin CD, Bryan C, Davidson E, Gilchuk P, Gulka CP, Ilinykh PA, Shen X, Huang K, Ramanathan P, Turner H, Fusco ML, Lampley R, Kose N, King H, Sapparapu G, Doranz BJ, Ksiazek TG, Wright DW, Saphire EO, Ward AB, Bukreyev A, Crowe JE. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat Microbiol 2018; 3:670-677. [PMID: 29736037 PMCID: PMC6030461 DOI: 10.1038/s41564-018-0157-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMappTM that has been shown to be effective in nonhuman primate models of infection1 and has been used under compassionate-treatment protocols in humans2. ZMappTM is a mixture of three chimerized murine monoclonal antibodies (mAbs)3–6 that target EBOV-specific epitopes on the surface glycoprotein (GP)7,8. However, ZMappTM mAbs do not neutralize other species from the Ebolavirus genus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here we describe three naturally-occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane proximal external region (MPER) of GP. The identification of a conserved neutralizing antigenic site in the GP suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2/MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.
Collapse
Affiliation(s)
- Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher P Gulka
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - Hannah Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebecca Lampley
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah King
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston, TX, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA. .,Galveston National Laboratory, Galveston, TX, USA. .,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
32
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
33
|
HIV-vaccines: lessons learned and the way forward. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A safe and efficacious preventive HIV vaccine, as part of a comprehensive prevention program, remains among the highest public health priorities. It would be the best tool that could reduce the spread of HIV significantly in the long run. Current AIDS vaccine candidates are unable to induce neutralizing antibodies against primary HIV isolates or only to a very limited and narrow extent, representing a major obstacle in the development of an efficacious HIV vaccine. Clinical efforts have mainly focused on T-cell vaccines such as DNA and various recombinant vectors alone or in prime-boost regimens. The Merck Ad5 vaccine not only failed to show efficacy but also was associated with increased risk of HIV acquisition in vaccinees in a Phase IIb trial. While gp120 alone was not efficacious, the ALVAC prime and gp120 boost regimen showed 31% efficacy in a Phase III trial in Thailand. These contrasting results illustrate the limitations of available laboratory assays to assess the vaccine-induced immune responses and the lack of understanding of immune correlates of protection. Efforts should therefore focus on developing vaccine candidates inducing broadly neutralizing antibodies. Similarly, new vector strategies such as replicating vectors should be explored to induce strong and broad T-cell responses in the systemic and mucosal compartments. Innovation in immune assay development and testing algorithms is critically needed. The standardization of more relevant and predictive non-human primate models for immunogenicity and efficacy studies will contribute to better and faster vaccine assessment. HIV vaccine development requires innovative ideas and a sustained long-term commitment of the scientific community, civil society, politicians, and donors and participants for clinical research.
Collapse
|
34
|
Ringel O, Müller K, Koch J, Brill B, Wolf T, Stephan C, Vieillard V, Debré P, Dietrich U. Optimization of the EC26-2A4 Epitope in the gp41 Membrane Proximal External Region Targeted by Neutralizing Antibodies from an Elite Controller. AIDS Res Hum Retroviruses 2018; 34:365-374. [PMID: 29262692 PMCID: PMC5899297 DOI: 10.1089/aid.2017.0250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The analysis of patient derived HIV neutralizing antibodies (nAbs) and their target epitopes in the viral envelope (Env) protein provides important basic information for vaccine design. In this study we optimized an epitope, EC26-2A4, that is targeted by neutralizing antibodies from an elite controller (EC26) and localizes in the membrane-proximal external region from the gp41 transmembrane protein. Due to its overlap with the epitope of the first generation broadly neutralizing monoclonal Ab (mAb) 2F5 associated with autoreactivity, we first defined the minimal core epitope reacting with antibodies from EC26 plasma, but not with mAb 2F5. The optimized minimal epitope, EC26-2A4ΔM, was able to induce neutralizing antibodies in vaccinated mice. We further analyzed the frequency of antibodies against the EC26-2A4ΔM peptide in HIV-positive patient sera from a treated cohort and an untreated long-term nonprogressor (LTNP) cohort. Interestingly, 27% of the LTNP sera reacted with the peptide, whereas only 9% showed reactivity in the treated cohort. Although there was no association between the presence of antibodies against the EC26-2A4ΔM epitope and viral load or CD4 count in these patients, the CD4 nadir in the treated cohort was higher in patients positive for EC26-2A4ΔM antibodies, in particular in patients having such antibodies at an early and a late timepoint after infection.
Collapse
Affiliation(s)
- Oliver Ringel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Karsten Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Timo Wolf
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Christoph Stephan
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Vincent Vieillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patrice Debré
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
35
|
Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions. J Virol 2018; 92:JVI.02249-17. [PMID: 29386285 DOI: 10.1128/jvi.02249-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 11/20/2022] Open
Abstract
The 10E8 antibody targets a helical epitope in the membrane-proximal external region (MPER) and transmembrane domain (TMD) of the envelope glycoprotein (Env) subunit gp41 and is among the broadest known neutralizing antibodies against HIV-1. Accordingly, this antibody and its mechanism of action valuably inform the design of effective vaccines and immunotherapies. 10E8 exhibits unusual adaptations to attain specific, high-affinity binding to the MPER at the viral membrane interface. Reversing the charge of the basic paratope surface (from net positive to net negative) reportedly lowered its neutralization potency. Here, we hypothesized that by increasing the net positive charge in similar polar surface patches, the neutralization potency of the antibody may be enhanced. We found that an increased positive charge at this paratope surface strengthened an electrostatic interaction between the antibody and lipid bilayers, enabling 10E8 to interact spontaneously with membranes. Notably, the modified 10E8 antibody did not gain any apparent polyreactivity and neutralized virus with a significantly greater potency. Binding analyses indicated that the optimized 10E8 antibody bound with a higher affinity to the epitope peptide anchored in lipid bilayers and to Env spikes on virions. Overall, our data provide a proof of principle for the rational optimization of 10E8 via manipulation of its interaction with the membrane element of its epitope. However, the observation that a similar mutation strategy did not affect the potency of the first-generation anti-MPER antibody 4E10 shows possible limitations of this principle. Altogether, our results emphasize the crucial role played by the viral membrane in the antigenicity of the MPER-TMD of HIV-1.IMPORTANCE The broadly neutralizing antibody 10E8 blocks infection by nearly all HIV-1 isolates, a capacity which vaccine design seeks to reproduce. Engineered versions of this antibody also represent a promising treatment for HIV infection by passive immunization. Understanding its mechanism of action is therefore important to help in developing effective vaccines and biologics to combat HIV/AIDS. 10E8 engages its helical MPER epitope where the base of the envelope spike submerges into the viral membrane. To enable this interaction, this antibody evolved an unusual property: the ability to interact with the membrane surface. Here, we provide evidence that 10E8 can be made more effective by enhancing its interactions with membranes. Our findings strengthen the idea that to elicit antibodies similar to 10E8, vaccines must reproduce the membrane environment where these antibodies perform their function.
Collapse
|
36
|
Ajamian L, Melnychuk L, Jean-Pierre P, Zaharatos GJ. DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses 2018; 10:E100. [PMID: 29495537 PMCID: PMC5869493 DOI: 10.3390/v10030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Flagellin's potential as a vaccine adjuvant has been increasingly explored over the last three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5 (TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself. This approach has been particularly effective in enhancing humoral immune responses. We sought to use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the membrane proximal external region (MPER). Accordingly, we devised a straightforward step-wise approach to select flagellin-antigen fusion proteins for gene-based vaccine development. Using plasmid DNA vector-based expression in mammalian cells, we demonstrate robust expression of codon-optimized full length and hypervariable region-deleted constructs of Salmonella enterica subsp. enterica serovar Typhi flagellin (FliC). An HIV gp41 derived sequence including the MPER (gp41607-683) was incorporated into various positions of these constructs and the expressed fusion proteins were screened for effective secretion, TLR5 agonist activity and adequate MPER antigenicity. We show that incorporation of gp41607-683 into a FliC-based scaffold significantly augments gp41607-683 immunogenicity in a TLR5 dependent manner and elicits modest MPER-specific humoral responses in a mouse model.
Collapse
Affiliation(s)
- Lara Ajamian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Luca Melnychuk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Patrick Jean-Pierre
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Gerasimos J Zaharatos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Infectious Disease, Department of Medicine & Division of Medical Microbiology, Department of Clinical Laboratory Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
37
|
Oakes V, Torralba J, Rujas E, Nieva JL, Domene C, Apellaniz B. Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1259-1271. [PMID: 29477358 DOI: 10.1016/j.bbamem.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
The 10E8 antibody achieves near-pan neutralization of HIV-1 by targeting the remarkably conserved gp41 membrane-proximal external region (MPER) and the connected transmembrane domain (TMD) of the HIV-1 envelope glycoprotein (Env). Thus, recreating the structure that generates 10E8-like antibodies is a major goal of the rational design of anti-HIV vaccines. Unfortunately, high-resolution information of this segment in the native Env is lacking, limiting our understanding of the behavior of the crucial 10E8 epitope residues. In this report, two sequences, namely, MPER-TMD1 (gp41 residues 671-700) and MPER-TMD2 (gp41 residues 671-709) were compared both experimentally and computationally, to assess the TMD as a potential membrane integral scaffold for the 10E8 epitope. These sequences were selected to represent a minimal (MPER-TMD1) or full-length (MPER-TMD2) TMD membrane anchor according to mutagenesis results reported by Yue et al. (2009) J. Virol. 83, 11,588. Immunochemical assays revealed that MPER-TMD1, but not MPER-TMD2, effectively exposed the MPER C-terminal stretch, harboring the 10E8 epitope on the surface of phospholipid bilayers containing a cholesterol concentration equivalent to that of the viral envelope. Molecular dynamics simulations, using the recently resolved TMD trimer structure combined with the MPER in a cholesterol-enriched model membrane confirmed these results and provided an atomistic mechanism of epitope exposure which revealed that TMD truncation at position A700 combined with N-terminal addition of lysine residues positively impacts epitope exposure. Overall, these results provide crucial insights into the design of effective MPER-TMD derived immunogens.
Collapse
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London SE1 1DB, UK; Department of Chemistry, 1 South Building, Claverton Down Road, University of Bath, Bath BA2 7AY, UK
| | - Johana Torralba
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Carmen Domene
- Department of Chemistry, 1 South Building, Claverton Down Road, University of Bath, Bath BA2 7AY, UK; Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, UK.
| | - Beatriz Apellaniz
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
38
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
39
|
Serrano S, Huarte N, Rujas E, Andreu D, Nieva JL, Jiménez MA. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry 2017; 56:5503-5511. [PMID: 28930470 DOI: 10.1021/acs.biochem.7b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University , Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José L Nieva
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
40
|
Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Front Immunol 2017; 8:1154. [PMID: 28970835 PMCID: PMC5609547 DOI: 10.3389/fimmu.2017.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated by the human immune system and their elicitation by vaccination will be a key point to protect against the wide range of viral diversity. The membrane proximal external region (MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is considered as an attractive vaccine target. However, despite many attempts to design MPER-based immunogens, further study is still needed to understand its structural complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. These particular features compromise the development of MPER-specific neutralizing responses during natural infection and limit the number of bNAbs isolated against this region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles for immunogen development. Nevertheless, the analysis of MPER humoral responses elicited during natural infection as well as the MPER bNAbs isolated to date highlight that the human immune system is capable of generating MPER protective antibodies. Here, we discuss the recent advances describing the immunologic and biochemical features that make the MPER a unique HIV-1 vulnerability site, the different strategies to generate MPER-neutralizing antibodies in immunization protocols and point the importance of extending our knowledge toward new MPER epitopes by the isolation of novel monoclonal antibodies. This will be crucial for the redesign of immunogens able to skip non-neutralizing MPER determinants.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| |
Collapse
|
41
|
Cerutti N, Loredo-Varela JL, Caillat C, Weissenhorn W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr Opin HIV AIDS 2017; 12:250-256. [PMID: 28422789 DOI: 10.1097/coh.0000000000000364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW We summarize the latest research on the progress to understand the neutralizing epitopes present within the membrane proximal external region (MPER) of the HIV-1 fusion protein subunit gp41. RECENT FINDINGS The HIV-1 fusion protein subunit gp41 contains a highly conserved sequence that is essential for membrane fusion and targeted by broadly neutralizing antibodies such as 2F5, 4E10, Z13e1, and 10E8. These antibodies recognize a linear gp41 epitope with high affinity, but require additional hydrophobic sequences present in their heavy chain CDR3 for neutralization. Recent structural studies on mAbs 4E10 and 10E8 provide molecular details for specific interactions with lipids and implicate part of the transmembrane region as the relevant 10E8 epitope. Although many different approaches have been applied to engineer gp41 immunogens that can induce broadly neutralizing antibodies directed toward MPER, only modest success has yet been reported. SUMMARY The new structural details on the complex gp41-lipidic epitope will spur new approaches to design gp41-MPER immunogens that might induce broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Nichole Cerutti
- aUniversity Grenoble Alpes bCEA cCNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | |
Collapse
|
42
|
Stenler S, Lundin KE, Hansen L, Petkov S, Mozafari N, Isaguliants M, Blomberg P, Smith CIE, Goldenberg DM, Chang CH, Ljungberg K, Hinkula J, Wahren B. Immunization with HIV-1 envelope T20-encoding DNA vaccines elicits cross-clade neutralizing antibody responses. Hum Vaccin Immunother 2017; 13:2849-2858. [PMID: 28696158 PMCID: PMC5718786 DOI: 10.1080/21645515.2017.1338546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Genetic immunization is expected to induce the expression of antigens in a native form. The encoded peptide epitopes are presented on endogenous MHC molecules, mimicking antigen presentation during a viral infection. We have explored the potential of enfuvirtide (T20), a short HIV peptide with antiviral properties, to enhance immune response to HIV antigens. To generate an expression vector, the T20 sequence was cloned into a conventional plasmid, the novel minicircle construct, and a replicon plasmid. In addition, 3 conventional plasmids that express the envelope of HIV-1 subtypes A, B and C and contain T20 in their gp41 sequences were also tested. Results: All combinations induced HIV-specific antibodies and cellular responses. The addition of T20 as a peptide and as an expression cassette in the 3 DNA vectors enhanced antibody responses. The highest anti-HIV-1 Env titers were obtained by the replicon T20 construct. This demonstrates that besides its known antiviral activity, T20 promotes immune responses. We also confirm that the combination of slightly divergent antigens improves immune responses. Conclusions: The antiretroviral T20 HIV-1 sequence can be used as an immunogen to elicit binding and neutralizing antibodies against HIV-1. These, or similarly modified gp41 genes/peptides, can be used as priming or boosting components for induction of broadly neutralizing anti-HIV antibodies. Future comparative studies will reveal the optimal mode of T20 administration.
Collapse
Affiliation(s)
- S Stenler
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - K E Lundin
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - L Hansen
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - S Petkov
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - N Mozafari
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - M Isaguliants
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - P Blomberg
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - C I E Smith
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - D M Goldenberg
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - C-H Chang
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - K Ljungberg
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - J Hinkula
- f Department of Molecular Virology , Linköping University , Linköping , Sweden
| | - B Wahren
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
43
|
Melnychuk L, Ajamian L, Jean-Pierre P, Liang J, Gheorghe R, Wainberg MA, Zaharatos GJ. Development of a DNA vaccine expressing a secreted HIV-1 gp41 ectodomain that includes the membrane-proximal external region. Vaccine 2017; 35:2736-2744. [PMID: 28392143 DOI: 10.1016/j.vaccine.2017.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/15/2017] [Accepted: 03/11/2017] [Indexed: 12/17/2022]
Abstract
A limited number of sites on the HIV-1 Envelope protein are vulnerable to broadly neutralizing antibodies (bnAbs). One of these sites, the membrane proximal external region (MPER), is located at the C-terminus of the gp41 ectodomain (gp41ecto). This highly conserved sequence is bound by several well-characterized bnAbs. Efforts to produce a gp41 immunogen are in part hampered by the MPER's hydrophobicity and propensity to induce aggregation. We sought to produce a DNA vaccine expressing a gp41ecto that is both secreted from mammalian cells and maintains binding by bnAbs to the MPER. Through in silico analysis, we predicted regions of gp41ecto that could induce aggregation and possibly hinder secretion. We generated deletion mutants of gp41ecto and tested their ability to be secreted by mammalian cells. Upon deletion of regions in either the fusion peptide (FP) or MPER, secretion of the gp41ecto increased. In an effort to both augment secretion and maintain binding by bnAbs, we developed constructs with the FP deletion and introduced point mutations in the MPER. Two constructs (gp41 ΔFP and gp41 ΔFP+I682E) maintained binding by gp41 MPER-specific bnAbs (4E10, Z13e1 and 10E8). These were evaluated as DNA vaccines in a mouse model. Both vaccines proved to be immunogenic and appeared to elicit some MPER-specific antibodies that bound gp41 ectodomain-derived proteins but not short peptides spanning the MPER. No neutralizing capacity was detected against a clade C virus containing a homologous MPER.
Collapse
Affiliation(s)
- Luca Melnychuk
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Lara Ajamian
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Jiaming Liang
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Romina Gheorghe
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Mark A Wainberg
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Gerasimos J Zaharatos
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Infectious Diseases, Department of Medicine, Jewish General Hospital, Montréal, Québec, Canada.
| |
Collapse
|
44
|
Augusto MT, Hollmann A, Troise F, Veiga AS, Pessi A, Santos NC. Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Colloids Surf B Biointerfaces 2017; 152:311-316. [DOI: 10.1016/j.colsurfb.2017.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
45
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
46
|
Rujas E, Caaveiro JMM, Insausti S, García-Porras M, Tsumoto K, Nieva JL. Peripheral Membrane Interactions Boost the Engagement by an Anti-HIV-1 Broadly Neutralizing Antibody. J Biol Chem 2017; 292:5571-5583. [PMID: 28213514 DOI: 10.1074/jbc.m117.775429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
The 4E10 antibody displays an extreme breadth of HIV-1 neutralization and therefore constitutes a suitable model system for structure-guided vaccine design and immunotherapeutics against AIDS. In this regard, the relevance of autoreactivity with membrane lipids for the biological function of this antibody is still a subject of controversy. To address this dispute, herein we have compared the membrane partitioning ability of the 4E10 antibody and several of its variants, which were mutated at the region of the paratope surface in contact with the membrane interface. We first employed a physical separation approach (vesicle flotation) and subsequently carried out quantitative fluorescence measurements in an intact system (spectroscopic titration), using 4E10 Fab labeled with a polarity-sensitive fluorescent probe. Moreover, recognition of epitope peptide in membrane was demonstrated by photo-cross-linking assays using a Fab that incorporated the genetically encoded unnatural amino acid p-benzoylphenylalanine. The experimental data ruled out that the proposed stereospecific recognition of viral lipids was necessary for the function of the antibody. In contrast, our data suggest that nonspecific electrostatic interactions between basic residues of 4E10 and acidic phospholipids in the membranes contribute to the observed biological function. Moreover, the energetics of membrane partitioning indicated that 4E10 behaves as a peripheral membrane protein, tightening the binding to the ligand epitope inserted in the viral membrane. The implications of these findings for the natural production and biological function of this antibody are discussed.
Collapse
Affiliation(s)
- Edurne Rujas
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and.,the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - José M M Caaveiro
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - Sara Insausti
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| | - Miguel García-Porras
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| | - Kouhei Tsumoto
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - José L Nieva
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| |
Collapse
|
47
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
48
|
Yi HA, Fochtman BC, Rizzo RC, Jacobs A. Inhibition of HIV Entry by Targeting the Envelope Transmembrane Subunit gp41. Curr HIV Res 2016; 14:283-94. [PMID: 26957202 DOI: 10.2174/1570162x14999160224103908] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The transmembrane subunit of the HIV envelope protein, gp41 is a vulnerable target to inhibit HIV entry. There is one fusion inhibitor T20 (brand name: Fuzeon, generic name: enfuvirtide) available by prescription. However, it has several drawbacks such as a high level of development of drug resistance, a short-half life in vivo, rapid renal clearance, low oral bioavailability, and it is only used as a salvage therapy. Therefore, investigators have been studying a variety of different modalities to attempt to overcome these limitations. METHODS Comprehensive literature searches were performed on HIV gp41, inhibition mechanisms, and inhibitors. The latest structural information was collected, and multiple inhibition strategies targeting gp41 were reviewed. RESULTS Many of the recent advances in inhibitors were peptide-based. Several creative modification strategies have also been performed to improve inhibitory efficacy of peptides and to overcome the drawbacks of T20 treatment. Small compounds have also been an area of intense research. There is a wide variety in development from those identified by virtual screens targeting specific regions of the protein to natural products. Finally, broadly neutralizing antibodies have also been important area of research. The inaccessible nature of the target regions for antibodies is a challenge, however, extensive efforts to develop better neutralizing antibodies are ongoing. CONCLUSION The fusogenic protein, gp41 has been extensively studied as a promising target to inhibit membrane fusion between the virus and target cells. At the same time, it is a challenging target because the vulnerable conformations of the protein are exposed only transiently. However, advances in biochemical, biophysical, structural, and immunological studies are coming together to move the field closer to an understanding of gp41 structure and function that will lead to the development of novel drugs and vaccines.
Collapse
Affiliation(s)
| | | | | | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
49
|
Rujas E, Caaveiro JMM, Partida-Hanon A, Gulzar N, Morante K, Apellániz B, García-Porras M, Bruix M, Tsumoto K, Scott JK, Jiménez MÁ, Nieva JL. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Sci Rep 2016; 6:38177. [PMID: 27905530 PMCID: PMC5131266 DOI: 10.1038/srep38177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671–687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER.
Collapse
Affiliation(s)
- Edurne Rujas
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Angélica Partida-Hanon
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Naveed Gulzar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Koldo Morante
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Beatriz Apellániz
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Marta Bruix
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jamie K Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - M Ángeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
50
|
Single Amino Acid Substitution N659D in HIV-2 Envelope Glycoprotein (Env) Impairs Viral Release and Hampers BST-2 Antagonism. Viruses 2016; 8:v8100285. [PMID: 27754450 PMCID: PMC5086617 DOI: 10.3390/v8100285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
BST-2 or tetherin is a host cell restriction factor that prevents the budding of enveloped viruses at the cell surface, thus impairing the viral spread. Several countermeasures to evade this antiviral factor have been positively selected in retroviruses: the human immunodeficiency virus type 2 (HIV-2) relies on the envelope glycoprotein (Env) to overcome BST-2 restriction. The Env gp36 ectodomain seems involved in this anti-tetherin activity, however residues and regions interacting with BST-2 are not clearly defined. Among 32 HIV-2 ROD Env mutants tested, we demonstrated that the asparagine residue at position 659 located in the gp36 ectodomain is mandatory to exert the anti-tetherin function. Viral release assays in cell lines expressing BST-2 showed a loss of viral release ability for the HIV-2 N659D mutant virus compared to the HIV-2 wild type virus. In bst-2 inactivated H9 cells, those differences were lost. Subtilisin treatment of infected cells demonstrated that the N659D mutant was more tethered at the cell surface. Förster resonance energy transfer (FRET) experiments confirmed a direct molecular link between Env and BST-2 and highlighted an inability of the mutant to bind BST-2. We also tested a virus presenting a truncation of 109 amino acids at the C-terminal part of Env, a cytoplasmic tail partial deletion that is spontaneously selected in vitro. Interestingly, viral release assays and FRET experiments indicated that a full Env cytoplasmic tail was essential in BST-2 antagonism. In HIV-2 infected cells, an efficient Env-mediated antagonism of BST-2 is operated through an intermolecular link involving the asparagine 659 residue as well as the C-terminal part of the cytoplasmic tail.
Collapse
|