1
|
Huang X, Di X, Zuiderwijk MC, Zhang L, Leegwater H, Davidse S, Kindt A, Harms A, Hankemeier T, Le Dévédec SE, Ali A. Lipidomic profiling of triple-negative breast cancer cells reveals distinct metabolic signatures associated with EpCAM expression. Talanta 2025; 283:127127. [PMID: 39520925 DOI: 10.1016/j.talanta.2024.127127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Lipid metabolism is essential at all stages of cancer progression, particularly for triple-negative breast cancer (TNBC) the deadliest cancer subtype for women patients. TNBC cells exhibit significant metabolic heterogeneity, which contributes to their aggressive behavior. Epithelial-to-mesenchymal transition (EMT), a key step in metastasis, is associated with distinct lipid profiles, where the epithelial cell adhesion molecule (EpCAM) was found to be decreased along the transition. To understand this link, we employed lipidomic profiling of the TNBC cell line SUM149PT, which exhibits high variability in EpCAM, an epithelial marker. Using EpCAM levels to categorize cells with high and low EpCAM expression using fluorescence-activated cell sorter, we performed targeted mass spectrometry analysis of various lipid classes (glycerophospholipids, glycerolipids, lysophospholipids, and sphingolipids) by a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method. After correcting for cell size, we identified a unique lipid profile associated with each EpCAM expression level. Notably, cells with higher EpCAM expression displayed lower levels of lysophosphatidylethanolamine (LPE). This finding suggests a potential role for LPE in the regulation of EMT in TNBC.
Collapse
Affiliation(s)
- Xiaoyue Huang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Melissa Celine Zuiderwijk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Lu Zhang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Hanneke Leegwater
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Sam Davidse
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands.
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
3
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Mishan MA, Choo YM, Winkler J, Hamann MT, Karan D. Manzamine A: A promising marine-derived cancer therapeutic for multi-targeted interactions with E2F8, SIX1, AR, GSK-3β, and V-ATPase - A systematic review. Eur J Pharmacol 2025; 990:177295. [PMID: 39863145 DOI: 10.1016/j.ejphar.2025.177295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, v-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeffery Winkler
- Department of Chemistry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA.
| |
Collapse
|
5
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
6
|
McLean E, Roo CD, Maag A, Coble M, Cano J, Liu R. ERK1/2 Inhibition Alleviates Diabetic Cardiomyopathy by Suppressing Fatty Acid Metabolism. FRONT BIOSCI-LANDMRK 2025; 30:26700. [PMID: 39862096 DOI: 10.31083/fbl26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear. In this study, we tested our hypothesis that pharmacological inhibition of ERK1/2 alleviates cardiac remodeling in diabetic mice through a reduction in fatty acid metabolism. METHODS ERK1/2 phosphorylation in diabetes was determined both in vitro and in vivo. H9C2 cells were subjected to high glucose, high palmitic acid, or both high glucose and palmitic acid. db/db and streptozotocin (STZ)-induced diabetic mice were analyzed for ERK1/2 phosphorylation levels as well as the effects of U0126 treatment on cardiac remodeling. Administration of STZ and U0126 in mice was performed via intraperitoneal injection. Blood glucose levels in mice were measured using a glucometer. Mouse heart total RNAs were purified for reverse transcription. Real-time polymerase chain reaction (PCR) analysis of the messenger ribonucleic acid (mRNA) expression was performed for hypertrophy (ANF, BNP, and βMHC), fibrosis (Col3α1), and fatty acid metabolism genes (PPARα, CPT1A, and FACS). Interstitial fibrosis of the myocardium was analyzed using Masson's trichrome staining of the paraffin-embedded tissues. RESULTS ERK1/2 phosphorylation was significantly increased in diabetic conditions. Inhibition of ERK1/2 by U0126 in both streptozotocin-induced diabetic mice and db/db mice resulted in a significant reduction in the expression of genes associated with hypertrophy and fibrosis. In contrast, elevated phosphorylation of ERK1/2 in Dusp6/8 knockout (DKO) mice resulted in fibrosis. Mechanistically, ERK1/2 activation enhanced the expression of fatty acid metabolism genes PPARα, CPT1A, and FACS in the heart, which was reversed by U0126 treatment. CONCLUSION ERK1/2 are potential therapeutic targets for diabetic cardiomyopathy by modulating fatty acid metabolism in the heart.
Collapse
Affiliation(s)
- Erin McLean
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| | - Caroline De Roo
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| | - Annabel Maag
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| | - Megan Coble
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| | - Jefferson Cano
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| | - Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA
| |
Collapse
|
7
|
Liao J, Liu J, Zhou Y, Shi L, Chen YJ, Guo S, Zhang CY, Liu XY, Tao WQ, Xiang JJ, Yang-Lei, Liu G, Wang W, Kuang L, Ran LY. L1CAM + extracellular vesicles derived from the serum of adolescents with major depressive disorder induce depression-like phenotypes in adolescent mice. J Affect Disord 2025; 375:180-191. [PMID: 39842672 DOI: 10.1016/j.jad.2025.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND It has been reported that L1 cell adhesion molecule (L1CAM) antibody can capture neuron-derived extracellular vesicles (NDEVs) derived from peripheral blood. This antibody is significantly associated with occurrence of adult psychiatric disorders. However, the role and mechanism of L1CAM+ EVs (L1+ EVs) in adolescent with major depressive disorder (AMDD) is not well understood. This research aimed to explore the function and potential mechanism of L1+ EVs and miRNAs genes in AMDD. METHODS L1+ EVs derived from the serum of AMDD and healthy controls (HC) were transplanted into adolescent mice via tail vein. Their effects were explored using behavioral tests, hippocampal Nissl staining, and whole genome mRNA sequencing. MiRNAs expression in L1+ EVs was evaluated by whole-genome sequencing and qRT-PCR. Bioinformatics analysis was employed to explore the possible pathogenic molecular mechanisms of these miRNAs in AMDD. RESULTS Transplantation of L1+ EVs from AMDD induced depression-like behavior and hippocampal neuronal damage in adolescent mice and aberrant expression of 298 mRNA genes. The molecular signals related to MDD were enriched in the top pathways of the differentially expressed genes. Compared with HC, miR-375-3p and miR-200a-3p were upregulated in L1+ EVs from AMDD, miR-375-3p was also increased in the hippocampus of AMDD serum L1+ EVs-recipient mice. Bioinformatics analysis revealed that miR-375-3p might modulate the network of molecules associated with the MAPK pathway via protein interaction involving hippocampal differential genes Cadm2, Cacna2d1, and Casz1. CONCLUSION MiR-375-3p might contribute to L1+ EVs-induced AMDD. L1+ EVs miR-375-3p and miR-200a-3p could potentially serve as potential biomarkers for AMDD.
Collapse
Affiliation(s)
- Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jie Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yang Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yu-Jia Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shan Guo
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Chen-Yu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yang-Lei
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China.
| |
Collapse
|
8
|
Kim MJ, Yang YJ, Min GY, Heo JW, Son JD, You YZ, Kim HH, Kim GS, Lee HJ, Yang JH, Park KI. Anti-inflammatory and antioxidant properties of Camellia sinensis L. extract as a potential therapeutic for atopic dermatitis through NF-κB pathway inhibition. Sci Rep 2025; 15:2371. [PMID: 39827243 PMCID: PMC11742993 DOI: 10.1038/s41598-025-86678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis. CSE was obtained via hot water extraction from Camellia sinensis L. Ultra-high-performance liquid chromatography (UPLC) analyzed catechin and caffeine content. Cell viability was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), polyphenol and flavonoid content were determined. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay measured antioxidant activity. Enzyme-Linked Immunosorbent Assay (ELISA), western blotting, and Immunofluorescence (IF) assays examined cytokines, pathways, and protein localization, respectively. Molecular docking assessed compound binding with inflammation-related proteins. UPLC identified six CSE components including epigallocatechin (EGC) epicatechin (EC), caffeine (CF), catechin (C), epigallocatechin gallate (EGCG), and epicatechin gallate (ECG). CSE demonstrated a significant reduction in the production of inflammatory cytokines interleukin (IL)-2 and IL-6 in TNF-α/IFN-γ activated keratinocytes. Treatment with CSE inhibited the mitogen-activated protein kinase (MAPK) pathway, which resulted in decreased phosphorylation of p38, Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Exposure of TNF-α/IFN-γ- stimulated human keratinocytes (HaCaT) cells to CSE resulted in a 200 µg/mL dependent inhibition of p65 and signal transducer and activator of transcription 1 (STAT-1) translocation from the cytosol to the nucleus, as confirmed through immunofluorescence (IF) staining. Molecular docking simulations provided insights into the underlying mechanisms of CSE action, which supported its potential as a therapeutic agent for AD. CSE might be a potential candidate for its therapeutic efficacy for inflammatory skin conditions like AD. Thus, based on this evidence, the authors suggest that CSE should be studied further for its anti-inflammatory activities and topical application in the treatment of AD.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Ye Jin Yang
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Ga-Yul Min
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Ji Woong Heo
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Jae Dong Son
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Young Zoo You
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Hu-Jang Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| | - Kwang Il Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, 52828, Republic of Korea.
| |
Collapse
|
9
|
Langhansová H, Beránková Z, Khanna R, Kotál J, Kotsyfakis M, Palus M, Lieskovská J. Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice. Parasitol Res 2025; 124:8. [PMID: 39821815 PMCID: PMC11739226 DOI: 10.1007/s00436-024-08441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection. Mice were intradermally infected by TBEV with or without Iristatin and the viral multiplication was determined in skin and brain tissues by RT-PCR two and 5 days after infection. The viral RNA was detected in both intervals in skin and increased by time. The application of Iristatin caused a reduction in viral RNA in skin but not in the brain of infected mice 5 days post-infection. Moreover, anti-viral effect of Iristatin on skin was accompanied by a significant decline of interferon-stimulated gene 15 gene expression. The effect of Iristatin on TBEV replication was tested also in vitro in primary macrophages and dendritic cells; however, no changes were observed suggesting no direct interference of Iristatin with virus replication. Still, the Iristatin caused a suppression of Erk1/2 phosphorylation in TBEV-infected dendritic cells and had the anti-apoptotic effect. This is the first report showing that a tick cystatin decreases the viral RNA in the host skin, likely indirectly through creating skin environment that is less supportive for TBEV replication. Assuming, that viral RNA reflects the amount of infectious virus, decline of TBEV in host skin could influence the tick biology or virus transmission during cofeeding.
Collapse
Affiliation(s)
- Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ritesh Khanna
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Michail Kotsyfakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece
| | - Martin Palus
- Institute of Parasitology, Biology Centre of Czech Academy of Sciences, Branišovská 1160/31, CZ-37005, České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre of Czech Academy of Sciences, Branišovská 1160/31, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Lee SH, Lee SS, Lee GY, Han SY, Kim DS, Lee BH, Yoo YC. Endarachne binghamiae Extract Ameliorates Inflammatory Responses in Macrophages Through Regulation of MAPK, NF-kB and PI3K/AKT Pathways, and Prevents Acute Lung Injury in Mice. Life (Basel) 2025; 15:88. [PMID: 39860028 PMCID: PMC11766595 DOI: 10.3390/life15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, the anti-inflammatory effect of the hot water extract of Endarachne binghamiae (EB-WE), a type of marine brown algae, was investigated in LPS-stimulated RAW 264.7 cells and an acute lung injury (ALI) mouse model induced by intranasal LPS administration. Treatment with EB-WE significantly inhibited NO and pro-inflammatory cytokine (TNF-a and IL-6) production in LPS-stimulated RAW 264.7 cells. In mRNA analysis, the expression of pro-inflammatory cytokines, COX-2, and iNOS mRNAs, was down-regulated by EB-WE treatment. The phosphorylation of MAPK, IkB, and PI3K/AKT molecules responsible for signal pathways during inflammation in LPS-stimulated macrophages was also significantly inhibited by EB-WE. In an in vivo model for ALI, oral administration of EB-WE significantly reduced the level of pro-inflammatory cytokines (TNF-a, IL-1b, and IL-6) and chemokines (MCP-1, CXC-16, CXCL1, and TARC) in serum or bronchoalveolar lavage fluid (BALF) of mice. Similarly to the results in LPS-stimulated RAW 264.7 cells, treatment with EB-WE significantly inhibited intracellular signal pathways mediated by MAPK, IkB, and PI3K/AKT in lung tissues of mice with ALI, and also decreased the expression of mRNAs of inflammatory mediators such as TNF-a, IL-6, iNOS, and COX-2. Furthermore, the inhibitory effect of EB-WE on ALI was apparently confirmed in histological examination through lung tissue staining. Taken together, it is clear that EB-WE has potential activity to effectively ameliorate the inflammatory responses in macrophages through down-regulation of MAPK, NF-kB, and PI3K/AKT activation, and suppress acute lung injury induced by LPS. These findings strongly suggest that EB-WE is a promising natural product beneficial for developing preventive treatments and cures of inflammation-related diseases.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea; (S.-H.L.); (S.-S.L.); (G.-Y.L.)
| | - Sang-Seop Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea; (S.-H.L.); (S.-S.L.); (G.-Y.L.)
| | - Ga-Young Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea; (S.-H.L.); (S.-S.L.); (G.-Y.L.)
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea;
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 58144, Republic of Korea;
| | - Bong-Ho Lee
- Department of Chemical Technology, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 32992, Republic of Korea; (S.-H.L.); (S.-S.L.); (G.-Y.L.)
| |
Collapse
|
11
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025:S0306-4522(25)00023-5. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
12
|
Chen Z, Mo Q, Luo S, Liang J, Li Y, Gao Y, Zhang C, Jiang L, Ma J, Yang S, Jiang F, Liu M, Liu S, Yang J. Exploring antiviral effect and mechanism of Jinye Baidu granules(JYBD)against influenza A virus through network pharmacology and in vitro and invivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118720. [PMID: 39197802 DOI: 10.1016/j.jep.2024.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinye Baidu granules (JYBD) have been used to treat acute respiratory tract infections and demonstrated clinical efficacy for the treatment of emerging or epidemic respiratory viruses such as SARS-CoV-2 and influenza virus. AIM OF THE STUDY This study is to investigate the antiviral effect of JYBD against influenza A viruses (IAV) in vitro and in vivo and elucidate its underlying mechanism. MATERIALS AND METHODS Ultra-high-performance liquid chromatography connected with Orbitrap mass spectrometer (UHPLC-Orbitrap MS) was employed to describe the chemical profile of JYBD. The potential pathways and targets involved in JYBD against IAV infection were predicted by network pharmacology. The efficacy and mechanism of JYBD were validated through both in vivo and in vitro experiments. Moreover, combination therapy with JYBD and the classic anti-influenza drugs was also investigated. RESULTS A total of 126 compounds were identified by UHPLC-Orbitrap MS, of which 9 compounds were unambiguously confirmed with reference standards. JYBD could significantly inhibit the replication of multiple strains of IAV, especially oseltamivir-resistant strains. The results of qRT-PCR and WB demonstrated that JYBD could inhibit the excessive induction of pro-inflammatory cytokines induced by IAV infection and regulate inflammatory response through inhibiting JAK/STAT, NF-κB and MAPK pathways. Moreover, both JYBD monotherapy or in combination with oseltamivir could alleviate IAV-induced severe lung injury in mice. CONCLUSIONS JYBD could inhibit IAV replication and mitigate virus-induced excessive inflammatory response. Combinations of JYBD and neuraminidase inhibitors conferred synergistic suppression of IAV both in vitro and in vivo. It might provide a scientific basis for clinical applications of JYBD against influenza virus infected diseases.
Collapse
Affiliation(s)
- Zhixuan Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qinxian Mo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Siqi Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jinlong Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinyan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinhuang Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Chunyu Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Linrui Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Ma
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Sizu Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Feng Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
13
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
14
|
Tran LT, Freeman KT, Lunzer MM, Portoghese PS, Haskell-Luevano C. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. ACS Pharmacol Transl Sci 2025; 8:225-244. [PMID: 39816790 PMCID: PMC11729433 DOI: 10.1021/acsptsci.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including 35S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the GαΔ6qi4myr in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same in vivo tail-flick antinociception assays via intrathecal injection for ED50 potencies. These data provide both in vitro comparative pharmacology as a reference for cellular activities and in vivo antinociception profiles for these tool compounds.
Collapse
Affiliation(s)
- Linh T. Tran
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Müller J, Bayer FP, Wilhelm M, Schuh MG, Kuster B, The M. PTMNavigator: interactive visualization of differentially regulated post-translational modifications in cellular signaling pathways. Nat Commun 2025; 16:510. [PMID: 39779715 PMCID: PMC11711753 DOI: 10.1038/s41467-024-55533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams. PTMNavigator provides ~3000 canonical pathways from manually curated databases, enabling users to modify and create custom diagrams tailored to their data. Additionally, PTMNavigator automatically runs kinase and pathway enrichment algorithms whose results are directly integrated into the visualization. This offers a comprehensive view of the intricate relationship between PTMs and signaling pathways. We demonstrate the utility of PTMNavigator by applying it to two phosphoproteomics datasets, showing how it can enhance pathway enrichment analysis, visualize how drug treatments result in a discernable flow of PTM-driven signaling, and aid in proposing extensions to existing pathways. By enhancing our understanding of cellular signaling dynamics and facilitating the discovery of PTM-pathway interactions, PTMNavigator advances our knowledge of PTM biology and its implications in health and disease.
Collapse
Affiliation(s)
- Julian Müller
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Maximilian G Schuh
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Organic Chemistry II, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
16
|
Wei R, Pan X, Cai D, Pan L. Synergistic Inhibition of Breast Carcinoma Cell Proliferation by Quercetin and Sulforaphane via Activation of the ERK/MAPK Pathway. Cell Biochem Biophys 2025:10.1007/s12013-024-01662-6. [PMID: 39760839 DOI: 10.1007/s12013-024-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems. The cells were assessed for several studies after being subjected to different concentrations (0-70 µM) of QT and SFN (QT + SFN) for duration of 24 h. We investigated the combination that QT + SFN generated cytotoxicity using the MTT assay. The DCFH-DA staining technique was utilized to assess ROS. The protein spectra of survival of cells, cell cycle progression, and apoptosis were evaluated employing flow cytometry and western blotting. The consequences illustrated that the relative cytotoxicity of QT and SFN was roughly 28.74 μM and 39.87 μM for MDA-MB-231 cells, respectively. Following the 24-h incubation period, MDA-MB-231 cells exhibit considerable cytotoxicity when QT and SFN are combined, with IC50 values of 19.48 μM. Moreover, MCF-7 and MDA-MB-231 cells treated with QT and SFN concurrently showed substantial production of ROS and increased apoptotic signals. Consequently, because QT + SFN inhibit the production of ERK/MAPK/JNK/p38-based control of proliferation and cell cycle-regulating proteins, it has been considered a chemotherapeutic medication. To determine the extent to which the co-treatment induces apoptosis, more in vivo study will be required before they can be used commercially.
Collapse
Affiliation(s)
- Ranmei Wei
- Department of Breast Diseases, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, Heilongjiang, China
| | - Xingchen Pan
- Department of the 0perating Room,Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Danni Cai
- Outpatient Department, General hospital of the western theater command of Chinese people's liberation army, Chengdu, Sichuan, China
| | - Lili Pan
- Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025:10.1007/s12264-024-01342-8. [PMID: 39754628 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
18
|
Hong G, Zhou L, He W, Wei Q, Xu J. The Effects and Mechanisms of Chrysosplenetin in Targeting RANKL-Induced NF-κB Signaling and NFATc1 Activation to Protect Bone Density in Osteolytic Diseases. J Cell Biochem 2025; 126:e30670. [PMID: 39485062 DOI: 10.1002/jcb.30670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Chrysosplenetin (CHR), an O-methylated flavonol from Chamomilla recutita and Laggera pterodonta, has previously demonstrated efficacy in enhancing osteoblast differentiation for treating postmenopausal osteoporosis. This study aims to evaluate CHR's potential to inhibit osteoclastogenesis and prevent bone deterioration in both in vitro and in vivo models. Using tartaric acid-resistant acid phosphatase staining and hydroxyapatite resorption assays, we examined the impact of CHR on RANKL-induced osteoclasts derived from mouse bone marrow monocytes. Additionally, Western blot analysis and qRT-PCR were utilized to assess the protein and gene expressions within the MAPK and NF-κB signaling pathways, as well as the NFATc1 pathway. In vivo, CHR's effects were validated using micro-CT and histomorphometry in an ovariectomized mouse model, showing significant reduction in osteoclast activity and bone loss. The study confirms CHR's inhibition of osteoclastogenesis through interference with RANKL-mediated signaling pathways, suggesting its potential as a novel therapeutic agent for osteolytic conditions related to osteoclast-osteoblast dysregulation.
Collapse
Affiliation(s)
- Guoju Hong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Traumatology & Orthopedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei He
- Traumatology & Orthopedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Qiushi Wei
- Traumatology & Orthopedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Jiake Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Daviaud C, Ferraz CAA, E Silva MG, de Alencar Filho EB, Evangelista Mendes de Lima SY, Dumontet V, Júnior LJQ, da Silva Almeida JRG, Picot L, Baranger K, de Oliveira Júnior RG, Grougnet R. Polymethoxyflavones from Gardenia oudiepe and semi-synthetic derivatives reduce nociception in mice: Evidence for the involvement of the MAPK pathway. Biomed Pharmacother 2025; 182:117742. [PMID: 39671724 DOI: 10.1016/j.biopha.2024.117742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
This study explores the potential of polymethoxyflavones (PMFs) and polyacetylated flavones (PAFs) as novel analgesic and anti-inflammatory agents. Eight derivatives, isolated from Gardenia oudiepe bud exudate or semi-synthesized from commercial kaempferol, underwent evaluations in various in vivo, in vitro, and in silico models. Acetic acid-, formalin-induced pain, and hot-plate tests were conducted in mice (n = 6). Cell viability assay, ELISA, NO measurement and protein expression by western blot were determined on RAW264.7 macrophage cells before and after exposure to LPS. Molecular docking was performed in order to putatively corroborate the affinity of the compound library to the most promising targets. Despite closely-related chemical structures, subtle modifications significantly influenced anti-nociceptive activity and affinity on diverse cellular or enzymatic targets. The library of compounds exhibited noticeable inhibitory effects on nociception in acetic acid- and formalin-induced pain assays in mice. Biochemical assays on RAW264.7 cells elucidated anti-inflammatory properties, highlighting PAFs 7 and 8 as the most active. The study indicates a peripheral anti-nociceptive profile, suggesting interferences with the production of inflammatory mediators implicated in pain disorders (e.g., COX-2, Tnf-α, IL-6 and MAPK pathway proteins). Molecular docking analyses strongly suggested interactions between PMFs/PAFs chemical library and pre-selected targets. PAFs 7 and 8 demonstrated the best binding energies, showing potential in tackling inflammation, possibly by binding to MAPK, ERK, JNK and p38. These data provide insights for lead optimization through further pharmacomodulation, paving the way for the development of innovative multi-target analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Clément Daviaud
- UMRi CNRS 7266 LIENSs, Université de La Rochelle, La Rochelle 17042, France
| | | | - Mariana Gama E Silva
- Departamento de Ciências Biológicas (DCBIO), Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil
| | | | | | - Vincent Dumontet
- Laboratoire des Plantes Médicinales de Nouméa, CNRS-Centre IRD, BP 643, Nouméa Cedex, Nouvelle-Calédonie 98845, France
| | | | | | - Laurent Picot
- UMRi CNRS 7266 LIENSs, Université de La Rochelle, La Rochelle 17042, France
| | - Kévin Baranger
- UMRi CNRS 7266 LIENSs, Université de La Rochelle, La Rochelle 17042, France
| | | | - Raphaël Grougnet
- UMR CNRS 8038 CiTCoM, Université Paris Cité, Paris 75006, France.
| |
Collapse
|
20
|
Wu Y, He L, Li R, Li J, Zhao Q, Shao B. A20 as a Potential Therapeutic Target for COVID-19. Immun Inflamm Dis 2025; 13:e70127. [PMID: 39853876 PMCID: PMC11760982 DOI: 10.1002/iid3.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors. A20, which is widely accepted as a pivotal regulator of inflammation, has been shown to be implicated in the processes of antiviral responses and immunosuppression. Thus, A20 may participate in regulating the pathological processes of COVID-19. METHODS This narrative literature review summarizes recent evidence on the mechanisms of A20 in regulating the pathological processes of COVID-19. We also downloaded single-cell RNA-seq data sets from healthy individuals and patients with varying severities of COVID-19 from the NCBI GEO database to further dissect A20's regulatory mechanisms of these intricate cytokine pathways that are closely associated with SARS-CoV-2 infection. RESULTS A20 might be one of the most critical anti-infectious and anti-inflammatory factors involved in the pathogenesis of COVID-19. It effectively suppresses the immune damage and inflammatory storm caused by viral infection. CONCLUSIONS Understanding the relationship between A20-regulated signaling pathways and pathological processes of COVID-19 can provide insight into potential targets for intervention. Precise regulation of A20 to induce antiviral activity and an anti-inflammatory response could mediate the pathogenesis of COVID-19 and could become an effective treatment.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Lilan He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Rong Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiuxuan Li
- Laboratory of Radiation Biology, Laboratory Medicine Centre, Department of Blood TransfusionThe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Qing Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
21
|
Kokoulin MS, Kuzmich AS, Filshtein AP, Prassolov VS, Romanenko LA. Capsular polysaccharide from the marine bacterium Cobetia marina induces apoptosis via both caspase-dependent and mitochondria-mediated pathways in HL-60 cells. Carbohydr Polym 2025; 347:122791. [PMID: 39487004 DOI: 10.1016/j.carbpol.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
In the present study, we investigated the antiproliferative effect of the capsular polysaccharide (CPS) from marine Gram-negative bacterium Cobetia marina (formerly C. pacifica) KMM 3878 against human leukemia cells in vitro and the potential molecular mechanism underlying this activity. Our results showed that the CPS could inhibit the proliferation of HL-60 cells in a dose-dependent manner with no effect on normal PBMC cells. HL-60 cells treated with the CPS exhibited typical morphologic and biochemical signs of apoptosis. We found that the CPS caused the collapse of mitochondrial transmembrane potential (ΔΨm), activated caspases-8,-9, and - 3, decreased the ratio of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins, increased ROS production and TNF-α secretion, and stimulated phosphorylation of p38 MAPK and p53 in HL-60 cells. Taken together, these data suggest that both extracellular and intracellular signaling pathways contribute to the CPS-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation.
| | - Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, 119991 Moscow, Russian Federation
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| |
Collapse
|
22
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
23
|
Dorry S, Perla S, Bennett AM. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway. Mol Cell Biol 2025; 45:17-31. [PMID: 39607740 DOI: 10.1080/10985549.2024.2426665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute members of the dual-specificity family of protein phosphatases that dephosphorylate the MAPKs. MKP-5 dephosphorylates the stress-responsive MAPKs, p38 MAPK and JNK, and has been shown to promote tissue fibrosis. Here, we provide insight into how MKP-5 regulates the transforming growth factor-β (TGF-β) pathway, a well-established driver of fibrosis. We show that MKP-5-deficient fibroblasts in response to TGF-β are impaired in SMAD2 phosphorylation at canonical and non-canonical sites, nuclear translocation, and transcriptional activation of fibrogenic genes. Consistent with this, pharmacological inhibition of MKP-5 is sufficient to block TGF-β signaling, and that this regulation occurs through a JNK-dependent pathway. By utilizing RNA sequencing and transcriptomic analysis, we identify TGF-β signaling activators regulated by MKP-5 in a JNK-dependent manner, providing mechanistic insight into how MKP-5 promotes TGF-β signaling. This study elucidates a novel mechanism whereby MKP-5-mediated JNK inactivation is required for TGF-β signaling and provides insight into the role of MKP-5 in tissue fibrosis.
Collapse
Affiliation(s)
- Sam Dorry
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Toruntay C, Poyraz FS, Susgun S, Yucesan E, Mansuroglu B. Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer. J Cell Mol Med 2025; 29:e70309. [PMID: 39823246 PMCID: PMC11740982 DOI: 10.1111/jcmm.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells. After the synthesis and characterisation of nanoparticles, treatment concentrations were determined with cytotoxicity assay. Subsequently, MAPK6 knockdown and anticancer effects of siMAPK6-PLGA-NPs were evaluated by in vitro assays. siMAPK6-PLGA-NPs have been determined to suppress MAPK6 expression efficiently. In vitro studies revealed that siMAPK6-PLGA-NPs significantly reduced the migration, proliferation and colony-forming ability and enhanced the apoptosis in MCF-7 cells. Taken together, siMAPK6-PLGA-NPs exhibited robust and promising anticancer effects against MCF-7 cells. Our findings demonstrated that siRNA-loaded PLGA nanoparticles have great potential for breast cancer treatment and MAPK6 gene may be the therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Ceyhun Toruntay
- Department of Molecular Biology and Genetics, Faculty of Science and LettersIstanbul Technical UniversityIstanbulTurkiye
- Department of Molecular Biology and Genetics, Graduate School of Science and EngineeringYildiz Technical UniversityIstanbulTurkiye
| | - Fatma Sayan Poyraz
- Department of Molecular Biology and Genetics, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkiye
| | - Seda Susgun
- Department of Genetics, Institute of Health SciencesIstanbul UniversityIstanbulTurkiye
- Department of Medical Biology, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkiye
| | - Emrah Yucesan
- Department of Neurogenetics, Institute of Neurological SciencesIstanbul University‐CerrahpasaIstanbulTurkiye
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkiye
| |
Collapse
|
25
|
Shin J, Park AY, Ju S, Lee H, Kang HW, Han D, Kim S. Analysis of key pathways and genes in nodal structure on rat skin surface using gene ontology and KEGG pathway. Genes Genomics 2025; 47:71-85. [PMID: 39503930 DOI: 10.1007/s13258-024-01582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND We have previously reported anatomical, histological, and gene expression characteristics of the nodal structure of rat skin surface and suggested its potential as an acupuncture point. However, the specific characteristics of the interactions among the genes expressed in this structure remain unclear. OBJECTIVE We aimed to determine gene expression changes by analyzing interaction networks of genes up-regulated in nodal structures and to explore relationships with acupuncture points. METHODS We investigated the relationship between the nodal structures and acupuncture points by analyzing the interactions of up-regulated genes, their Gene Ontology biological functions, and the characteristics of Kyoto Encyclopedia of Genes and Genomes pathways. RNA-seq and STRING analysis provided comprehensive information on these gene groups. RESULTS Interactions between up-regulated genes in nodal structures were classified into three groups. The first group, which includes Wnt7b, Wnt3, and Wnt16, showed significant interactions in pathways such as Wnt signaling, Alzheimer's disease, and regulation of stem cell pluripotency. The second group, composed of Fos, Dusp1, Pla2g4e, Pla2g4f, and Fgfr3, demonstrated a notable association with the MAPK signaling pathway. Lastly, the third group, consisting of Adcy1, Pla2g4e, Pla2g4f, and Dusp1 exhibited effective interactions with the inflammatory mediator regulation of TRP channels and serotonergic synapse. CONCLUSION Continued research on nodal structures where these genes are expressed is needed to improve our understanding of skin anatomy and physiology as well as their potential clinical utility as acupuncture points.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - A Yeong Park
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Suk Ju
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Hyorin Lee
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Hyung Won Kang
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
- Department of Korean Neuropsychiatry, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
- Department of Global Health and Development, Hanyang University, Seoul, Republic of Korea
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea.
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
26
|
Yan R, Chen S, Lang X, Liu J, Zhou T. Identification of key ferroptosis‑related biomarkers in Kawasaki disease by clinical and experimental validation. Biomed Rep 2025; 22:16. [PMID: 39624783 PMCID: PMC11609609 DOI: 10.3892/br.2024.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 01/06/2025] Open
Abstract
Kawasaki disease (KD) is an acute febrile rash that is primarily characterized by systemic vasculitis and is the leading cause of childhood-acquired heart disease. At present, a KD diagnosis is solely dependent on clinical symptoms and effective diagnostic markers are unavailable. Ferroptosis, a novel form of programmed cell death, contributes to the pathophysiology of infectious diseases. The present study aimed to identify key ferroptosis-related genes (FRGs) involved in the pathological process of KD and thus potential diagnostic biomarkers for this disease. For this purpose, differentially expressed-FRGs (DE-FRGs) between patients with KD and healthy controls were screened. The least absolute shrinkage and selection operator (LASSO) algorithm and a logistic regression model combined with receiver operating characteristic analysis were then used to identify and assess ferroptosis-related markers. Additionally, immune cell infiltration landscapes in the KD and control groups were evaluated using CIBERSORT. Moreover, the predictive value of the identified markers was validated in the clinical samples as well as vascular endothelial cells. A total of 10 DE-FRGs were screened from the KD and control samples. These 10 DE-FRGs were then applied to the LASSO model and 6 key ferroptosis-related markers were obtained. The subsequent Gene Set Variation Analysis results suggested that high expression levels of these markers were closely associated with innate immune activation and metabolism, while low expression was mainly linked to adaptive immune-related pathways. In addition to validating each gene in the training and validation sets, the diagnostic potential of these markers was assessed utilizing KD samples obtained from Shenzhen Baoan Women's and Children's Hospital. As a result, MAPK14, SLC2A3 and PGD were selected as potential diagnostic markers for KD. Additionally, changes in the expression of marker genes during inflammatory activation of vascular endothelial cells were measured by reverse transcription-quantitative PCR. The results of the present study will help to understand the role of FRGs in the pathogenesis of KD. Moreover, the identified FRGs may serve as diagnostic biomarkers, providing new strategies for KD prediction and treatment.
Collapse
Affiliation(s)
- Rui Yan
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong 518100, P.R. China
| | - Shuiwen Chen
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong 518100, P.R. China
| | - Xinling Lang
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong 518100, P.R. China
| | - Jimin Liu
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong 518100, P.R. China
| | - Tao Zhou
- Department of Pediatrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
27
|
Ahmed HA, Gatea FK, Hussein ZA. Azilsartan as a preventive agent against cyclophosphamide-induced testicular injury in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:979-990. [PMID: 39093466 DOI: 10.1007/s00210-024-03339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Cyclophosphamide (CP) is a popular cancer treatment; however, despite its efficacy, it is known to cause harm to the testicles. To mitigate the reproductive damage caused by CP in male rats, we examined the protective effect of azilsartan (AZ) on CP-induced testicular damage. Thirty Sprague-Dawley male rats were equally divided into three groups: normal control group: received 0.5% CMC suspension for 13 days; induction group: received a single dose of 200 mg/kg of CP on day 6 by intraperitoneal (IP) injection, azilsartan group: received azilsartan (4 mg/kg) orally for 5 days followed by a single dose of 200 mg/kg of (CP) on day 6 by IP injection, then azilsartan administered again for 7 days. Animals were sacrificed on day 14, and sperm characteristics, testosterone levels, and testicular histopathology were evaluated. Induction with CP caused a significant reduction in median value compared to normal control in sperm count (12.0 vs. 22.0 × 106/mm3), sperm motility (30 vs. 90%), abnormal sperm (30.32 vs. 14.43%), dead sperm count (32.43 vs. 10.49 × 106/mm3), DNA fragmentation (21.57 vs. 5.49%); meanwhile, azilsartan prevent these effects on median sperm count (17.0 × 106/mm3), sperm motility (70.0%), abnormal sperm (23.19%), dead sperm count (26.17 × 106/mm3), DNA fragmentation (13.81%), and improved plasmatic testosterone levels compared to the CP group and prevented histopathological alterations of the testes. Azilsartan's mitigation of CP's effects suggests it can prevent male rats' reproductive damage caused by CP. One possible explanation for AZ's protective effects is that it inhibits lipid peroxidation and has antioxidant properties.
Collapse
Affiliation(s)
- Haneen Alaa Ahmed
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Fouad Kadhim Gatea
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Zeena Ayad Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
28
|
Vu TH, Kim C, Truong AD, Lillehoj HS, Hong YH. Unveiling the immunomodulatory role of soluble chicken fractalkine: Insights from functional characterization and pathway activation analyses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105279. [PMID: 39396691 DOI: 10.1016/j.dci.2024.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-β, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| | - Chaeeun Kim
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 100000, Hanoi, Viet Nam.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, 20705, Beltsville, MD, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| |
Collapse
|
29
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
31
|
Nishikori A, Nishimura MF, Tomida S, Chijimatsu R, Ueta H, Lai YC, Kawahara Y, Takeda Y, Ochi S, Haratake T, Ennishi D, Nakamura N, Momose S, Sato Y. Transcriptome analysis of the cytokine storm-related genes among the subtypes of idiopathic multicentric Castleman disease. J Clin Exp Hematop 2024; 64:297-306. [PMID: 39462545 DOI: 10.3960/jslrt.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Idiopathic multicentric Castleman disease (iMCD) is a type of Castleman disease unrelated to the Kaposi sarcoma-associated herpesvirus/human herpesvirus type 8 (KSHV/HHV8) infection. Presently, iMCD is classified into iMCD-IPL (idiopathic plasmacytic lymphadenopathy), iMCD-TAFRO (thrombocytopenia, anasarca, fever, reticulin fibrosis/renal insufficiency, and organomegaly), and iMCD-NOS (not otherwise specified). The most common treatment for iMCD is using IL-6 inhibitors; however, some patients resist IL-6 inhibitors, especially for iMCD-TAFRO/NOS. Nevertheless, since serum IL-6 levels are not significantly different between the iMCD-IPL and iMCD-TAFRO/NOS cases, cytokines other than IL-6 may be responsible for the differences in pathogenesis. Herein, we performed a transcriptome analysis of cytokine storm-related genes and examined the differences between iMCD-IPL and iMCD-TAFRO/NOS. The results demonstrated that counts per million of STAT2, IL1R1, IL1RAP, IL33, TAFAIP1, and VEGFA (P < 0.001); STAT3, JAK2, MAPK8, IL17RA, IL18, TAFAIP2, TAFAIP3, PDGFA, VEGFC, CXCL10, CCL4, and CXCL13 (P < 0.01); and STAT1, STAT6, JAK1, MAPK1, MAPK3, MAPK6, MAPK7, MAPK9, MAPK10, MAPK11, MAPK12, MAPK14, NFKB1, NFKBIA, NFKBIB, NFKBIZ, MTOR, IL10RB, IL12RB2, IL18BP, TAFAIP6, TNFAIP8L1, TNFAIP8L3, CSF2RBP1, PDGFB, PDGFC, and CXCL9 (P < 0.05) were significantly increased in iMCD-TAFRO/NOS. Particularly, upregulated IL33 expression was demonstrated for the first time in iMCD-TAFRO/NOS. Thus, inflammatory signaling, such as JAK-STAT and MAPK, may be enhanced in iMCD-TAFRO/NOS and may be a cytokine storm.
Collapse
Affiliation(s)
- Asami Nishikori
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Midori Filiz Nishimura
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Himawari Ueta
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - You Cheng Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Yuri Kawahara
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yudai Takeda
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Sayaka Ochi
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Tomoka Haratake
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| |
Collapse
|
32
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
33
|
Erlandsson MC, Malmhäll-Bah E, Chandrasekaran V, Andersson KME, Nilsson LM, Töyrä Silfverswärd S, Pullerits R, Bokarewa MI. Insulin Sensitivity Controls Activity of Pathogenic CD4+ T Cells in Rheumatoid Arthritis. Cells 2024; 13:2124. [PMID: 39768214 PMCID: PMC11674209 DOI: 10.3390/cells13242124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Hyperinsulinemia connects obesity, and a poor lipid profile, with type 2 diabetes (T2D). Here, we investigated consequences of insulin exposure for T cell function in the canonical autoimmunity of rheumatoid arthritis (RA). We observed that insulin levels correlated with the glycolytic index of CD4+ cells but suppressed transcription of insulin receptor substrates, which was inversely related to insulin sensitivity. This connection between insulin levels and the glycolytic index was not seen in CD4+ cells of healthy controls. Exposure of CD4+ cells to insulin induced a senescent state recognized by cell cycle arrest and DNA content enrichment measured by flow cytometry. It also resulted in accumulation of DNA damage marker γH2AX. Insulin suppressed IFNγ production and induced the senescence-associated secretome in CD4+ cell cultures and in patients with hyperinsulinemia. Inhibition of JAK-STAT signaling (JAKi) improved insulin signaling, which activated the glycolytic index and facilitated senescence in CD4+ cell cultures. Treatment with JAKi was associated with an abundance of naïve and recent thymic emigrant T cells in the circulation of RA patients. Thus, we concluded that insulin exerts immunosuppressive ability by inducing senescence and inhibiting IFNγ production in CD4+ cells. JAKi promotes insulin effects and supports elimination of the pathogenic CD4+ cell in RA patients.
Collapse
Grants
- MB, 2017-03025, 2017-00359 Swedish Research Council
- MB, R-566961, R-751351 and R-860371; RP, R-969562, R-862061 the Swedish Association against Rheumatism
- MB, FAI-2018-0519, FAI-2020-0653, FAI-2022-0882 King Gustaf V:s 80-year Foundation
- MB, ALFGBG-717681, ALFGBG-965623; RP, ALFGBG-965012, ALFGBG-926621 Regional agreement on medical training and clinical research in the Western Götaland county
- MB the University of Gothenburg
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Rheumatology Clinic, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Lisa M. Nilsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Rheumatology Clinic, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
34
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2024:S1365-182X(24)02454-7. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
35
|
Yang C, Fu J, Zheng F, Fu Y, Duan X, Zuo R, Zhu J. Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury. J Cardiothorac Surg 2024; 19:665. [PMID: 39707526 DOI: 10.1186/s13019-024-03149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine. METHODS Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells. CCK-8 assay was used to assay cell proliferation activity. Flow Cytometry was used to detect cell apoptosis. Dichloro-dihydrofluorescein diacetate was used to detect ROS levels. The expression of LC3 was detected by Immunofluorescence Staining. Western blotting detected the expression of related proteins. The mRNA levels of inflammatory factors were detected by RT-qPCR. RESULTS Aconitine inhibits cardiomyocyte proliferation, induces apoptosis and secretion of inflammatory factors. Aconitine activates the P38/MAPK/Nrf2 pathway, induces ROS increase, and promotes autophagy. NAC can inhibit proliferation inhibition, apoptosis, inflammation and P38/MAPK/Nrf2 pathway activation induced by aconitine. Rap and P38 activators can partially recover the effects of NAC on proliferation, apoptosis, inflammation and autophagy of cardiomyocytes. CONCLUSION Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury.
Collapse
Affiliation(s)
- Chunai Yang
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Jinxiao Fu
- Department of Geriatric Medicine, The Affiliated Hospital of Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Fenshuang Zheng
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Yangshan Fu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xueqiong Duan
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ruiling Zuo
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Junbo Zhu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| |
Collapse
|
36
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
37
|
DeGeorgia SN, Kaufman CK. Specific SOX10 enhancer elements modulate phenotype plasticity and drug resistance in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628224. [PMID: 39764051 PMCID: PMC11702536 DOI: 10.1101/2024.12.12.628224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown. In this study, we initially leverage the well-established zebrafish melanoma model as a high-throughput system to dissect and analyze transcriptional control elements that are hijacked by melanoma. We identify key characteristics of these elements, making them translatable to human enhancer identification despite the lack of direct sequence conservation. Building on our identification of a zebrafish sox10 enhancer necessary for melanoma initiation, we extend these findings to human melanoma, identifying two human upstream enhancer elements that are critical for full SOX10 expression. Stable biallelic deletion of these enhancers using CRISPR-Cas9 induces a distinct phenotype shift across multiple human melanoma cell lines from a melanocytic phenotype towards an undifferentiated phenotype and is also characterized by an increase in drug resistance that mirrors clinical data including an upregulation of NTRK1, a tyrosine kinase, and potential therapeutic target. These results provide new insights into the transcriptional regulation of SOX10 in human melanoma and underscore the role of individual enhancer elements and potentially NTRK1 in driving melanoma phenotype plasticity and drug resistance. Our work lays the groundwork for future gene-based and combination kinase-inhibitor therapies targeting SOX10 regulation and NTRK1 as a potential avenue for enhancing the efficacy of current melanoma treatments.
Collapse
Affiliation(s)
- Sophia Noah DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| |
Collapse
|
38
|
Ghasemi M, Saberivand A, Gholami M, Assadollahi V, Alasvand M. Effects of melatonin on the mitogen-activated protein kinase signaling genes in hypoxic Leydig cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:673-680. [PMID: 39816634 PMCID: PMC11729107 DOI: 10.30466/vrf.2024.2026202.4231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/29/2024] [Indexed: 01/18/2025]
Abstract
Leydig cells play a crucial role in male reproductive physiology, and their dysfunction is often associated with male infertility. Hypoxia negatively affects the structure and function of Leydig cells. This study aimed to investigate the impact of melatonin on the c-Jun N-terminal kinase (Jnk), P38, and extra-cellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) signaling pathways in TM3 mouse Leydig cells under hypoxia induced by cobalt (II) chloride (CoCl2). The TM3 cell line was utilized as a subject of research, and 100 μM CoCl2 was employed to induce hypoxia. Following the addition of 10.00 ng mL-1 melatonin, quantitative reverse transcription-polymerase chain reaction and western blot analyses were conducted to assess the gene expression and protein level of Jnk, p38, and Erk1/2, while enzyme-linked immunosorbent assay was used to measure testosterone secretion. The results showed that melatonin significantly increased testosterone production in the CoCl2 + melatonin group compared to the CoCl2-treated group. Furthermore, melatonin elevated both the protein level and mRNA expression of Erk1/2, Jnk, and p38 genes in the CoCl2 + melatonin group compared to the CoCl2 group. In conclusion, melatonin activated the Jnk, p38, and Erk1/2 MAPK signaling pathways and enhanced testosterone production in the presence of CoCl2 in TM3 cells.
Collapse
Affiliation(s)
- Mona Ghasemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;
| | - Mohammadreza Gholami
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran;
| | - Vahideh Assadollahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran;
| | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran;
| |
Collapse
|
39
|
Xie Y, Yu H, Ye Y, Wang J, Yang Z, Zhou E. Activation of Ferroptosis and NF-κB/NLRP3/MAPK Pathways in Methylmercury-Induced Hepatotoxicity. Toxicol Ind Health 2024:7482337241307067. [PMID: 39672672 DOI: 10.1177/07482337241307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Methylmercury (MeHg) is a potent hepatotoxin with a complex mechanism of inducing liver injury. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is implicated in various toxicological responses, but its role in MeHg-induced liver damage remains under investigation. In this study, we established an acute liver injury (ALI) model in mice via gavage of MeHg (0, 40, 80, 160 μmol/kg). Histopathological analysis revealed dose-dependent liver damage, corroborated by elevated serum biochemical markers, confirming MeHg-induced hepatotoxicity. MeHg exposure raised MDA levels, inhibited SOD and GSH activity, and downregulated CAT expression. Increased iron accumulation and elevated transferrin receptor expression were observed, alongside decreased GPX4 and SLC7A11 levels, indicating ferroptosis involvement. Additionally, inflammation in MeHg-exposed livers was markedly intensified, as evidenced by increased MPO activity, upregulation of pro-inflammatory cytokines, and activation of the NF-κB/NLRP3 signaling pathway. The Keap1/NRF2/HO-1 oxidative stress response pathway was significantly activated, and p38/ERK1/2 MAPK signaling was notably increased. These findings suggested that MeHg induced acute liver injury through the interplay of ferroptosis, oxidative stress, inflammation, and MAPK signaling pathways, providing a scientific basis for future exploration of the mechanisms underlying MeHg-induced hepatotoxicity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yueqing Xie
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Hongsen Yu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| |
Collapse
|
40
|
Song X, Zhou Z, Elmezayen A, Wu R, Yu C, Gao B, Minna JD, Westover KD, Zeh HJ, Kroemer G, Heasley LE, Kang R, Tang D. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition. SCIENCE ADVANCES 2024; 10:eadq4274. [PMID: 39661665 PMCID: PMC11633746 DOI: 10.1126/sciadv.adq4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Direct targeting of the KRAS-G12C-mutant protein using covalent inhibitors (G12Ci) acts on human non-small cell lung cancer (NSCLC). However, drug resistance is an emerging concern in this approach. Here, we show that MRTX849, a covalent inhibitor targeting the KRAS-G12C mutation, leads to the reactivation of the mitogen-activated protein kinase signaling pathway in MRTX849-resistant NSCLC and pancreatic ductal adenocarcinoma. A genome-wide CRISPR screen revealed that the adenosine triphosphate binding cassette transporter ABCC1 mediates MRTX849 resistance. Functional studies demonstrated that the transcription factor JUN drives ABCC1 expression, resulting in multidrug resistance. An unbiased drug screen identified the tyrosine kinase inhibitor dasatinib that potentiates MRTX849 efficacy by inhibiting SRC-dependent JUN activation, avoiding multidrug resistance and tumor suppression in vitro as well as in suitable preclinical mouse models and patient-derived organoids. SRC inhibitors (DGY-06-116, dasatinib, and bosutinib) also exhibit synergistic effects with MRTX849 in eliminating various tumor cell lines carrying KRAS-G12C mutations. Thus, SRC inhibitors amplify the therapeutic utility of G12Ci.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
41
|
Thangasparan S, Kamisah Y, Ugusman A, Mohamad Anuar NN, Ibrahim N‘I. Unravelling the Mechanisms of Oxidised Low-Density Lipoprotein in Cardiovascular Health: Current Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:13292. [PMID: 39769058 PMCID: PMC11676878 DOI: 10.3390/ijms252413292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of death worldwide, with atherosclerosis, which is the formation of fatty plaques in the arteries, being the most common underlying cause. The activation of inflammatory events and endothelium dysfunction are crucial for the development and pathophysiology of atherosclerosis. Elevated circulating levels of low-density lipoprotein (LDL) have been associated with severity of atherosclerosis. LDL can undergo oxidative modifications, resulting in oxidised LDL (oxLDL). OxLDL has been found to have antigenic potential and contribute significantly to atherosclerosis-associated inflammation by activating innate and adaptive immunity. Various inflammatory stimuli such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1) play major roles in atherosclerosis. To date, studies have provided valuable insights into the role of oxLDL in the development of atherosclerosis. However, there remains a gap in understanding the specific pathways involved in this process. This review aims to provide and discuss the mechanisms by which oxLDL modulates signalling pathways that cause cardiovascular diseases by providing in vitro and in vivo experimental evidence. Its critical role in triggering and sustaining endothelial dysfunction highlights its potential as a therapeutic target. Advancing the understanding of its atherogenic role and associated signalling pathways could pave the way for novel targeted therapeutic strategies to combat atherosclerosis more effectively.
Collapse
Affiliation(s)
- Sahsikala Thangasparan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| | - Azizah Ugusman
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Programme of Biomedical Science, Center for Toxicology & Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| |
Collapse
|
42
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
43
|
Weinstock M. Therapeutic agents for Alzheimer's disease: a critical appraisal. Front Aging Neurosci 2024; 16:1484615. [PMID: 39717349 PMCID: PMC11663918 DOI: 10.3389/fnagi.2024.1484615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in genes and precursors of β amyloid (Aβ) are found in the familial form of the disease. This led to the evaluation of seven monoclonal antibodies against Aβ in subjects with AD, two of which were approved for use by the FDA. They caused only a small improvement in cognitive function, probably because they were given to those with much more prevalent sporadic forms of dementia. They also have potentially serious adverse effects. Oxidative stress and elevated pro-inflammatory cytokines are present in all subjects with AD and are well correlated with the degree of memory impairment. Drugs that affect these processes include TNFα blocking antibodies and MAPK p38 inhibitors that reduce cognitive impairment when given for other inflammatory conditions. However, their adverse effects and inability to penetrate the brain preclude their use for dementia. Rosiglitazone is used to treat diabetes, a risk factor for AD, but failed in a clinical trial because it was given to subjects that already had dementia. Ladostigil reduces oxidative stress and suppresses the release of pro-inflammatory cytokines from activated microglia without blocking their effects. Chronic oral administration to aging rats prevented the decline in memory and suppressed overexpression of genes adversely affecting synaptic function in relevant brain regions. In a phase 2 trial, ladostigil reduced the decline in short-term memory and in whole brain and hippocampal volumes in human subjects with mild cognitive impairment and had no more adverse effects than placebo.
Collapse
Affiliation(s)
- Marta Weinstock
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
44
|
Ramzan A, Rashid MU, Malkani N. Unlocking the role of miR-17: Driving G1-S cell cycle transition in oral tongue cancer through integrated bioinformatics and laboratory analyses. Arch Oral Biol 2024; 171:106160. [PMID: 39674084 DOI: 10.1016/j.archoralbio.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE This study aims to identify miRNA-mediated regulation of the cell cycle in oral tongue cancer. METHODS Comprehensive computational analysis was performed on the GEO dataset "GSE168227". DIANA Tool-mir path v.3, STRING, Cytoscape 3.6.0, Enrichr, and TargetScan Human 7.2 were utilized to identify and analyze miRNAs and their targets in oral tongue cancer. The identified miRNA and its target genes were further analyzed in oral tongue cancer patients using qPCR and immunohistochemistry (IHC). RESULTS Computational analysis revealed miR-17 as a differentially expressed miRNA in oral tongue cancer. Database analysis indicated potential binding sites of miR-17 for CDKN1A and CCND1 mRNA at 3'-UTR. In oral tongue cancer samples, miR-17, CDKN1A, and CCND1expression were upregulated compared to controls. IHC demonstrated overexpression of p21 and Cyclin D1 across various tumor grades, with predominant cytoplasmic expression of p21 observed in oral tongue cancer samples. CONCLUSION The findings suggest that miR-17 may regulate the G1-S transition of the cell cycle in oral tongue cancer. Further validation and functional studies are warranted to confirm their role as biomarkers.
Collapse
Affiliation(s)
- Ammara Ramzan
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan.
| |
Collapse
|
45
|
Yin M, Zheng X, Shi L. Targeting p38 MAPK: A potential bridge between ER stress and age-related bone loss. Cell Signal 2024; 127:111549. [PMID: 39638139 DOI: 10.1016/j.cellsig.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The endoplasmic reticulum (ER) is crucial in the development of numerous age-related bone disorders. Notably, ER stress can precipitate bone loss by orchestrating inflammatory responses, apoptosis, and autophagy through the activation of the p38 MAPK pathway. Age-related bone loss diseases pose a significant burden on society and healthcare as the global population ages. This review provides a comprehensive analysis of recent research advancements, delving into the critical role of ER stress-activated p38 MAPK in inflammation, apoptosis, and autophagy, as well as its impact on bone formation and bone resorption. This review elucidates the molecular mechanisms underlying the involvement of ER stress-activated p38 MAPK in osteoporosis, rheumatoid arthritis, periodontitis, and osteoarthritis and discusses the therapeutic potential of targeting p38 MAPK. Furthermore, this review provides a scientific foundation for new therapeutic strategies by highlighting prospective research directions.
Collapse
Affiliation(s)
- Meng Yin
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Zheng
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
46
|
Bae IS, Hoa VB, Lee JA, Park WS, Kim DG, Kim HW, Seong PN, Ham JS. Skin Function Improvement and Anti-Inflammatory Effects of Goat Meat Extract. Foods 2024; 13:3934. [PMID: 39683006 DOI: 10.3390/foods13233934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic skin conditions, such as atopic dermatitis, are characterized by a weakened skin barrier and persistent inflammation. Traditional treatments can frequently cause substantial side effects, emphasizing the need for safer alternatives. This study investigated the anti-inflammatory properties of goat meat extract and its effects on improving skin function. We conducted wound healing assays using HaCaT cells and analyzed the expression of key skin barrier-related genes. Additionally, the anti-inflammatory effects of goat meat extract were assessed in HaCaT cells stimulated with TNFα and IFNγ, as well as in LPS-treated RAW264.7 cells. Mechanistic studies focused on the activation of mitogen-activated protein kinase (MAPK) pathways. The results showed that goat meat extract significantly promoted wound closure in HaCaT cells and upregulated the expression of filaggrin, loricrin, and involucrin. The extract also reduced the production of pro-inflammatory cytokines and chemokines in both HaCaT and RAW264.7 cells. Furthermore, it inhibited the activation of the JNK, p38, and ERK pathways in TNFα/IFNγ-stimulated HaCaT cells. These findings suggest that goat meat extract improves skin barrier function and exhibits anti-inflammatory effects, indicating its potential as a therapeutic agent for chronic skin. Further research is required to investigate the in vivo effects of goat meat extract and validate its therapeutic potential.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jeong-Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Won-Seo Park
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Gyun Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Pil-Nam Seong
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jun-Sang Ham
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
47
|
Martinez ML, Nan K, Bao Z, Bacchetti R, Yuan S, Tyler J, Guezennec XL, Bard FA, Rainero E. Novel kinase regulators of extracellular matrix internalisation identified by high-content screening modulate invasive carcinoma cell migration. PLoS Biol 2024; 22:e3002930. [PMID: 39666682 PMCID: PMC11637276 DOI: 10.1371/journal.pbio.3002930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
The interaction between cancer cells and the extracellular matrix (ECM) plays a pivotal role in tumour progression. While the extracellular degradation of ECM proteins has been well characterised, ECM endocytosis and its impact on cancer cell progression, migration, and metastasis is poorly understood. ECM internalisation is increased in invasive breast cancer cells, suggesting it may support invasiveness. However, current high-throughput approaches mainly focus on cells grown on plastic in 2D, making it difficult to apply these to the study of ECM dynamics. Here, we developed a high-content screening assay to study ECM uptake, based on the of use automated ECM coating for the generation of highly homogeneous ECM a pH-sensitive dye to image ECM trafficking in live cells. We identified that mitogen-activated protein kinase (MAPK) family members, MAP3K1 and MAPK11 (p38β), and the protein phosphatase 2 (PP2) subunit PPP2R1A were required for the internalisation of ECM-bound α2β1 integrin. Mechanistically, we show that down-regulation of the sodium/proton exchanger 1 (NHE1), an established macropinocytosis regulator and a target of p38, mediated ECM macropinocytosis. Moreover, disruption of α2 integrin, MAP3K1, MAPK11, PPP2R1A, and NHE1-mediated ECM internalisation significantly impaired cancer cell migration and invasion in 2D and 3D culture systems. Of note, integrin-bound ECM was targeted for lysosomal degradation, which was required for cell migration on cell-derived matrices. Finally, α2β1 integrin and MAP3K1 expression were significantly up-regulated in pancreatic tumours and correlated with poor prognosis in pancreatic cancer patients. Strikingly, MAP3K1, MAPK11, PPP2R1A, and α2 integrin expression were higher in chemotherapy-resistant tumours in breast cancer patients. Our results identified the α2β1 integrin/p38 signalling axis as a novel regulator of ECM endocytosis, which drives invasive migration and tumour progression, demonstrating that our high-content screening approach has the capability of identifying novel regulators of cancer cell invasion.
Collapse
Affiliation(s)
- Montserrat Llanses Martinez
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Keqian Nan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Zhe Bao
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Rachele Bacchetti
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Shengnan Yuan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Joe Tyler
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | | | - Frederic A. Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, CRCM, Marseille, France
| | - Elena Rainero
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
48
|
Aoki A, Mizutani K, Taniguchi Y, Lin T, Ohsugi Y, Mikami R, Katagiri S, Meinzer W, Iwata T. Current status of Er:YAG laser in periodontal surgery. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:1-14. [PMID: 38148873 PMCID: PMC10750110 DOI: 10.1016/j.jdsr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Lasers have numerous advantageous tissue interactions such as ablation or vaporization, hemostasis, bacterial killing, as well as biological effects, which induce various beneficial therapeutic effects and biological responses in the tissues. Thus, lasers are considered an effective and suitable device for treating a variety of inflammatory and infectious conditions of periodontal disease. Among various laser systems, the Er:YAG laser, which can be effectively and safely used in both soft and hard tissues with minimal thermal side effects, has been attracting much attention in periodontal therapy. This laser can effectively and precisely debride the diseased root surface including calculus removal, ablate diseased connective tissues within the bone defects, and stimulate the irradiated surrounding periodontal tissues during surgery, resulting in favorable wound healing as well as regeneration of periodontal tissues. The safe and effective performance of Er:YAG laser-assisted periodontal surgery has been reported with comparable and occasionally superior clinical outcomes compared to conventional surgery. This article explains the characteristics of the Er:YAG laser and introduces its applications in periodontal surgery including conventional flap surgery, regenerative surgery, and flapless surgery, based on scientific evidence from currently available basic and clinical studies as well as cases reports.
Collapse
Affiliation(s)
- Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yoichi Taniguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Taniguchi Dental Clinic, Kita 7−17, 18-chome, Nango-dori, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University (CSMU), No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
49
|
Camilleri‐Robles C, Climent‐Cantó P, Llorens‐Giralt P, Klein CC, Serras F, Corominas M. A shift in chromatin binding of phosphorylated p38 precedes transcriptional changes upon oxidative stress. FEBS Lett 2024; 598:2926-2938. [PMID: 39218622 PMCID: PMC11627000 DOI: 10.1002/1873-3468.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
P38 mitogen-activated protein kinases are key in the regulation of the cellular response to stressors. P38 is known to regulate transcription, mRNA processing, stability, and translation. The transcriptional changes mediated by phosphorylated p38 (P-p38) in response to extracellular stimuli have been thoroughly analyzed in many tissues and organisms. However, the genomic localization of chromatin-associated P-p38 remains poorly understood. Here, we analyze the chromatin binding of activated P-p38 and its role in the response to reactive oxygen species (ROS) in Drosophila S2 cells. We found that P-p38 is already bound to chromatin in basal conditions. After ROS exposure, chromatin-associated P-p38 relocates towards genes involved in the recovery process. Our findings highlight the role of P-p38 dynamic chromatin binding in orchestrating gene expression responses to oxidative stress.
Collapse
Affiliation(s)
- Carlos Camilleri‐Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
| | - Paula Climent‐Cantó
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
- Present address:
Hereditary Cancer Program, IDIBELLL'Hospitalet de LlobregatBarcelonaSpain
| | - Palmira Llorens‐Giralt
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
| | - Cecilia C. Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB)Universitat de BarcelonaSpain
| |
Collapse
|
50
|
Yang J, Ma Y, Liu J, Zhu Q, Zhou R, Yuan C, Ding Y, Xiao W, Gong W, Shan Q, Lu G, Xu H. Identifying and validating the key regulatory transcription factor YY1 in the aging process of pancreatic beta cells based on bioinformatics. Exp Gerontol 2024; 198:112633. [PMID: 39542150 DOI: 10.1016/j.exger.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets. We observed a significant decrease in the expression of YY1 in a D-gal-induced mouse model of pancreatic aging and an H2O2-induced MIN6 cell model of aging. Moreover, both vivo and vitro models, we found that the YY1 agonist eudesmin (EDN) improved glucose intolerance in mice, alleviated aging of pancreatic beta cells, and downregulated the expression of cell cycle protein P21. Mechanistically, we discovered that EDN inhibited the P38/JNK MAPK pathway in aging cells. In summary, our study confirms the regulatory role of the transcription factor YY1 in the aging process of pancreatic beta cells. This finding may provide a new approach for the clinical treatment of pancreatic aging-related diseases such as impaired glucose tolerance or diabetes.
Collapse
Affiliation(s)
- Junqi Yang
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yumin Ma
- Department of Endocrinology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiang Liu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhou
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Qing Shan
- Department of Geriatric, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Hongwei Xu
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China.
| |
Collapse
|