1
|
Köbler C, Schmelling NM, Wiegard A, Pawlowski A, Pattanayak GK, Spät P, Scheurer NM, Sebastian KN, Stirba FP, Berwanger LC, Kolkhof P, Maček B, Rust MJ, Axmann IM, Wilde A. Two KaiABC systems control circadian oscillations in one cyanobacterium. Nat Commun 2024; 15:7674. [PMID: 39227593 PMCID: PMC11372060 DOI: 10.1038/s41467-024-51914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.
Collapse
Affiliation(s)
- Christin Köbler
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicolas M Schmelling
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Pawlowski
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Nina M Scheurer
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Kim N Sebastian
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Florian P Stirba
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lutz C Berwanger
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Petra Kolkhof
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Annegret Wilde
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Goldoost H, Vahabzadeh F, Fallah N. Lipids productivity of cyanobacterium Anabaena vaginicola in an internally illuminated photobioreactor using LED bar lights. Sci Rep 2024; 14:6857. [PMID: 38514668 PMCID: PMC10957962 DOI: 10.1038/s41598-024-54414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Concerns over environmental issues exists and desire to decrease of their extent, have directed efforts toward green energy production. Growth behavior of Anabaena vaginicola was determined in a photobioreator which illuminated internally (IIPBR) using LED bar light. Excessive heat generated in the IIPBR was taken care of by applying a novel air-cooled system. Further note in experimentation was to find favorable cultivation conditions in the IIPBR for A. vaginicola growth and its lipids production capacity. The following results are expressed: 80 µmol photons m-2 s-1 as light intensity, 0.5 g/l as NaNO3, and 120 ml/min as CO2 amount being expressed in terms of aeration rate. The findings were interpreted in terms of a two-component system where the genes encoded to the relevant proteins are present in cyanobacteria and their expressiveness depends on environmental stress. By determining growth rate constant as 0.11 d-1, the productivity in terms of biomass formation was calculated as 202.6 mg L-1 d-1. While rate of lipids production by the test cyanobacterium is 15.65 mg L-1 d-1. Based on total energy used for IIPBR performance, biomass productivity per unit power input equals to 0.74 g W-1 d-1 and this is in favorable position compared with other photobioreactors.
Collapse
Affiliation(s)
- Hootan Goldoost
- Department of Chemical Engineering, Amirkabir University of Technology, No. 350, Hafez Street, Tehran, 1591634311, Iran
| | - Farzaneh Vahabzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, No. 350, Hafez Street, Tehran, 1591634311, Iran.
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, No. 350, Hafez Street, Tehran, 1591634311, Iran
| |
Collapse
|
3
|
Santos-Merino M, Sakkos JK, Singh AK, Ducat DC. Coordination of carbon partitioning and photosynthesis by a two-component signaling network in Synechococcus elongatus PCC 7942. Metab Eng 2024; 81:38-52. [PMID: 37925065 DOI: 10.1016/j.ymben.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Photosynthetic organisms need to balance the rate of photosynthesis with the utilization of photosynthetic products by downstream reactions. While such "source/sink" pathways are well-interrogated in plants, analogous regulatory systems are unknown or poorly studied in single-celled algal and cyanobacterial species. Towards the identification of energy/sugar sensors in cyanobacteria, we utilized an engineered strain of Synechococcus elongatus PCC 7942 that allows experimental manipulation of carbon status. We conducted a screening of all two-component systems (TCS) and serine/threonine kinases (STKs) encoded in S. elongatus PCC 7942 by analyzing phenotypes consistent with sucrose-induced relaxation of sink inhibition. We narrowed the candidate sensor proteins by analyzing changes observed after sucrose feeding. We show that a clustered TCS network containing RpaA, CikB, ManS and NblS are involved in the regulation of genes related to photosynthesis, pigment synthesis, and Rubisco concentration in response to sucrose. Altogether, these results highlight a regulatory TCS group that may play under-appreciated functions in carbon partitioning and energy balancing in cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
4
|
Garber ME, Frank V, Kazakov AE, Incha MR, Nava AA, Zhang H, Valencia LE, Keasling JD, Rajeev L, Mukhopadhyay A. REC protein family expansion by the emergence of a new signaling pathway. mBio 2023; 14:e0262223. [PMID: 37991384 PMCID: PMC10746176 DOI: 10.1128/mbio.02622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.
Collapse
Affiliation(s)
- Megan E. Garber
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vered Frank
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alexey E. Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew R. Incha
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Alberto A. Nava
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Luis E. Valencia
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Jay D. Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Mo J, Han L, Lv R, Chiang MWL, Fan R, Guo J. Triclosan toxicity in a model cyanobacterium (Anabaena flos-aquae): Growth, photosynthesis and transcriptomic response. J Environ Sci (China) 2023; 127:82-90. [PMID: 36522109 DOI: 10.1016/j.jes.2022.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to triclosan (TCS) has been reported to reduce photosynthetic pigments, suppress photosynthesis, and inhibit growth in both prokaryotic and eukaryotic algae including Anabaena flos-aquae (a model cyanobacterium). In particular, cyanobacteria are more sensitive to TCS toxicity compared to eukaryotic algae possibly due to the structural similarity to bacteria (target organisms); however, whether TCS exerts its toxicity to cyanobacteria by targeting signaling pathways of fatty acid biosynthesis as in bacteria remains virtually unknown, particularly at environmental exposure levels. With the complete genome sequence of A. flos-aquae presented in this study, the transcriptomic alterations and potential toxic mechanisms in A. flos-aquae under TCS stress were revealed. The growth, pigments and photosynthetic activity of A. flos-aquae were markedly suppressed following a 7-day TCS exposure at 0.5 µg/L but not 0.1 µg/L (both concentrations applied are environmentally relevant). The transcriptomic sequencing analysis showed that signaling pathways, such as biofilm formation - Pseudomonas aeruginosa, two-component system, starch and sucrose metabolism, and photosynthesis were closely related to the TCS-induced growth inhibition in the 0.5 µg/L TCS treatment. Photosynthesis systems and potentially two-component system were identified to be sensitive targets of TCS toxicity in A. flos-aquae. The present study provides novel insights on TCS toxicity at the transcriptomic level in A. flos-aquae.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Linrong Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Michael W L Chiang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rong Fan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
The Transcriptional Repressor PerR Senses Sulfane Sulfur by Cysteine Persulfidation at the Structural Zn 2+ Site in Synechococcus sp. PCC7002. Antioxidants (Basel) 2023; 12:antiox12020423. [PMID: 36829981 PMCID: PMC9952342 DOI: 10.3390/antiox12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cyanobacteria can perform both anoxygenic and oxygenic photosynthesis, a characteristic which ensured that these organisms were crucial in the evolution of the early Earth and the biosphere. Reactive oxygen species (ROS) produced in oxygenic photosynthesis and reactive sulfur species (RSS) produced in anoxygenic photosynthesis are closely related to intracellular redox equilibrium. ROS comprise superoxide anion (O2●-), hydrogen peroxide (H2O2), and hydroxyl radicals (●OH). RSS comprise H2S and sulfane sulfur (persulfide, polysulfide, and S8). Although the sensing mechanism for ROS in cyanobacteria has been explored, that of RSS has not been elucidated. Here, we studied the function of the transcriptional repressor PerR in RSS sensing in Synechococcus sp. PCC7002 (PCC7002). PerR was previously reported to sense ROS; however, our results revealed that it also participated in RSS sensing. PerR repressed the expression of prxI and downregulated the tolerance of PCC7002 to polysulfide (H2Sn). The reporter system indicated that PerR sensed H2Sn. Cys121 of the Cys4:Zn2+ site, which contains four cysteines (Cys121, Cys124, Cys160, and Cys163) bound to one zinc atom, could be modified by H2Sn to Cys121-SSH, as a result of which the zinc atom was released from the site. Moreover, Cys19 could also be modified by polysulfide to Cys19-SSH. Thus, our results reveal that PerR, a representative of the Cys4 zinc finger proteins, senses H2Sn. Our findings provide a new perspective to explore the adaptation strategy of cyanobacteria in Proterozoic and contemporary sulfurization oceans.
Collapse
|
7
|
Tang J, Yao D, Zhou H, Wang M, Daroch M. Distinct Molecular Patterns of Two-Component Signal Transduction Systems in Thermophilic Cyanobacteria as Revealed by Genomic Identification. BIOLOGY 2023; 12:biology12020271. [PMID: 36829548 PMCID: PMC9953108 DOI: 10.3390/biology12020271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Two-component systems (TCSs) play crucial roles in sensing and responding to environmental signals, facilitating the acclimation of cyanobacteria to hostile niches. To date, there is limited information on the TCSs of thermophilic cyanobacteria. Here, genome-based approaches were used to gain insights into the structure and architecture of the TCS in 17 well-described thermophilic cyanobacteria, namely strains from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. The results revealed a fascinating complexity and diversity of the TCSs. A distinct composition of TCS genes existed among these thermophilic cyanobacteria. A majority of TCS genes were classified as orphan, followed by the paired and complex cluster. A high proportion of histidine kinases (HKs) were predicted to be cytosolic subcellular localizations. Further analyses suggested diversified domain architectures of HK and response regulators (RRs), putatively in association with various functions. Comparative and evolutionary genomic analyses indicated that the horizontal gene transfer, as well as duplications events, might be involved in the evolutionary history of TCS genes in Thermostichus and Thermosynechococcus strains. A comparative analysis between thermophilic and mesophilic cyanobacteria indicated that one HK cluster and one RR cluster were uniquely shared by all the thermophilic cyanobacteria studied, while two HK clusters and one RR cluster were common to all the filamentous thermophilic cyanobacteria. These results suggested that these thermophile-unique clusters may be related to thermal characters and morphology. Collectively, this study shed light on the TCSs of thermophilic cyanobacteria, which may confer the necessary regulatory flexibility; these findings highlight that the genomes of thermophilic cyanobacteria have a broad potential for acclimations to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Mingcheng Wang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-0755-2603-2184
| |
Collapse
|
8
|
To Die or Not to Die—Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:microorganisms10081657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
|
9
|
Ibrahim IM, Rowden SJL, Cramer WA, Howe CJ, Puthiyaveetil S. Thiol redox switches regulate the oligomeric state of cyanobacterial Rre1, RpaA, and RpaB response regulators. FEBS Lett 2022; 596:1533-1543. [PMID: 35353903 PMCID: PMC9321951 DOI: 10.1002/1873-3468.14340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
Cyanobacteria employ two‐component sensor‐response regulator systems to monitor and respond to environmental challenges. The response regulators RpaA, RpaB, Rre1 and RppA are integral to circadian clock function and abiotic stress acclimation in cyanobacteria. RpaA, RpaB and Rre1 are known to interact with ferredoxin or thioredoxin, raising the possibility of their thiol regulation. Here, we report that Synechocystis sp. PCC 6803 Rre1, RpaA and RpaB exist as higher‐order oligomers under oxidising conditions and that reduced thioredoxin A converts them to monomers. We further show that these response regulators contain redox‐responsive cysteine residues with an Em7 around −300 mV. These findings suggest a direct thiol modulation of the activity of these response regulators, independent of their cognate sensor kinases.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen J L Rowden
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Bairagi N, Watanabe S, Nimura-Matsune K, Tanaka K, Tsurumaki T, Nakanishi S, Tanaka K. Conserved Two-component Hik2-Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2022; 63:176-188. [PMID: 34750635 DOI: 10.1093/pcp/pcab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.
Collapse
Affiliation(s)
- Nachiketa Bairagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kaori Nimura-Matsune
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
11
|
Bennett J, Soule T. Expression of Scytonemin Biosynthesis Genes under Alternative Stress Conditions in the Cyanobacterium Nostoc punctiforme. Microorganisms 2022; 10:microorganisms10020427. [PMID: 35208882 PMCID: PMC8879130 DOI: 10.3390/microorganisms10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
The indole-alkaloid scytonemin is a sunscreen pigment that is widely produced among cyanobacteria as an ultraviolet radiation (UVR) survival strategy. Scytonemin biosynthesis is encoded by two gene clusters that are known to be induced by long-wavelength radiation (UVA). Previous studies have characterized the transcriptome of cyanobacteria in response to a wide range of conditions, but the effect on the expression of scytonemin biosynthesis genes has not been specifically targeted. Therefore, the aim of this study is to determine the variable response of scytonemin biosynthesis genes to a variety of environmental conditions. Cells were acclimated to white light before supplementation with UVA, UVB, high light, or osmotic stress for 48 h. The presence of scytonemin was determined by absorbance spectroscopy and gene expression of representative scytonemin biosynthesis genes was measured using quantitative PCR. Scytonemin genes were up-regulated in UVA, UVB, and high light, although the scytonemin pigment was not detected under high light. There was no scytonemin or upregulation of these genes under osmotic stress. The lack of pigment production under high light, despite increased gene expression, suggests a time-dependent delay for pigment production or additional mechanisms or genes that may be involved in scytonemin production beyond those currently known.
Collapse
|
12
|
Singh D, Gupta P, Singla-Pareek SL, Siddique KH, Pareek A. The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Curr Genomics 2021; 22:59-74. [PMID: 34045924 PMCID: PMC8142344 DOI: 10.2174/1389202921666210105154808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission. CONCLUSION Prokaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His-Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His-Asp-His-Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system's evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Pareek
- Address correspondence to this author at the Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Tel/Fax: 91-11-26704504 / 26742558; E-mail:
| |
Collapse
|
13
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
14
|
Hik36-Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803. Sci Rep 2020; 10:19405. [PMID: 33173131 PMCID: PMC7656254 DOI: 10.1038/s41598-020-76264-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
In response to environmental stress the model cyanobacterium, Synechocystis sp. PCC6803 can switch from a planktonic state to autoaggregation and biofilm formation. The precise mechanism of this transition remains unknown. Here we investigated the role of a candidate two-component regulatory system (TCS) in controlling morphological changes, as a way to understand the intermediate molecular steps that are part of the signaling pathway. A bacterial two-hybrid assay showed that the response regulator Rre6 formed a TCS together with a split histidine kinase consisting of Hik36 and Hik43. Individual disruption mutants displayed autoaggregation in a static culture. In contrast, unlike in the wild type, high salinity did not induce biofilm formation in Δhik36, Δhik43 and Δrre6. The expression levels of exopolysaccharide (EPS) production genes were higher in Δhik36 and Δhik43, compared with the wild type, but lower in Δrre6, suggesting that the TCS regulated EPS production in Synechocystis. Rre6 interacted physically with the motor protein PilT2, that is a component of the type IV pilus system. This interaction was enhanced in a phosphomimic version of Rre6. Taken together, Hik36-Hik43-Rre6 function as an upstream component of the pili-related signal transduction cascade and control the prevention of cell adhesion and biofilm formation.
Collapse
|
15
|
Yasuda A, Inami D, Hanaoka M. RpaB, an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942. J GEN APPL MICROBIOL 2020; 66:73-79. [PMID: 32269205 DOI: 10.2323/jgam.2020.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In cyanobacteria, transcription of a set of genes is specifically induced by high-light-stress conditions. In previous studies, RpaB, a response regulator of the two-component system, was shown to be involved in this regulation in vitro and in vivo. In this study, we examined whether RpaB-dependent transcriptional regulation was extensively observed, not only under high-light-stress conditions but also under various light intensities. Transcription of high-light-dependent genes hliA, nblA and rpoD3 was transiently and drastically induced during a dark-to-light shift in a manner similar to high-light-stress responses. Moreover, expression of these genes was activated under various light-intensity upshift conditions. Phos-tag SDS-PAGE experiments showed that the phosphorylation level of RpaB was decreased along with transcriptional induction of target genes in all of the light environments examined herein. These results suggest that RpaB may be widely involved in transcriptional regulation under dark-to-light and light-intensity upshift conditions and that high-light-responsive genes may be required in various light conditions other than high-light condition. Furthermore, it is hypothesised that RpaB is regulated by redox-dependent signals rather than by high-light-stress-dependent signals.
Collapse
Affiliation(s)
- Akira Yasuda
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University
| | - Daichi Inami
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University
| | - Mitsumasa Hanaoka
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University.,Plant Molecular Science Center, Chiba University
| |
Collapse
|
16
|
Kizawa A, Osanai T. Overexpression of the response regulator rpaA causes an impaired cell division in the Cyanobacterium Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2020; 66:121-128. [PMID: 32173680 DOI: 10.2323/jgam.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In photosynthetic microorganisms, cell cycle progression depends on day and night cycles; however, how cell division is regulated in response to these environmental changes is poorly understood. RpaA has been implicated in the signal output from both circadian clocks and light/dark conditions in the unicellular spherical-celled cyanobacterium Synechocystis sp. PCC 6803. In the present study, we investigated the involvement of a two-component response regulator RpaA in cell division regulation. Firstly, we examined the effects of rpaA overexpression on cell morphology and the expression levels of cell division genes. We observed an increase in the volume of non-dividing cells and a high proportion of dividing cells in rpaA-overexpressing strains by light microscopy. The expression levels of selected cell division-related genes were higher in the rpaA-overexpressing strain than in the wild type, including minD of the Min system; cdv3 and zipN, which encode two divisome components; and murB, murC, and pbp2, which are involved in peptidoglycan (PG) synthesis. Moreover, in the rpaA-overexpressing strain, the outer membrane and cell wall PG layer were not smooth, and the outer membrane was not clearly visible by transmission electron microscopy. These results demonstrated that rpaA overexpression causes an impaired cell division, which is accompanied by transcriptional activation of cell division genes and morphological changes in the PG layer and outer membrane.
Collapse
Affiliation(s)
- Ayumi Kizawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University
| | - Takashi Osanai
- Department of Agricultural Chemistry, School of Agriculture, Meiji University
| |
Collapse
|
17
|
Shi M, Chen L, Zhang W. Regulatory Diversity and Functional Analysis of Two-Component Systems in Cyanobacterium Synechocystis sp. PCC 6803 by GC-MS Based Metabolomics. Front Microbiol 2020; 11:403. [PMID: 32256471 PMCID: PMC7090099 DOI: 10.3389/fmicb.2020.00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Two-component signal transduction systems are still poorly functionally characterized in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, a GC-MS based comparative metabolomic analysis was conducted on a library of 44 knockout mutants for the response regulators (RRs) in Synechocystis. The metabolomic profiling analysis showed that 7 RRs mutants, namely Δslr1909, Δsll1291, Δslr6040, Δsll1330, Δslr2024, Δslr1584, and Δslr1693, were significantly different at metabolomic level, although their growth patterns are similar to the wild type under the normal autotrophic growth condition, suggesting regulatory diversity of RRs at metabolite level in Synechocystis. Additionally, a detailed metabolomic analysis coupled with RT-PCR verification led to useful clues for possible function of these 7 RRs, which were found involved in regulation of multiple aspects of cellular metabolisms in Synechocystis. Moreover, an integrative metabolomic and evolutionary analysis of all RR showed that four groups of RR genes clustered together in both metabolomic and evolutionary trees, suggesting of possible functional conservation of these RRs during the evolutionary process. Meanwhile, six groups of RRs with close evolutionary origin were found with different metabolomic profiles, suggesting possible functional changes during evolution. In contrast, more than 10 groups of RR genes with different clustering patterns in the evolutionary tree were found clustered together in metabolomics-based tree, suggesting possible functional convergences during the evolution. This study provided a metabolomic view of RR function, and the most needed functional clues for further characterization of these regulatory proteins in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
The Hybrid Histidine Kinase HrmK Is an Early-Acting Factor in the Hormogonium Gene Regulatory Network. J Bacteriol 2020; 202:JB.00675-19. [PMID: 31792014 DOI: 10.1128/jb.00675-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023] Open
Abstract
Filamentous, heterocyst-forming cyanobacteria belonging to taxonomic subsections IV and V are developmentally complex multicellular organisms capable of differentiating an array of cell and filament types, including motile hormogonia. Hormogonia exhibit gliding motility that facilitates dispersal, phototaxis, and the establishment of nitrogen-fixing symbioses. The gene regulatory network (GRN) governing hormogonium development involves a hierarchical sigma factor cascade, but the factors governing the activation of this cascade are currently undefined. Here, using a forward genetic approach, we identified hrmK, a gene encoding a putative hybrid histidine kinase that functions upstream of the sigma factor cascade. The deletion of hrmK produced nonmotile filaments that failed to display hormogonium morphology or accumulate hormogonium-specific proteins or polysaccharide. Targeted transcriptional analyses using reverse transcription-quantitative PCR (RT-qPCR) demonstrated that hormogonium-specific genes both within and outside the sigma factor cascade are drastically downregulated in the absence of hrmK and that hrmK may be subject to indirect, positive autoregulation via sigJ and sigC Orthologs of HrmK are ubiquitous among, and exclusive to, heterocyst-forming cyanobacteria. Collectively, these results indicate that hrmK functions upstream of the sigma factor cascade to initiate hormogonium development, likely by modulating the phosphorylation state of an unknown protein that may serve as the master regulator of hormogonium development in heterocyst-forming cyanobacteria.IMPORTANCE Filamentous cyanobacteria are morphologically complex, with several representative species amenable to routine genetic manipulation, making them excellent model organisms for the study of development. Furthermore, two of the developmental alternatives, nitrogen-fixing heterocysts and motile hormogonia, are essential to establish nitrogen-fixing symbioses with plant partners. These symbioses are integral to global nitrogen cycles and could be artificially recreated with crop plants to serve as biofertilizers, but to achieve this goal, detailed understanding and manipulation of the hormogonium and heterocyst gene regulatory networks may be necessary. Here, using the model organism Nostoc punctiforme, we identify a previously uncharacterized hybrid histidine kinase that is confined to heterocyst-forming cyanobacteria as the earliest known participant in hormogonium development.
Collapse
|
19
|
Ibrahim IM, Wu H, Ezhov R, Kayanja GE, Zakharov SD, Du Y, Tao WA, Pushkar Y, Cramer WA, Puthiyaveetil S. An evolutionarily conserved iron-sulfur cluster underlies redox sensory function of the Chloroplast Sensor Kinase. Commun Biol 2020; 3:13. [PMID: 31925322 PMCID: PMC6949291 DOI: 10.1038/s42003-019-0728-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/08/2019] [Indexed: 11/09/2022] Open
Abstract
Photosynthetic efficiency depends on equal light energy conversion by two spectrally distinct, serially-connected photosystems. The redox state of the plastoquinone pool, located between the two photosystems, is a key regulatory signal that initiates acclimatory changes in the relative abundance of photosystems. The Chloroplast Sensor Kinase (CSK) links the plastoquinone redox signal with photosystem gene expression but the mechanism by which it monitors the plastoquinone redox state is unclear. Here we show that the purified Arabidopsis and Phaeodactylum CSK and the cyanobacterial CSK homologue, Histidine kinase 2 (Hik2), are iron-sulfur proteins. The Fe-S cluster of CSK is further revealed to be a high potential redox-responsive [3Fe-4S] center. CSK responds to redox agents with reduced plastoquinone suppressing its autokinase activity. Redox changes within the CSK iron-sulfur cluster translate into conformational changes in the protein fold. These results provide key insights into redox signal perception and propagation by the CSK-based chloroplast two-component system.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huan Wu
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Stanislav D Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yanyan Du
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Weiguo Andy Tao
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Kwon A, Scott S, Taujale R, Yeung W, Kochut KJ, Eyers PA, Kannan N. Tracing the origin and evolution of pseudokinases across the tree of life. Sci Signal 2019; 12:12/578/eaav3810. [PMID: 31015289 DOI: 10.1126/scisignal.aav3810] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation by eukaryotic protein kinases (ePKs) is a fundamental mechanism of cell signaling in all organisms. In model vertebrates, ~10% of ePKs are classified as pseudokinases, which have amino acid changes within the catalytic machinery of the kinase domain that distinguish them from their canonical kinase counterparts. However, pseudokinases still regulate various signaling pathways, usually doing so in the absence of their own catalytic output. To investigate the prevalence, evolutionary relationships, and biological diversity of these pseudoenzymes, we performed a comprehensive analysis of putative pseudokinase sequences in available eukaryotic, bacterial, and archaeal proteomes. We found that pseudokinases are present across all domains of life, and we classified nearly 30,000 eukaryotic, 1500 bacterial, and 20 archaeal pseudokinase sequences into 86 pseudokinase families, including ~30 families that were previously unknown. We uncovered a rich variety of pseudokinases with notable expansions not only in animals but also in plants, fungi, and bacteria, where pseudokinases have previously received cursory attention. These expansions are accompanied by domain shuffling, which suggests roles for pseudokinases in plant innate immunity, plant-fungal interactions, and bacterial signaling. Mechanistically, the ancestral kinase fold has diverged in many distinct ways through the enrichment of unique sequence motifs to generate new families of pseudokinases in which the kinase domain is repurposed for noncanonical nucleotide binding or to stabilize unique, inactive kinase conformations. We further provide a collection of annotated pseudokinase sequences in the Protein Kinase Ontology (ProKinO) as a new mineable resource for the signaling community.
Collapse
Affiliation(s)
- Annie Kwon
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Steven Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Krys J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Xu W, Wang Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 2019; 188:1022-1065. [PMID: 30778824 DOI: 10.1007/s12010-019-02971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a photoautotrophic prokaryote with plant-like photosynthetic machineries which significantly contribute to global carbon fixation and atmospheric oxygen production. Because of the relatively short cell doubling time, small size of the genome, and the ease for genetic manipulation, Synechocystis is a popular model organism for studies including photosynthesis and biofuel production. The cyanobacterium contains 12 eukaryotic type Ser/Thr kinases (SpkA-L) and 49 histidine kinases (Hik1-47 and Sll1334 and Sll5060 are named as Hik48 and Hik49, respectively, in this review) of the two-component system. All SpkA-L kinases have a eukaryotic kinase DFG signature in their A-loops. Based on the types of the kinase domains, the Spks can be separated into three groups: one group contains SpkA and SpkG which are related to human kinases, while SpkH-L are in another group that is distinct from human kinases. The third group contains SpkB-F which are between the first two groups. Four histidine kinases (Hiks17, 36, 45, and 48) lack a clear histidine kinase domain, and the conserved phosphorylatable histidine residue could not be identified for six histidine kinases (Hiks11, 18, 29, 37, 39, and 43) even though they have clear histidine kinase domains. Each of the remaining 39 has a histidine kinase domain with the conserved histidine residue. Eight hybrid histidine kinases contain one or two receiver domains, and they all, except Hik25 (Slr0222), have the conserved phosphorylatable aspartate. The disruptants of all kinases except hik13 and hik15 have been generated, and the majority of them have modest or no obvious phenotypes, indicating other kinases could functionally compensate the loss of a particular kinase. This review presents a comprehensive discussion including a spectrum of sequence, domain architecture, in vivo function, and proteomics investigations of Ser/Thr and histidine kinases. Understanding the sequences, domain architectures, and biology of the kinases will help to integrate "omic" data to clarify their exact biochemical functions.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing, 100101, China.
| |
Collapse
|
23
|
Ibrahim IM, Wang L, Puthiyaveetil S, Krauß N, Nield J, Allen JF. Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2. PROTOPLASMA 2018; 255:937-952. [PMID: 29290041 PMCID: PMC5904244 DOI: 10.1007/s00709-017-1196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Liang Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Norbert Krauß
- Botanisches Institut, Karlsruher Institut für Technologie, Karlsruhe, Germany
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
24
|
Pei G, Niu X, Zhou Y, Chen L, Zhang W. Crosstalk of two-component signal transduction systems in regulating central carbohydrate and energy metabolism during autotrophic and photomixotrophic growth of Synechocystis sp. PCC 6803. Integr Biol (Camb) 2018; 9:485-496. [PMID: 28485419 DOI: 10.1039/c7ib00049a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unicellular model cyanobacterium Synechocystis sp. PCC 6803 has received considerable attention as a sustainable energy resource because of its photosynthetic machinery. However, two-component signal transduction systems (TCSTSs) in regulating central carbohydrate and energy metabolism of cyanobacteria are still poorly understood due to their diversity and functional complication. In this study, by comparing the growth of knockout mutants of 44 response regulators (RRs) of TCSTSs in Synechocystis, several RR mutants demonstrating differential growth patterns were identified under auto- or photomixotrophic conditions. However, in spite of no growth difference observed for the remaining RR mutants, liquid chromatography-mass spectrometry based metabolomic profile analysis showed that a widespread crosstalk of TCSTSs in regulating central carbohydrate and energy metabolism of Synechocystis was identified, while most of them showed diverse patterns during different trophic types or growth stages. Furthermore, an integrative analysis between evolutionary relationships and metabolomic profiles revealed some pairs of paralogous RRs with highly functional convergence, suggesting the possible conserved functions of Synechocystis TCSTSs during evolution. This study laid an important basis for understanding the function of TCSTSs in photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Swan JA, Golden SS, LiWang A, Partch CL. Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem 2018; 293:5026-5034. [PMID: 29440392 DOI: 10.1074/jbc.tm117.001433] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms enable cells and organisms to coordinate their physiology with the cyclic environmental changes that come as a result of Earth's light/dark cycles. Cyanobacteria make use of a post-translational oscillator to maintain circadian rhythms, and this elegant system has become an important model for circadian timekeeping mechanisms. Composed of three proteins, the KaiABC system undergoes an oscillatory biochemical cycle that provides timing cues to achieve a 24-h molecular clock. Together with the input/output proteins SasA, CikA, and RpaA, these six gene products account for the timekeeping, entrainment, and output signaling functions in cyanobacterial circadian rhythms. This Minireview summarizes the current structural, functional and mechanistic insights into the cyanobacterial circadian clock.
Collapse
Affiliation(s)
- Jeffrey A Swan
- From the Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Susan S Golden
- the Department of Molecular Biology and.,Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and
| | - Andy LiWang
- Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and.,the Department of Chemistry and Chemical Biology, University of California Merced, Merced, California 95343
| | - Carrie L Partch
- From the Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, .,Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and
| |
Collapse
|
26
|
Ehira S, Shimmori Y, Watanabe S, Kato H, Yoshikawa H, Ohmori M. The nitrogen-regulated response regulator NrrA is a conserved regulator of glycogen catabolism in β-cyanobacteria. Microbiology (Reading) 2017; 163:1711-1719. [DOI: 10.1099/mic.0.000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shigeki Ehira
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuka Shimmori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hiroaki Kato
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masayuki Ohmori
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
27
|
Burut-Archanai S, Powtongsook S. Identification of negative regulator for phosphate-sensing system in Anabaena sp. PCC 7120: A target gene for developing phosphorus removal. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Kobayashi I, Watanabe S, Kanesaki Y, Shimada T, Yoshikawa H, Tanaka K. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942. Mol Microbiol 2017; 104:260-277. [PMID: 28106321 DOI: 10.1111/mmi.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
Abstract
Bacteria and other organisms, including cyanobacteria, employ two-component signal transducing modules comprising histidine kinases and response regulators to acclimate to changing environments. While the number and composition of these modules differ among cyanobacteria, two response regulators that contain DNA binding domains, RpaB and Rre1, are conserved in all sequenced cyanobacterial genomes and are essential for viability. Although RpaB negatively or positively regulates high light and other stress-responsive gene expression, little is known about the function of Rre1. Here, they investigated the direct regulatory targets of Rre1 in the cyanobacterium Synechococcus elongatus PCC 7942. Chromatin immunoprecipitation and high-density tiling array analysis were used to map Rre1 binding sites. The sites included promoter regions for chaperone genes such as dnaK2, groESL-1, groEL-2, hspA and htpG, as well as the group 2 sigma factor gene rpoD2. In vivo and in vitro analyses revealed that Rre1 phosphorylation level, DNA binding activity and adjacent gene transcription increased in response to heat stress. These responses were much diminished in a knock-out mutant of Hik34, a previously identified heat shock regulator. Based on our results, we propose Hik34-Rre1 is the heat shock-responsive signaling module that positively regulates major chaperone and other genes in cyanobacteria.
Collapse
Affiliation(s)
- Ikki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Graduate School of Interdisciplinary Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Midori-ku, Yokohama, 226-8503, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
29
|
Stuart RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B. Copper toxicity response influences mesotrophicSynechococcuscommunity structure. Environ Microbiol 2017; 19:756-769. [DOI: 10.1111/1462-2920.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Rhona K. Stuart
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Randelle Bundy
- University of California at San Diego; La Jolla 92093 CA USA
| | - Kristen Buck
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | | | - Kathy Barbeau
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| |
Collapse
|
30
|
Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci U S A 2016; 113:E8344-E8353. [PMID: 27911809 DOI: 10.1073/pnas.1613446113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology.
Collapse
|
31
|
Allen JF. A Proposal for Formation of Archaean Stromatolites before the Advent of Oxygenic Photosynthesis. Front Microbiol 2016; 7:1784. [PMID: 27895626 PMCID: PMC5108776 DOI: 10.3389/fmicb.2016.01784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 01/31/2023] Open
Abstract
Stromatolites are solid, laminar structures of biological origin. Living examples are sparsely distributed and formed by cyanobacteria, which are oxygenic phototrophs. However, stromatolites were abundant between 3.4 and 2.4 Gyr, prior to the advent of cyanobacteria and oxygenic photosynthesis. Here I propose that many Archaean stromatolites were seeded at points of efflux of hydrogen sulfide from hydrothermal fields into shallow water, while their laminar composition arose from alternating modes of strictly anoxygenic photosynthetic metabolism. These changes were a redox regulatory response of gene expression to changing hydrogen sulfide concentration, which fluctuated with intermittent dilution by tidal action or by rainfall into surface waters. The proposed redox switch between modes of metabolism deposited sequential microbial mats. These mats gave rise to alternating carbonate sediments predicted to retain evidence of their origin in differing ratios of isotopes of carbon and sulfur and in organic content. The mats may have arisen either by replacement of microbial populations or by continuous lineages of protocyanobacteria in which a redox genetic switch selected between Types I and II photosynthetic reaction centers, and thus between photolithoautotrophic and photoorganoheterotrophic metabolism. In the latter case, and by 2.4 Gyr at the latest, a mutation had disabled the redox genetic switch to give simultaneous constitutive expression of both Types I and II reaction centers, and thus to the ability to extract electrons from manganese and then water. By this simple step, the first cyanobacterium had the dramatic advantage of emancipation from limiting supplies of inorganic electron donors, produced free molecular oxygen as a waste product, and initiated the Great Oxidation Event in Earth's history at the transition from the Archaean to the Paleoproterozoic.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, University College London London, UK
| |
Collapse
|
32
|
Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. Proc Natl Acad Sci U S A 2016; 113:E7367-E7374. [PMID: 27830646 DOI: 10.1073/pnas.1605202113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.
Collapse
|
33
|
Zhao S, Wang X, Niu G, Dong W, Wang J, Fang Y, Lin Y, Liu L. Structural basis for copper/silver binding by theSynechocystismetallochaperone CopM. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:997-1005. [DOI: 10.1107/s2059798316011943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 11/11/2022]
Abstract
Copper homeostasis integrates multiple processes from sensing to storage and efflux out of the cell. CopM is a cyanobacterial metallochaperone, the gene for which is located upstream of a two-component system for copper resistance, but the molecular basis for copper recognition by this four-helical bundle protein is unknown. Here, crystal structures of CopM in apo, copper-bound and silver-bound forms are reported. Monovalent copper/silver ions are buried within the bundle core; divalent copper ions are found on the surface of the bundle. The monovalent copper/silver-binding site is constituted by two consecutive histidines and is conserved in a previously functionally unknown protein family. The structural analyses show two conformational states and suggest that flexibility in the first α-helix is related to the metallochaperone function. These results also reveal functional diversity from a protein family with a simple four-helical fold.
Collapse
|
34
|
Naurin S, Bennett J, Videau P, Philmus B, Soule T. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133. JOURNAL OF PHYCOLOGY 2016; 52:564-571. [PMID: 27020740 DOI: 10.1111/jpy.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production.
Collapse
Affiliation(s)
- Sejuti Naurin
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Janine Bennett
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Tanya Soule
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| |
Collapse
|
35
|
Kashith M, Keerthana B, Sriram S, Ramamurthy V. Adenylate cyclase in Arthrospira platensis responds to light through transcription. Biochem Biophys Res Commun 2016; 477:297-301. [PMID: 27311855 DOI: 10.1016/j.bbrc.2016.06.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 11/30/2022]
Abstract
Cyclic 3',5' adenosine monophosphate (cAMP) is a ubiquitous signaling molecule, but its role in higher plants was in doubt due to its very low concentration. In this study we wanted to look at the flux of cAMP in response to light in algae, considered to be the more primitive form of photosynthetic organisms. While it did not fluctuate very much in the tested green algae, in the cyanobacterium Arthrospira platensis its level was closely linked to exposure to light. The expression from cyaC, the major isoform of adenylate cyclase was strongly influenced by exposure of the cells to light. There was about 300 fold enhancement of cyaC transcripts in cells exposed to light compared to the transcripts in cells in the dark. Although post-translational regulation of adenylate cyclase activity has been widely known, our studies suggest that transcriptional control could also be an important aspect of its regulation in A. platensis.
Collapse
Affiliation(s)
- M Kashith
- Department of Biotechnology, PSG College of Technology, Coimbatore, 640 004, India.
| | - B Keerthana
- Department of Biotechnology, PSG College of Technology, Coimbatore, 640 004, India.
| | - S Sriram
- Department of Biotechnology, PSG College of Technology, Coimbatore, 640 004, India.
| | - V Ramamurthy
- Department of Biotechnology, PSG College of Technology, Coimbatore, 640 004, India.
| |
Collapse
|
36
|
Ibrahim IM, Puthiyaveetil S, Allen JF. A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA. FRONTIERS IN PLANT SCIENCE 2016; 7:137. [PMID: 26904089 PMCID: PMC4751278 DOI: 10.3389/fpls.2016.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 05/13/2023]
Abstract
Two-component systems (TCSs) are ubiquitous signaling units found in prokaryotes. A TCS consists of a sensor histidine kinase and a response regulator protein as signal transducers. These regulatory systems mediate acclimation to various environmental changes by coupling environmental cues to gene expression. Hik2 is a sensor histidine kinase and its gene is found in all cyanobacteria. Hik2 is the homolog of Chloroplast Sensor Kinase (CSK), a protein involved in redox regulation of chloroplast gene expression during changes in light quality in plants and algae. Here we describe biochemical characterization of the signaling mechanism of Hik2 and its phosphotransferase activity. Results presented here indicate that Hik2 undergoes autophosphorylation on a conserved histidine residue, and becomes rapidly dephosphorylated by the action of response regulators Rre1 and RppA. We also show that the autophosphorylation of Hik2 is specifically inhibited by sodium ions.
Collapse
Affiliation(s)
- Iskander M. Ibrahim
- Faculty of Engineering and Science, University of Greenwich, Chatham MaritimeKent, UK
| | | | - John F. Allen
- Research Department of Genetics, Evolution and Environment, University College LondonLondon, UK
- *Correspondence: John F. Allen
| |
Collapse
|
37
|
Janssen J, Soule T. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacteriumNostoc punctiformeATCC 29133. FEMS Microbiol Lett 2015; 363:fnv235. [DOI: 10.1093/femsle/fnv235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
|
38
|
Wilde A, Hihara Y. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:296-308. [PMID: 26549130 DOI: 10.1016/j.bbabio.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Annegret Wilde
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
39
|
Borland S, Oudart A, Prigent-Combaret C, Brochier-Armanet C, Wisniewski-Dyé F. Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum. BMC Genomics 2015; 16:833. [PMID: 26489830 PMCID: PMC4618731 DOI: 10.1186/s12864-015-1962-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023] Open
Abstract
Background Two-component systems (TCS) play critical roles in sensing and responding to environmental cues. Azospirillum is a plant growth-promoting rhizobacterium living in the rhizosphere of many important crops. Despite numerous studies about its plant beneficial properties, little is known about how the bacterium senses and responds to its rhizospheric environment. The availability of complete genome sequenced from four Azospirillum strains (A. brasilense Sp245 and CBG 497, A. lipoferum 4B and Azospirillum sp. B510) offers the opportunity to conduct a comprehensive comparative analysis of the TCS gene family. Results Azospirillum genomes harbour a very large number of genes encoding TCS, and are especially enriched in hybrid histidine kinases (HyHK) genes compared to other plant-associated bacteria of similar genome sizes. We gained further insight into HyHK structure and architecture, revealing an intriguing complexity of these systems. An unusual proportion of TCS genes were orphaned or in complex clusters, and a high proportion of predicted soluble HKs compared to other plant-associated bacteria are reported. Phylogenetic analyses of the transmitter and receiver domains of A. lipoferum 4B HyHK indicate that expansion of this family mainly arose through horizontal gene transfer but also through gene duplications all along the diversification of the Azospirillum genus. By performing a genome-wide comparison of TCS, we unraveled important ‘genus-defining’ and ‘plant-specifying’ TCS. Conclusions This study shed light on Azospirillum TCS which may confer important regulatory flexibility. Collectively, these findings highlight that Azospirillum genomes have broad potential for adaptation to fluctuating environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1962-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Borland
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Laboratoire d'Ecologie Microbienne, 43 7 boulevard du 11 novembre 1918, F-69622, Villeurbanne, France.
| | - Anne Oudart
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622, Villeurbanne, France.
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Laboratoire d'Ecologie Microbienne, 43 7 boulevard du 11 novembre 1918, F-69622, Villeurbanne, France.
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622, Villeurbanne, France.
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Laboratoire d'Ecologie Microbienne, 43 7 boulevard du 11 novembre 1918, F-69622, Villeurbanne, France.
| |
Collapse
|
40
|
Okada K, Horii E, Nagashima Y, Mitsui M, Matsuura H, Fujiwara S, Tsuzuki M. Genes for a series of proteins that are involved in glucose catabolism are upregulated by the Hik8-cascade in Synechocystis sp. PCC 6803. PLANTA 2015; 241:1453-1462. [PMID: 25732003 DOI: 10.1007/s00425-015-2270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
In summary, we could show the involvement of a Hik8-cascade in the expression of genes involved in the glycolytic and OPP pathways induced by GPL, and another signal pathway under photosynthetic conditions in Synechocystis . The Hik8-cascade under GPL conditions may regulate glucose degradation to produce some energy and carbon compounds. This cascade might be important for the supply of organic materials such as amino acids and nucleotides through enhancement of the rates of the glycolysis and OPP pathways. Histidine kinase Hik8 upregulates the expression of one of the important glycolytic genes, fbaA, via sll1330 under heterotrophic growth conditions (i.e., in the presence of glucose with an indispensable short period of light) in Synechocystis sp. PCC 6803. In this study, expression of the genes for the glycolytic and OPP pathways was investigated using the wild type, and disruption mutants of Hik8 and sll1330, to determine whether or not the Hik8-involving signal transduction system generally regulates glucose catabolism. In the wild type, all the genes for the glycolytic and OPP pathways were upregulated under the same conditions as for fbaA. Analyses of the disruption mutants suggested that the signal transduction system involving Hik8 and Sll1330 plays a key role in the upregulation of genes such as pfkA, pgmB, and glk, and also that Hik8 induces genes including gap1 and pgk independently of Sll1330. This complicated signal transduction cascade, designated as the Hik8-cascade, occurs under heterotrophic growth with light pulses. In addition, a disruption mutant of a putative histidine kinase, sll1334, exhibited growth and gene expression patterns that suggested it to be a negative regulator in the cascade. Possible histidine kinases and response regulators as candidates for other components in the cascade are discussed.
Collapse
Affiliation(s)
- Katsuhiko Okada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan,
| | | | | | | | | | | | | |
Collapse
|
41
|
Spät P, Maček B, Forchhammer K. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation. Front Microbiol 2015; 6:248. [PMID: 25873915 PMCID: PMC4379935 DOI: 10.3389/fmicb.2015.00248] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/13/2015] [Indexed: 12/02/2022] Open
Abstract
Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.
Collapse
Affiliation(s)
- Philipp Spät
- Department of Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen Tübingen, Germany
| | - Boris Maček
- Interfaculty Institute for Cell Biology, Proteome Center Tuebingen, Eberhard-Karls-University Tübingen Tübingen, Germany
| | - Karl Forchhammer
- Department of Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen Tübingen, Germany
| |
Collapse
|
42
|
Červený J, Sinetova MA, Zavřel T, Los DA. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34. Life (Basel) 2015; 5:676-99. [PMID: 25738257 PMCID: PMC4390874 DOI: 10.3390/life5010676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34) is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.
Collapse
Affiliation(s)
- Jan Červený
- Department of Adaptation Biotechnologies, Global Change Research Centre, Academy of Sciences of the Czech Republic, Drásov 470, CZ-66424 Drásov, Czech Republic.
| | - Maria A Sinetova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia.
| | - Tomáš Zavřel
- Department of Adaptation Biotechnologies, Global Change Research Centre, Academy of Sciences of the Czech Republic, Drásov 470, CZ-66424 Drásov, Czech Republic.
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia.
| |
Collapse
|
43
|
Vidal R. Identification of the correct form of the mis-annotated response regulator Rre1 from the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2015; 362:fnv030. [DOI: 10.1093/femsle/fnv030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
44
|
Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output. Proc Natl Acad Sci U S A 2015; 112:2198-203. [PMID: 25653337 DOI: 10.1073/pnas.1424632112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.
Collapse
|
45
|
Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 2015; 99:1845-57. [DOI: 10.1007/s00253-015-6374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
46
|
Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel) 2014; 4:745-69. [PMID: 25411927 PMCID: PMC4284465 DOI: 10.3390/life4040745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Second messengers are intracellular substances regulated by specific external stimuli globally known as first messengers. Cells rely on second messengers to generate rapid responses to environmental changes and the importance of their roles is becoming increasingly realized in cellular signaling research. Cyanobacteria are photooxygenic bacteria that inhabit most of Earth's environments. The ability of cyanobacteria to survive in ecologically diverse habitats is due to their capacity to adapt and respond to environmental changes. This article reviews known second messenger-controlled physiological processes in cyanobacteria. Second messengers used in these systems include the element calcium (Ca2+), nucleotide-based guanosine tetraphosphate or pentaphosphate (ppGpp or pppGpp, represented as (p)ppGpp), cyclic adenosine 3',5'-monophosphate (cAMP), cyclic dimeric GMP (c-di-GMP), cyclic guanosine 3',5'-monophosphate (cGMP), and cyclic dimeric AMP (c-di-AMP), and the gaseous nitric oxide (NO). The discussion focuses on processes central to cyanobacteria, such as nitrogen fixation, light perception, photosynthesis-related processes, and gliding motility. In addition, we address future research trajectories needed to better understand the signaling networks and cross talk in the signaling pathways of these molecules in cyanobacteria. Second messengers have significant potential to be adapted as technological tools and we highlight possible novel and practical applications based on our understanding of these molecules and the signaling networks that they control.
Collapse
|
47
|
Integrated proteomic and metabolomic characterization of a novel two-component response regulator Slr1909 involved in acid tolerance in Synechocystis sp. PCC 6803. J Proteomics 2014; 109:76-89. [DOI: 10.1016/j.jprot.2014.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
|
48
|
Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA. Appl Environ Microbiol 2014; 80:5672-9. [PMID: 25002430 DOI: 10.1128/aem.01501-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.
Collapse
|
49
|
Exploration of a Possible Partnership among Orphan Two-Component System Proteins in CyanobacteriumSynechococcus elongatusPCC 7942. Biosci Biotechnol Biochem 2014; 76:1484-91. [DOI: 10.1271/bbb.120172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Chen L, Zhu Y, Song Z, Wang J, Zhang W. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803. J Proteomics 2014; 103:87-102. [DOI: 10.1016/j.jprot.2014.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|