1
|
Cooper AJL, Denton TT. ω-Amidase and Its Substrate α-Ketoglutaramate (the α-Keto Acid Analogue of Glutamine) as Biomarkers in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1660-1680. [PMID: 39523108 DOI: 10.1134/s000629792410002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate. We describe some properties of KGM, notably its occurrence as a lactam (2-hydroxy-5-oxoproline; 99.7% at pH 7.2), and its presence in normal tissues and body fluids. We note that the concentration of KGM is elevated in the cerebrospinal fluid of liver disease patients and that the urinary KGM/creatinine ratio is elevated in patients with an inborn error of the urea cycle and in patients with citrin deficiency. Recently, of the 607 urinary metabolites measured in a kidney disease study, KGM was noted to be one of five metabolites that was most significantly associated with uromodulin (a potential biomarker for tubular functional mass). Finally, we note that KGM is an intermediate in the breakdown of nicotine in certain organisms and is an important factor in nitrogen homeostasis in some microorganisms and plants. In conclusion, we suggest that biochemists and clinicians should consider KGM as (i) a key intermediate in nitrogen metabolism in all branches of life, and (ii) a biomarker, along with ω-amidase, in several diseases.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Travis T Denton
- LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090)
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| |
Collapse
|
2
|
Chen Y, Xu W, Yu S, Ni K, She G, Ye X, Xing Q, Zhao J, Huang C. Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. eLife 2021; 10:72535. [PMID: 34898426 PMCID: PMC8668187 DOI: 10.7554/elife.72535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nature has evolved many supramolecular proteins assembled in certain, sometimes even seemingly oversophisticated, morphological manners. The rationale behind such evolutionary efforts is often poorly understood. Here, we provide atomic-resolution insights into how the dynamic building of a structurally complex enzyme with higher order symmetry offers amenability to intricate regulation. We have established the functional coupling between enzymatic activity and protein morphological states of glutamine synthetase (GS), an old multi-subunit enzyme essential for cellular nitrogen metabolism. Cryo-EM structure determination of GS in both the catalytically active and inactive assembly states allows us to reveal an unanticipated self-assembly-induced disorder-order transition paradigm, in which the remote interactions between two subcomplex entities significantly rigidify the otherwise structurally fluctuating active sites, thereby regulating activity. We further show in vivo evidences that how the enzyme morphology transitions could be modulated by cellular factors on demand. Collectively, our data present an example of how assembly status transition offers an avenue for activity modulation, and sharpens our mechanistic understanding of the complex functional and regulatory properties of supramolecular enzymes.
Collapse
Affiliation(s)
- Yao Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Polozsányi Z, Kaliňák M, Babjak M, Šimkovič M, Varečka Ľ. How to enter the state of dormancy? A suggestion by Trichoderma atroviride conidia. Fungal Biol 2021; 125:934-949. [PMID: 34649680 DOI: 10.1016/j.funbio.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
It is generally accepted that conidia, propagules of filamentous fungi, exist in the state of dormancy. This state is defined mostly phenomenologically, e.g., by germination requirements. Its molecular characteristics are scarce and are concentrated on the water or osmolyte content, and/or respiration. However, a question of whether conidia are metabolic or ametabolic forms of life cannot be answered on the basis of available experimental data. In other words, are mature conidia open thermodynamic systems as are mycelia, or do they become closed upon the transition to the dormant state? In this article, we present observations which may help to define the transition of freshly formed conidia to the putative dormant forms using measurements of selected enzyme activities, 1H- and 13C-NMR and LC-MS-metabolomes, and 14C-bicarbonate or 45Ca2+ inward transport. We have found that Trichoderma atroviride and Aspergillus niger conidia arrest the 45Ca2+ uptake during the development stopping thereby the cyclic (i.e., bidirectional) Ca2+ flow existing in vegetative mycelia and conidia of T. atroviride across the cytoplasmic membrane. Furthermore, we have found that the activity of α-ketoglutarate dehydrogenase was rendered completely inactive after 3 weeks from the conidia formation unlike of other central carbon metabolism enzymes. This may explain the loss of conidial respiration. Finally, we found that conidia take up the H14CO3- and convert it into few stable compounds within 80 d of maturation, with minor quantitative differences in the extent of this process. The uptake of H13CO3- confirmed these observation and demonstrated the incorporation of H13CO3- even in the absence of exogenous substrates. These results suggest that T. atroviride conidia remain metabolically active during first ten weeks of maturation. Under these circumstances, their metabolism displays features similar to those of chemoautotrophic microorganisms. However, the Ca2+ homeostasis changed from the open to the closed thermodynamic state during the early period of conidial maturation. These results may be helpful for studying the conidial ageing and/or maturation, and for defining the conidial dormant state in biochemical terms.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Matej Babjak
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Ľudovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
4
|
Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:463. [PMID: 34201222 PMCID: PMC8229676 DOI: 10.3390/jof7060463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ΔMogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ΔMogln2 on MM. The ΔMogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ΔMogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Lianyu Lin
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Wajjiha Batool
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Ammarah Shabbir
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
- Marine and Agricultural Biotechnology Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Tang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| |
Collapse
|
5
|
Jiang L, Mu Y, Wei S, Mu Y, Zhao C. Study on the dynamic changes and formation pathways of metabolites during the fermentation of black waxy rice wine. Food Sci Nutr 2020; 8:2288-2298. [PMID: 32405386 PMCID: PMC7215209 DOI: 10.1002/fsn3.1507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Black waxy rice wine fermentation metabolites are closely related to the product's final quality. However, little is known about dynamic metabolite changes during fermentation. Here, we used gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) metabolomics and multivariate statistical analysis to explore the relationship between metabolites and fermentation time. A total of 159 metabolites were identified during the entire fermentation process. The PCA analysis revealed a clear separation between the samples after 4 days and 2 days, and the samples after 4-24 days clustered together. This indicated that BGRW fermentation progresses rapidly in the first 48 hr of fermentation. A total of 40 metabolites were identified as differential during fermentation (VIP > 1 and p < .05), including 12 organic acids, four amino acids, one fatty acid, 17 sugars and sugar alcohols, one alcohol, and five other metabolites. Pathway analysis showed that the differential metabolites were involved in 28 metabolic pathways, and the most commonly influenced pathways (impact value > 0.1 and p < .05) were galactose metabolism, pyruvate metabolism; starch and sucrose metabolism; alanine, aspartic acid, and glutamate metabolism; the tricarboxylic acid cycle, glyoxylic acid, and dicarboxylic acid metabolism; and amino sugar and nucleotide sugar metabolism. Moreover, the integrated metabolic pathway was generated to understand the transformation and accumulation of differential metabolites. Overall, these results provide a comprehensive overview of metabolite changes during black waxy rice wine fermentation.
Collapse
Affiliation(s)
- Li Jiang
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Yingchun Mu
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Su Wei
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Yu Mu
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Chi Zhao
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| |
Collapse
|
6
|
Zhou W, Shi W, Xu X, Li Z, Yin C, Peng J, Pan S, Chen X, Zhao W, Zhang Y, Yang J, Peng Y. Glutamate synthase MoGlt1-mediated glutamate homeostasis is important for autophagy, virulence and conidiation in the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2018; 19:564-578. [PMID: 28142220 PMCID: PMC6638184 DOI: 10.1111/mpp.12541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1-mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangHenan453003China
| | - Wei Shi
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Xiao‐Wen Xu
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhi‐Gang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Chang‐Fa Yin
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun‐Bo Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Song Pan
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wen‐Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
7
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
8
|
Marroquin-Guzman M, Wilson RA. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. PLoS Pathog 2015; 11:e1004851. [PMID: 25901357 PMCID: PMC4406744 DOI: 10.1371/journal.ppat.1004851] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/03/2015] [Indexed: 01/14/2023] Open
Abstract
Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. Many fungal pathogens destroy important crops by first gaining entrance to the host using specialized appressorial cells. Understanding the molecular mechanisms that control appressorium formation could provide new routes for managing severe plant diseases. Here, we describe a previously unknown regulatory pathway that suppresses appressorium formation by the rice pathogen Magnaporthe oryzae. We provide evidence that a mutant M. oryzae strain, unable to form appressoria, accumulates intracellular glutamine that, in turn, inappropriately activates a conserved signaling pathway called TOR. Reducing intracellular glutamine levels, or inactivating TOR, restored appressorium formation to the mutant strain. TOR activation is thus a powerful inhibitor of appressorium formation and could be leveraged to develop sustainable mitigation practices against recalcitrant fungal pathogens.
Collapse
Affiliation(s)
- Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 2014; 5:656. [PMID: 25506342 PMCID: PMC4246892 DOI: 10.3389/fmicb.2014.00656] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfaelische Wilhelms-University Muenster Muenster, Germany
| |
Collapse
|
10
|
Zhang Q, Marsolais F. Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. PHYTOCHEMISTRY 2014; 99:36-43. [PMID: 24461228 DOI: 10.1016/j.phytochem.2013.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/11/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
In higher plants, asparagine (Asn) is a major form of organic nitrogen used for transport and storage. There are two pathways of Asn metabolism, involving asparaginase and Asn aminotransferase. The enzyme serine:glyoxylate aminotransferase encoded by AGT1 has been identified as an asparagine aminotransferase in Arabidopsis. The product of asparagine transamination, alpha-ketosuccinamate, can be hydrolyzed by the enzyme omega-amidase to form oxaloacetate and ammonia. A candidate gene was identified in Arabidopsis based on its sequence similarity with mouse omega-amidase. Recombinant omega-amidase exhibited comparable catalytic activities with alpha-hydroxysuccinamate, alpha-ketosuccinamate and alpha-ketoglutaramate, the product of glutamine transamination. A mutant with a T-DNA inserted in the first exon accumulated alpha-ketosuccinamate and alpha-hydroxysuccinamate as compared with wild-type, both under control conditions and after treatment with Asn. Treatment with Asn led to decreased transcript levels of omega-amidase in root, while transcript levels of AGT1 are increased under these conditions, suggesting that excess Asn may lead to the accumulation of alpha-ketosuccinamate and alpha-hydroxysuccinamate.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada; Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada; Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, ON N5V 4T3, Canada.
| |
Collapse
|
11
|
Danchin A, Sekowska A. The logic of metabolism and its fuzzy consequences. Environ Microbiol 2013; 16:19-28. [PMID: 24387040 DOI: 10.1111/1462-2920.12270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Intermediary metabolism molecules are orchestrated into logical pathways stemming from history (L-amino acids, D-sugars) and dynamic constraints (hydrolysis of pyrophosphate or amide groups is the driving force of anabolism). Beside essential metabolites, numerous variants derive from programmed or accidental changes. Broken down, variants enter standard pathways, producing further variants. Macromolecule modification alters enzyme reactions specificity. Metabolism conform thermodynamic laws, precluding strict accuracy. Hence, for each regular pathway, a wealth of variants inputs and produces metabolites that are similar to but not the exact replicas of core metabolites. As corollary, a shadow, paralogous metabolism, is associated to standard metabolism. We focus on a logic of paralogous metabolism based on diversion of the core metabolic mimics into pathways where they are modified to minimize their input in the core pathways where they create havoc. We propose that a significant proportion of paralogues of well-characterized enzymes have evolved as the natural way to cope with paralogous metabolites. A second type of denouement uses a process where protecting/deprotecting unwanted metabolites - conceptually similar to the procedure used in the laboratory of an organic chemist - is used to enter a completely new catabolic pathway.
Collapse
Affiliation(s)
- Antoine Danchin
- Building G1, AMAbiotics SAS, 2 rue Gaston Crémieux, Evry, 91000, France
| | | |
Collapse
|
12
|
Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan JE. Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS Comput Biol 2013; 9:e1003126. [PMID: 23935467 PMCID: PMC3730674 DOI: 10.1371/journal.pcbi.1003126] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms. Few organisms have been as foundational to the development of modern genetics and cellular metabolism as Neurospora crassa. Given the wealth of knowledge available for this filamentous fungus, the effort required to manually curate a high-quality genome-scale metabolic reconstruction would be daunting. To aid the reconstruction process, we developed three optimization-based algorithms. The first algorithm predicts flux while linearly accounting for metabolite dilution; the second algorithm removes blocked reactions with one compact linear program; and the third algorithm reconciles differences between in silico predictions and experimental observations of mutant viability. We have used these algorithms to develop the first genome-scale metabolic model for Neurospora. We have validated the accuracy of our model against an independent test set of more than 300 growth/no-growth phenotypes, and our model displays 93% sensitivity and specificity. Simulating the biochemical genetics experiments originally performed on Neurospora, we comprehensively predicted essential genes, nutrient rescues of auxotroph mutants and synthetic lethal interactions. With these predictions, we provide potential mechanistic insight into known mutant phenotypes, and testable hypotheses for novel mutant phenotypes. The model, the algorithms and the testable hypotheses provide a computational foundation for the study of Neurospora crassa metabolism.
Collapse
Affiliation(s)
- Jonathan M. Dreyfuss
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Jeremy D. Zucker
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Tardigrade Biotechnologies, Jamaica Plain, Massachusetts, United States of America
| | - Heather M. Hood
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Linda R. Ocasio
- Tardigrade Biotechnologies, Jamaica Plain, Massachusetts, United States of America
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James E. Galagan
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Taté R, Cermola M, Riccio A, Diez-Roux G, Patriarca EJ. Glutathione is required by Rhizobium etli for glutamine utilization and symbiotic effectiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:331-40. [PMID: 22007600 DOI: 10.1094/mpmi-06-11-0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we provide genetic and biochemical evidence indicating that the ability of Rhizobium etli bacteria to efficiently catabolize glutamine depends on its ability to produce reduced glutathione (l-γ-glutamyl-l-cysteinylglycine [GSH]). We find that GSH-deficient strains, namely a gshB (GSH synthetase) and a gor (GSH reductase) mutant, can use different amino acids, including histidine, alanine, and asparagine but not glutamine, as sole source of carbon, energy, and nitrogen. Moreover, l-buthionine(S,R)-sulfoximine, a GSH synthesis inhibitor, or diamide that oxidizes GSH, induced the same phenotype in the wild-type strain. Among the steps required for its utilization, glutamine uptake, occurring through the two well-characterized carriers (Aap and Bra systems) but not glutamine degradation or respiration, was largely reduced in GSH-deficient strains. Furthermore, GSH-deficient mutants of R. etli showed a reduced symbiotic efficiency. Exogenous GSH was sufficient to rescue glutamine uptake or degradation ability, as well as the symbiotic effectiveness of GSH mutants. Our results suggest a previously unknown GSH-glutamine metabolic relationship in bacteria.
Collapse
Affiliation(s)
- Rosarita Taté
- Institute Of Genetics And Biophysics, A Buzzati-Traverso, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
14
|
Krasnikov BF, Chien CH, Nostramo R, Pinto JT, Nieves E, Callaway M, Sun J, Huebner K, Cooper AJL. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie 2009; 91:1072-80. [PMID: 19595734 DOI: 10.1016/j.biochi.2009.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
The present report identifies the enzymatic substrates of a member of the mammalian nitrilase-like (Nit) family. Nit2, which is widely distributed in nature, has been suggested to be a tumor suppressor protein. The protein was assumed to be an amidase based on sequence homology to other amidases and on the presence of a putative amidase-like active site. This assumption was recently confirmed by the publication of the crystal structure of mouse Nit2. However, the in vivo substrates were not previously identified. Here we report that rat liver Nit2 is omega-amidodicarboxylate amidohydrolase (E.C. 3.5.1.3; abbreviated omega-amidase), a ubiquitously expressed enzyme that catalyzes a variety of amidase, transamidase, esterase and transesterification reactions. The in vivo amidase substrates are alpha-ketoglutaramate and alpha-ketosuccinamate, generated by transamination of glutamine and asparagine, respectively. Glutamine transaminases serve to salvage a number of alpha-keto acids generated through non-specific transamination reactions (particularly those of the essential amino acids). Asparagine transamination appears to be useful in mitochondrial metabolism and in photorespiration. Glutamine transaminases play a particularly important role in transaminating alpha-keto-gamma-methiolbutyrate, a key component of the methionine salvage pathway. Some evidence suggests that excess alpha-ketoglutaramate may be neurotoxic. Moreover, alpha-ketosuccinamate is unstable and is readily converted to a number of hetero-aromatic compounds that may be toxic. Thus, an important role of omega-amidase is to remove potentially toxic intermediates by converting alpha-ketoglutaramate and alpha-ketosuccinamate to biologically useful alpha-ketoglutarate and oxaloacetate, respectively. Despite its importance in nitrogen and sulfur metabolism, the biochemical significance of omega-amidase has been largely overlooked. Our report may provide clues regarding the nature of the biological amidase substrate(s) of Nit1 (another member of the Nit family), which is a well-established tumor suppressor protein), and emphasizes a) the crucial role of Nit2 in nitrogen and sulfur metabolism, and b) the possible link of Nit2 to cancer biology.
Collapse
Affiliation(s)
- Boris F Krasnikov
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Krasnikov BF, Nostramo R, Pinto JT, Cooper AJL. Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine. Anal Biochem 2009; 391:144-50. [PMID: 19464248 DOI: 10.1016/j.ab.2009.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/17/2022]
Abstract
omega-Amidase (omega-amidodicarboxylate amidohydrolase, EC 3.5.1.3) isolated from rat liver cytosol is a versatile enzyme that catalyzes a large number of amidase, transamidase, and ester hydrolysis reactions. omega-Amidase activity toward alpha-ketoglutaramate and alpha-ketosuccinamate (the alpha-keto acid analogues of glutamine and asparagine, respectively) is present in mammalian tissues, tumors, plants, bacteria, and fungi. Despite its versatility, widespread occurrence, and high specific activity, the enzyme has been little studied, possibly because the assay procedure previously required a substrate (alpha-ketoglutaramate) that is not commercially available. Here we report a simplified method for preparing alpha-ketoglutaramate and an assay procedure that measures alpha-ketoglutarate formation from alpha-ketoglutaramate in a 96-well plate format. We also describe a 96-well plate assay procedure that measures omega-amidase-catalyzed hydroxaminolysis of commercially available succinamic acid. The product, succinyl hydroxamate, yields a stable brown color in the presence of acidic ferric chloride that can be quantitated spectrophotometrically with negligible background interference. The two assay procedures (hydrolysis of alpha-ketoglutaramate and hydroxaminolysis of succinamate) were employed in purifying omega-amidase approximately 3600-fold from rat liver cytosol. The ratio of alpha-ketoglutaramate hydrolysis to succinamate hydroxaminolysis remained constant during the purification. omega-Amidase has recently been shown to be identical to Nit2, a putative tumor suppressor protein. It is anticipated that these new assay procedures will help to characterize the function of omega-amidase/Nit2 in tumor suppression, will provide the basis of high-throughput procedures to search for potent inhibitors and enhancers of omega-amidase, and will assist in identifying biological interactions between nitrogen metabolism and tumor biology.
Collapse
Affiliation(s)
- Boris F Krasnikov
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
16
|
Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. MICROBIOLOGY-SGM 2005; 151:1409-1419. [PMID: 15870451 DOI: 10.1099/mic.0.27751-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
NADP-dependent glutamate dehydrogenase (NADP-GDH) mediates fungal ammonium assimilation through reductive synthesis of glutamate from 2-oxoglutarate. By virtue of its position at the interface of carbon and nitrogen metabolism, biosynthetic NADP-GDH is a potential candidate for metabolic control. In order to facilitate characterization, a new and effective dye-affinity method was devised to purify NADP-GDH from two aspergilli, Aspergillus niger and Aspergillus nidulans. The A. niger NADP-GDH was characterized at length and its kinetic interaction constants with glutamate (Km 34.7 mM) and ammonium (Km 1.05 mM; Ki 0.4 mM) were consistent with an anabolic role. Isophthalate, 2-methyleneglutarate and 2,4-pyridinedicarboxylate were significant inhibitors, with respective Ki values of 6.9, 9.2 and 202.0 microM. The A. niger enzyme showed allosteric properties and a sigmoid response (nH=2.5) towards 2-oxoglutarate saturation. The co-operative behaviour was a feature common to NADP-GDH from Aspergillus awamori, A. nidulans and Aspergillus oryzae. NADP-GDH may therefore be a crucial determinant in adjusting 2-oxoglutarate flux between the tricarboxylic acid cycle and glutamate biosynthesis in aspergilli.
Collapse
Affiliation(s)
- Shahid Noor
- Biotechnology Group, School of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai - 400076, India
| | - Narayan S Punekar
- Biotechnology Group, School of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai - 400076, India
| |
Collapse
|
17
|
Juuti JT, Jokela S, Paulin L, Timonen S, Sen R. Suillus bovinus glutamine synthetase gene organization, transcription and enzyme activities in the Scots pine mycorrhizosphere developed on forest humus. THE NEW PHYTOLOGIST 2004; 164:389-399. [PMID: 33873555 DOI: 10.1111/j.1469-8137.2004.01166.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Glutamine synthetase (GS) expression and activity is of central importance for cellular ammonium assimilation and recycling. Thus, a full characterization of this enzyme at the molecular level is of critical importance for a better understanding of nitrogen (N) assimilation in the mycorrhizal symbiosis. • Genomic and cDNA libraries of Suillus bovinus were constructed to isolate the GS gene, glnA, and corresponding cDNAs. The transcription initiation site was identified and transcription and enzyme activities were characterized in pure culture mycelium and mycorrhiza, and extramatrical mycelium samples harvested from Scots pine-Suillus bovinus microcosms grown on forest humus. • Pure culture mycelium, mycorrhiza and extramatrical mycelium all exhibited equivalent levels of GS transcription, translation and enzyme activities. However, levels of transcription and enzyme activity did not correlate as a large majority of detectable transcripts showed specific 5'-end truncation. • Our data suggest that GS is constitutively expressed and not directly affected by environmental conditions of the symbiotic N uptake. Any changes in the intracellular ammonium level are most likely handled by regulatory flexibility of GS at enzyme level.
Collapse
Affiliation(s)
- Jarmo T Juuti
- Department of Bio- and Environmental Sciences, General Microbiology, PO Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland
| | - Sanna Jokela
- Department of Bio- and Environmental Sciences, General Microbiology, PO Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing Laboratory, PO Box 56 (Viikinkaari 4), FI-00014 University of Helsinki, Finland
| | - Sari Timonen
- Department of Bio- and Environmental Sciences, General Microbiology, PO Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland
- Present address: Department of Applied Biology, PO Box 27 (Latokartanonkaari 7), FI-00014 University of Helsinki, Finland
| | - Robin Sen
- Department of Bio- and Environmental Sciences, General Microbiology, PO Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland
- Present address: The Macaulay Institute, Environmental Sciences group, Craigiebuckler, Aberdeen AB15 8QH, UK
| |
Collapse
|
18
|
Tatè R, Ferraioli S, Filosa S, Cermola M, Riccio A, Iaccarino M, Patriarca EJ. Glutamine utilization by Rhizobium etli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:720-728. [PMID: 15242166 DOI: 10.1094/mpmi.2004.17.7.720] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We undertook the study of the use of glutamine (Gln) as the source of carbon and energy by Rhizobium etli. Tn5-induced mutagenesis allowed us to identify several genes required for Gln utilization, including those coding for two broad-range amino acid transporters and a glutamate dehydrogenase. The isolated mutants were characterized by the analysis of their capacity i) to grow on different media, ii) to transport Gln (uptake assays), and iii) to utilize Gln as the C energy source (CO2 production from Gln). We show that Gln is degraded through the citric acid cycle and that its utilization as the sole C source is related to a change in the bacterial cell shape (from bacillary to coccoid form) and a high susceptibility to a thiol oxidative insult. Both these data and the analysis of ntr-dependent promoters suggested that Gln-grown bacteria are under a condition of C starvation and N sufficiency, and as expected, the addition of glucose counteracted the morphological change and increased both the bacterial growth rate and their resistance to oxidative stress. Finally, a nodulation analysis indicates that the genes involved in Gln transport and degradation are dispensable for the bacterial ability to induce and invade developing nodules, whereas those involved in gluconeogenesis and nucleotide biosynthesis are strictly required.
Collapse
Affiliation(s)
- Rosarita Tatè
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Via G. Marconi 10, 80125 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Margelis S, D'Souza C, Small AJ, Hynes MJ, Adams TH, Davis MA. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J Bacteriol 2001; 183:5826-33. [PMID: 11566979 PMCID: PMC99658 DOI: 10.1128/jb.183.20.5826-5833.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS), EC 6.3.1.2, is a central enzyme in the assimilation of nitrogen and the biosynthesis of glutamine. We have isolated the Aspergillus nidulans glnA gene encoding GS and have shown that glnA encodes a highly expressed but not highly regulated mRNA. Inactivation of glnA results in an absolute glutamine requirement, indicating that GS is responsible for the synthesis of this essential amino acid. Even when supplemented with high levels of glutamine, strains lacking a functional glnA gene have an inhibited morphology, and a wide range of compounds have been shown to interfere with repair of the glutamine auxotrophy. Heterologous expression of the prokaryotic Anabaena glnA gene from the A. nidulans alcA promoter allowed full complementation of the A. nidulans glnADelta mutation. However, the A. nidulans fluG gene, which encodes a protein with similarity to prokaryotic GS, did not replace A. nidulans glnA function when similarly expressed. Our studies with the glnADelta mutant confirm that glutamine, and not GS, is the key effector of nitrogen metabolite repression. Additionally, ammonium and its immediate product glutamate may also act directly to signal nitrogen sufficiency.
Collapse
Affiliation(s)
- S Margelis
- Department of Genetics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Kersten MA, Baars JJ, Op den Camp HJ, Van Griensven LJ, van der Drift C. Regulation of glutamine synthetase from the white button mushroom Agaricus bisporus. Arch Biochem Biophys 1999; 364:228-34. [PMID: 10190978 DOI: 10.1006/abbi.1999.1119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of glutamine synthetase (GS) from Agaricus bisporus was studied at the posttranscriptional level using a specific antibody fraction directed against purified GS. The cross-reactivity of the antiserum against various Agaricus species and other fungi was tested and low reactivity with the Ascomycetes was found. GS protein and activity levels were measured in cell-free extracts of mycelium grown on different N sources. In mycelium grown on glutamine or ammonium as N source, the biosynthetic GS activity is higher than the transferase activity. Moreover, the results show a correlation between GS biosynthetic activity, GS protein, and previously reported mRNA levels. Also, after addition of ammonium or glutamine to glutamate-utilizing cultures, transferase activity decreased more rapidly than biosynthetic activity and GS protein level. This suggests a conformational modification which only affects transferase activity.
Collapse
Affiliation(s)
- M A Kersten
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, Toernooiveld 1, Nijmegen, NL-6525 ED, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Encarnación S, Calderón J, Gelbard AS, Cooper AJL, Mora J. Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2629-2638. [PMID: 9782512 DOI: 10.1099/00221287-144-9-2629] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinorhizobium meliloti 1021 and Rhizobium etli CE3 turn over nitrogen and carbon from glutamine to ammonium and CO2, respectively. Some of the ammonium released is assimilated back into glutamine, indicating that a glutamine cycle similar to that in Neurospora operates in Rhizobium. In addition, a previously unrecognized metabolic pathway in Rhizobium was discovered--namely, conversion of glutamine-carbon to gamma-hydroxybutyric acid and beta-hydroxybutyric acid. Additionally, some of the 2-oxoglutarate derived from glutamine catabolism in Rhizobium is converted to succinate in glutamine-containing medium. Both S. meliloti 1021 and R. etli CE3 oxidize succinate preferentially over glutamine when provided with both carbon sources. In contrast to Sinorhizobium meliloti 1021 and Rhizobium etli CE3, an S. meliloti double mutant that lacks both glutamine synthetase (GS) I and II preferentially oxidizes glutamine over succinate when supplied with both substrates. GSII activity is induced in wild-type S. meliloti 1021 and R. etli CE3 grown in succinate-glutamine medium, and this enzyme participates in the cycling of glutamine-carbon and -nitrogen. On the other hand, GSII activity is repressed in both micro-organisms when glutamine is the only carbon source. These findings show that, in medium containing both glutamine and succinate, glutamine synthesis helps drive the utilization of succinate. When glutamine is in excess as an energy-providing substrate its synthesis is restricted, allowing for more effective utilization of glutamine as an energy source.
Collapse
Affiliation(s)
- Sergio Encarnación
- Departamento de Ecologie Molecular, Centro de Investigación Sobre Fijación de N itrogeno, Universidad National Autónoma de MexicoApartado Postal 56 5-A, Cuernavaca, MorelosMexico
| | - Jorge Calderón
- Departamento de Biotecnologia, Instituto de lnvestigaciones Biomedicas, Universidad Nacional Autónoma de MexicoAparto Postal 70228Mexico
| | - Alan S Gelbard
- Departments of Biochemistry3 and Cornell University Medical CollegeNew York, NYUSA
| | - Arthur J L Cooper
- Neurology and Neuroscience4, Cornell University Medical CollegeNew York, NYUSA
| | - Jaime Mora
- Departamento de Ecologie Molecular, Centro de Investigación Sobre Fijación de N itrogeno, Universidad National Autónoma de MexicoApartado Postal 56 5-A, Cuernavaca, MorelosMexico
| |
Collapse
|
22
|
Huerta-Zepeda A, Ortuño L, Du Pont G, Durán S, Lloret A, Merchant-Larios H, Calderón J. Isolation and characterization of Rhizobium etli mutants altered in degradation of asparagine. J Bacteriol 1997; 179:2068-72. [PMID: 9068657 PMCID: PMC178935 DOI: 10.1128/jb.179.6.2068-2072.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhizobium etli mutants unable to grow on asparagine as the nitrogen and carbon source were isolated. Two kinds of mutants were obtained: AHZ1, with very low levels of aspartase activity, and AHZ7, with low levels of asparaginase and very low levels of aspartase compared to the wild-type strain. R. etli had two asparaginases differentiated by their thermostabilities, electrophoretic mobilities, and modes of regulation. The AHZ mutants nodulated as did the wild-type strain and had nitrogenase levels similar to that of the wild-type strain.
Collapse
Affiliation(s)
- A Huerta-Zepeda
- Departamento de Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | | | | | | | | | | | | |
Collapse
|
23
|
Durán S, Sánchez-Linares L, Huerta-Saquero A, Du Pont G, Huerta-Zepeda A, Calderón J. Identification of two glutaminases in Rhizobium etli. Biochem Genet 1996; 34:453-65. [PMID: 9126674 DOI: 10.1007/bf00570126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present evidence that Rhizobium etli has two glutaminases differentiated by their thermostability and electrophoretic mobility. The thermostable glutaminase (B) is constitutive, in contrast with the thermolabile glutaminase (A), which is positively regulated by glutamine and negatively regulated by ammonium and by the carbon source. In distinction to glutaminase A, glutaminase B plays a minor role in the utilization of glutamine as a carbon source, but it may play a role in maintaining the balance of glutamine and glutamate. By complementation of the Rhizobium etli LM16 mutant that lacks glutaminase A, we have cloned the gene that codes for this enzyme.
Collapse
Affiliation(s)
- S Durán
- Departamento de Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México México D.F., México
| | | | | | | | | | | |
Collapse
|
24
|
On ammonia futile cycling in a marine unicellular alga. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Flores-Samaniego B, Olivera H, González A. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae. J Bacteriol 1993; 175:7705-6. [PMID: 7902349 PMCID: PMC206930 DOI: 10.1128/jb.175.23.7705-7706.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.
Collapse
Affiliation(s)
- B Flores-Samaniego
- Departamento de Microbiología, Universidad Nacional Autónoma de México, D.F., Mexico
| | | | | |
Collapse
|
26
|
Parry-Billings M, Newsholme EA. The possible role of glutamine substrate cycles in skeletal muscle. Biochem J 1991; 279 ( Pt 1):327-8. [PMID: 1834055 PMCID: PMC1151586 DOI: 10.1042/bj2790327] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|