1
|
Bransfield RC, Mao C, Greenberg R. Microbes and Mental Illness: Past, Present, and Future. Healthcare (Basel) 2023; 12:83. [PMID: 38200989 PMCID: PMC10779437 DOI: 10.3390/healthcare12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
A review of the association between microbes and mental illness is performed, including the history, relevant definitions, infectious agents associated with mental illnesses, complex interactive infections, total load theory, pathophysiology, psychoimmunology, psychoneuroimmunology, clinical presentations, early-life infections, clinical assessment, and treatment. Perspectives on the etiology of mental illness have evolved from demonic possession toward multisystem biologically based models that include gene expression, environmental triggers, immune mediators, and infectious diseases. Microbes are associated with a number of mental disorders, including autism, schizophrenia, bipolar disorder, depressive disorders, and anxiety disorders, as well as suicidality and aggressive or violent behaviors. Specific microbes that have been associated or potentially associated with at least one of these conditions include Aspergillus, Babesia, Bartonella, Borna disease virus, Borrelia burgdorferi (Lyme disease), Candida, Chlamydia, coronaviruses (e.g., SARS-CoV-2), Cryptococcus neoformans, cytomegalovirus, enteroviruses, Epstein-Barr virus, hepatitis C, herpes simplex virus, human endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella virus, Group A Streptococcus (PANDAS), Taenia solium, Toxoplasma gondii, Treponema pallidum (syphilis), Trypanosoma, and West Nile virus. Recognition of the microbe and mental illness association with the development of greater interdisciplinary research, education, and treatment options may prevent and reduce mental illness morbidity, disability, and mortality.
Collapse
Affiliation(s)
- Robert C. Bransfield
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Hackensack Meridian School of Medicine, Nutey, NJ 07110, USA
| | | | | |
Collapse
|
2
|
Kaiga A, Sato Y, Arakawa H, Rai T, Tojo A. Crescentic glomerulonephritis associated with syphilis: a case report and review of the literature. J Med Case Rep 2023; 17:549. [PMID: 38129918 PMCID: PMC10740279 DOI: 10.1186/s13256-023-04293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Crescentic glomerulonephritis with syphilis infection is rare, and the mechanism underlying the formation of glomerular capillary wall damage-induced crescent has not been elucidated. CASE PRESENTATION A 62-year-old Japanese male showed edema, eruption, and rapid deterioration of the renal function after an acute syphilis infection. A renal biopsy showed crescentic glomerulonephritis with C3 deposition in the glomerular capillary wall, and immunostaining for anti-Treponema pallidum antibody was weakly positive in some interstitium and one glomerulus. Electron microscopy revealed the presence of string-shaped structures in the glomerular capillary walls. After treatment with penicillin followed by prednisolone, the renal function and urinary abnormalities, including Treponema pallidum protein, disappeared. CONCLUSIONS Crescentic glomerulonephritis associated with syphilis showed a string-shaped deposition in the glomerular capillary and urinary Treponema pallidum protein excretion, and was effectively treated with penicillin and prednisolone.
Collapse
Affiliation(s)
- Akiko Kaiga
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mubu, Tochigi, Japan
| | - Yuka Sato
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mubu, Tochigi, Japan
| | - Haruna Arakawa
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mubu, Tochigi, Japan
| | - Tatemitsu Rai
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mubu, Tochigi, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension/Blood Purification Center, Dokkyo Medical University Hospital, 880 Kitakobayashi, Mubu, Tochigi, 321-0293, Japan.
| |
Collapse
|
3
|
Liu D, Chen R, He Y, Wang YJ, Lin LR, Liu LL, Yang TC, Tong ML. Longitudinal Variations in the tprK Gene of Treponema pallidum in an Amoy Strain-Infected Rabbit Model. Microbiol Spectr 2023; 11:e0106723. [PMID: 37347187 PMCID: PMC10433980 DOI: 10.1128/spectrum.01067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yun He
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Tong ML, Liu D, Liu LL, Lin LR, Zhang HL, Tian HM, Yang TC. Identification of Treponema pallidum-specific protein biomarkers in syphilis patient serum using mass spectrometry. Future Microbiol 2021; 16:1041-1051. [PMID: 34493087 DOI: 10.2217/fmb-2021-0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To screen novel biomarkers in serum of syphilis patients using a mass spectrometry-based method. Materials & methods: Sera were collected from 18 syphilis patients and divided into three groups. Every six serum samples (before and after treatment) in each group were pooled and detected by mass spectrometry. Results: Twenty-five unique peptides corresponding to 15 Treponema pallidum proteins were discovered. Among them, Tp0369 was discovered as a promising biomarker candidate in this study. Tp0524 and Tp0984 levels decreased 0.38-fold and 0.51-fold after BPG treatment, respectively, which may be related to disease outcomes of syphilis. Conclusion: These findings confirmed the presence of detectable T. pallidum protein in patients' serum, which could promote the development of syphilis diagnostics.
Collapse
Affiliation(s)
- Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Hui-Min Tian
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| |
Collapse
|
5
|
Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum. mBio 2020; 11:e02249-20. [PMID: 32963009 PMCID: PMC7512555 DOI: 10.1128/mbio.02249-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Z Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael V Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chad A Brautigam
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Ji H, Chang L, Zhao J, Zhang L, Jiang X, Guo F, Wang L. Evaluation of ELISA and CLIA for Treponema pallidum specific antibody detection in China: A multicenter study. J Microbiol Methods 2019; 166:105742. [PMID: 31629021 DOI: 10.1016/j.mimet.2019.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Considering the rapid increase of syphilis infections in several countries including China, searching for a screening test with sufficient sensitivity and specificity is extremely urgent. The current study mainly researched the performance for Treponema pallidum (TP) detection by electro-chemiluminescence immunoassays (ECLIA), chemiluminescence immunoassays (CLIA) and four commercially available ELISA assays commonly used in China. METHODS 1372 plasma samples collected from blood centers/banks were tested with 6 assays in 8 laboratories with the Western blot (WB) or TP particle agglutination assay (TPPA) as confirmatory tests. RESULTS With the WB or TPPA as confirmatory test, the ECLIA demonstrated the highest specificity (95.2%) and Kappa coefficient (0.915), but lowest sensitivity (97.2%) compared with the other 5 assays. While the Wantai-ELISA showed the highest sensitivity (99.6%) among the 6 assays. Sensitivities were found to be significantly increased when any two of the six assays were combined for TP detection. Our study demonstrated that the Wantai-ELISA combined with the ECLIA or the KHB-ELISA or the InTec-ELISA would increase the sensitivities up to 100%. Further analysis showed that the specificities and positive predictive values were both 100.0% when cut-off of S/CO values were served as 15.42 for the ECLIA and 7.14 for the CLIA, indicating that samples under these conditions can be directly considered as positive without confirmation. CONCLUSIONS The CLIA and the ECLIA are more specific than ELISA to detect TP antibodies. However, ELISA is a sensitive method, especially in combination with the CLIA or the ECLIA or another types of ELISA, suitable for the routine screening of blood donations in China.
Collapse
Affiliation(s)
- Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Junpeng Zhao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lu Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Fei Guo
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
7
|
Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, Lin Y, Niu JJ, Yang TC. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis 2019; 13:e0006855. [PMID: 30789907 PMCID: PMC6400401 DOI: 10.1371/journal.pntd.0006855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/05/2019] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The highly variable tprK gene of Treponema pallidum has been acknowledged to be one of the mechanisms that causes persistent infection. Previous studies have mainly focused on the heterogeneity in tprK in propagated strains using a clone-based Sanger approach. Few studies have investigated tprK directly from clinical samples using deep sequencing. Methods/Principal findings We conducted a comprehensive analysis of 14 primary syphilis clinical isolates of T. pallidum via next-generation sequencing to gain better insight into the profile of tprK in primary syphilis patients. Our results showed that there was a mixture of distinct sequences within each V region of tprK. Except for the predominant sequence for each V region as previously reported using the clone-based Sanger approach, there were many minor variants of all strains that were mainly observed at a frequency of 1–5%. Interestingly, the identified distinct sequences within the regions were variable in length and differed by only 3 bp or multiples of 3 bp. In addition, amino acid sequence consistency within each V region was found among the 14 strains. Among the regions, the sequence IASDGGAIKH in V1 and the sequence DVGHKKENAANVNGTVGA in V4 showed a high stability of inter-strain redundancy. Conclusions The seven V regions of the tprK gene in primary syphilis infection demonstrated high diversity; they generally contained a high proportion sequence and numerous low-frequency minor variants, most of which are far below the detection limit of Sanger sequencing. The rampant variation in each V region was regulated by a strict gene conversion mechanism that maintained the length difference to 3 bp or multiples of 3 bp. The highly stable sequence of inter-strain redundancy may indicate that the sequences play a critical role in T. pallidum virulence. These highly stable peptides are also likely to be potential targets for vaccine development. Variations in tprK have been acknowledged to be the major contributors to persistent Treponema pallidum infections. Previous studies were based on the clone-based Sanger approach, and most of them were performed in propagated strains using rabbits, which could not reflect the actual heterogeneous characteristics of tprK in the context of human infection. In the present study, we employed next-generation sequencing (NGS) to explore the profile of tprK directly from 14 patients with primary syphilis. Our results showed a mixture of distinct sequences within each V region of tprK in these clinical samples. First, the length of identified distinct sequences within the region was variable, which differed by only 3 bp or multiples of 3 bp. Then, among the mixtures, a predominant sequence was usually observed for each V region, and the remaining minor variants were mainly observed at a frequency of 1–5%. In addition, there was a scenario of amino acid sequence consistency within the regions among the 14 primary syphilis strains. The identification of the profile of tprK in the context of human primary syphilis infection contributes to further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Zhongshan Hospital, Fujian Medical University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
8
|
Guedes L, Dias O, Neto J, Ribeiro da Silva LDP, Mendonça de Souza SMF, Iñiguez AM. First Paleogenetic Evidence of Probable Syphilis and Treponematoses Cases in the Brazilian Colonial Period. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8304129. [PMID: 30406142 PMCID: PMC6199871 DOI: 10.1155/2018/8304129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 09/12/2018] [Indexed: 12/28/2022]
Abstract
Despite interest in the origins of syphilis, paleopathological analysis has not provided answers, and paleogenetic diagnosis remains a challenge. Even venereal syphilis has low infectivity which means there are few circulating bacteria for most of the individual's life. Human remains recovered from the Nossa Senhora do Carmo Church (17th to 19th centuries) and the Praça XV Cemetery (18th to 19th centuries), Rio de Janeiro, Brazil, were subjected to Treponema paleogenetic analysis. Historical data point to endemic treponemal infections in the city, including venereal syphilis. Based on the physiopathology of Treponema pallidum infection, 25 samples, mostly from skull remains of young adults, with no visible paleopathological evidence of treponematoses, were analyzed. PCR with three molecular targets, tpp47, polA, and tpp15, were applied. Ancient DNA tpp15 sequences were recovered from two young adults from each archaeological site and revealed the polymorphism that characterizes T. p. subsp. pallidum in a female up to 18 years old, suggesting a probable case of syphilis infection. The results indicated that the epidemiological context and the physiopathology of the disease should be considered in syphilis paleogenetic detection. The findings of Treponema sp. aDNA are consistent with historical documents that describe venereal syphilis and yaws as endemic diseases in Rio de Janeiro. Data on the epidemiological characteristics of the disease and its pathophysiology offer new perspectives in paleopathology.
Collapse
Affiliation(s)
- Lucélia Guedes
- Laboratório de Biologia de Tripanosomatídeos (LABTRIP), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | - Ondemar Dias
- Instituto de Arqueologia Brasileira, Estr. Cruz Vermelha, 45 – Vila Santa Teresa, Belford Roxo, Rio de Janeiro, RJ 26193-415, Brazil
| | - Jandira Neto
- Instituto de Arqueologia Brasileira, Estr. Cruz Vermelha, 45 – Vila Santa Teresa, Belford Roxo, Rio de Janeiro, RJ 26193-415, Brazil
| | - Laura da Piedade Ribeiro da Silva
- Instituto de Arqueologia Brasileira, Estr. Cruz Vermelha, 45 – Vila Santa Teresa, Belford Roxo, Rio de Janeiro, RJ 26193-415, Brazil
| | - Sheila M. F. Mendonça de Souza
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sérgio Arouca, Fundação Oswaldo Cruz, R. Leopoldo Bulhões, 1480 Bonsucesso, Rio de Janeiro, RJ 21041-210, Brazil
| | - Alena Mayo Iñiguez
- Laboratório de Biologia de Tripanosomatídeos (LABTRIP), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| |
Collapse
|
9
|
Kurniyati K, Liu J, Zhang JR, Min Y, Li C. A pleiotropic role of FlaG in regulating the cell morphogenesis and flagellar homeostasis at the cell poles of Treponema denticola. Cell Microbiol 2018; 21:e12886. [PMID: 29935042 DOI: 10.1111/cmi.12886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
FlaG homologue has been found in several bacteria including spirochetes; however, its function is poorly characterised. In this report, we investigated the role of TDE1473, a putative FlaG, in the spirochete Treponema denticola, a keystone pathogen of periodontitis. TDE1473 resides in a large gene operon that is controlled by a σ70 -like promoter and encodes a putative FlaG protein of 123 amino acids. TDE1473 can be detected in the periplasmic flagella (PFs) of T. denticola, suggesting that it is a flagella-associated protein. Consistently, in vitro studies demonstrate that the recombinant TDE1473 interacts with the PFs in a dose-dependent manner and that such an interaction requires FlaA, a flagellar filament sheath protein. Deletion of TDE1473 leads to long and less motile mutant cells. Cryo-electron tomography analysis reveal that the wild-type cells have 2-3 PFs with nearly homogenous lengths (ranging from 3 to 6 μm), whereas the mutant cells have less intact PFs with disparate lengths (ranging from 0.1 to 9 μm). The phenotype of T. denticola TDE1473 mutant reported here is different from its counterparts in other bacteria, which provides insight into further understanding the role of FlaG in the regulation of bacterial cell morphogenesis and flagellation.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jun Liu
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yunjiang Min
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1436080. [PMID: 28523273 PMCID: PMC5421087 DOI: 10.1155/2017/1436080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
Abstract
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.
Collapse
|
11
|
Kurniyati K, Kelly JF, Vinogradov E, Robotham A, Tu Y, Wang J, Liu J, Logan SM, Li C. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola. Mol Microbiol 2017; 103:67-85. [PMID: 27696564 PMCID: PMC5182079 DOI: 10.1111/mmi.13544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Abstract
While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2-methoxy-4,5,6-trihydroxy-hexanoyl residue in which the Non has a pseudaminic acid configuration (L-glycero-L-manno) and is β-linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O-linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll-like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - John F. Kelly
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Anna Robotham
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Youbing Tu
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - Juyu Wang
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
- Department of Microbiology and Immunology, The State University of New York at Buffalo, New York 14214, USA
| |
Collapse
|
12
|
A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc Natl Acad Sci U S A 2016; 113:E6228-E6237. [PMID: 27681618 DOI: 10.1073/pnas.1611594113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Gram-negative bacterial outer membrane fortifies the cell against environmental toxins including antibiotics. Unique glycolipids called lipopolysaccharide/lipooligosaccharide (LPS/LOS) are enriched in the cell-surface monolayer of the outer membrane and promote antimicrobial resistance. Colistin, which targets the lipid A domain of LPS/LOS to lyse the cell, is the last-line treatment for multidrug-resistant Gram-negative infections. Lipid A is essential for the survival of most Gram-negative bacteria, but colistin-resistant Acinetobacter baumannii lacking lipid A were isolated after colistin exposure. Previously, strain ATCC 19606 was the only A. baumannii strain demonstrated to subsist without lipid A. Here, we show that other A. baumannii strains can also survive without lipid A, but some cannot, affording a unique model to study endotoxin essentiality. We assessed the capacity of 15 clinical A. baumannii isolates including 9 recent clinical isolates to develop colistin resistance through inactivation of the lipid A biosynthetic pathway, the products of which assemble the LOS precursor. Our investigation determined that expression of the well-conserved penicillin-binding protein (PBP) 1A, prevented LOS-deficient colony isolation. The glycosyltransferase activity of PBP1A, which aids in the polymerization of the peptidoglycan cell wall, was lethal to LOS-deficient A. baumannii Global transcriptomic analysis of a PBP1A-deficient mutant and four LOS-deficient A. baumannii strains showed a concomitant increase in transcription of lipoproteins and their transporters. Examination of the LOS-deficient A. baumannii cell surface demonstrated that specific lipoproteins were overexpressed and decorated the cell surface, potentially compensating for LOS removal. This work expands our knowledge of lipid A essentiality and elucidates a drug resistance mechanism.
Collapse
|
13
|
Osbak KK, Houston S, Lithgow KV, Meehan CJ, Strouhal M, Šmajs D, Cameron CE, Van Ostade X, Kenyon CR, Van Raemdonck GA. Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis 2016; 10:e0004988. [PMID: 27606673 PMCID: PMC5015957 DOI: 10.1371/journal.pntd.0004988] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Collapse
Affiliation(s)
- Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Conor J Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Sommese L, De Pascale MR, Capuano M, Napoli C. Efforts in blood safety: Integrated approach for serological diagnosis of syphilis. Asian J Transfus Sci 2016; 10:22-30. [PMID: 27011666 PMCID: PMC4782488 DOI: 10.4103/0973-6247.164267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent efforts in transfusion medicine are focused on improving blood safety as well as establishing effective and efficient diagnostic algorithms for donor screening. To date, syphilis is a transfusion-transmitted infection re-emerged in many countries as a public health threat especially among populations at specific risk. This task requires new diagnostic tools and hemovigilance programs. The current diagnostic methodologies are debated, since presenting limitations and unresolved issues with special regard to the clinical interpretation of serological patterns, especially in asymptomatic patients and in blood donors. Furthermore, the switch from the traditional to alternative diagnostic algorithms underlines the lack of a gold standard, which has not been supported by shared guidelines. Besides, a lot of ongoing clinical trials on the performance of diagnostic assays, on the serological response associated with different pharmacological treatments, as well as on the prevention programs are currently under investigation. Here, we review the recent literature about the diagnosis of syphilis especially for low-risk populations proposing the adoption of an algorithm for blood donor screening that should satisfy the need of increasing safety for transfusion-transmitted infections in the modern blood transfusion centers.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Transfusion Medicine and Transplant Immunology, U.O.C. Immunohematology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Italy
| | - Maria Rosaria De Pascale
- Department of Transfusion Medicine and Transplant Immunology, U.O.C. Immunohematology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Italy
| | - Maria Capuano
- Department of Transfusion Medicine and Transplant Immunology, U.O.C. Immunohematology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Italy
| | - Claudio Napoli
- Department of Transfusion Medicine and Transplant Immunology, U.O.C. Immunohematology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Italy
| |
Collapse
|
15
|
Peng X, Knouse JA, Hernon KM. Rabbit Models for Studying Human Infectious Diseases. Comp Med 2015; 65:499-507. [PMID: 26678367 PMCID: PMC4681244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/03/2015] [Accepted: 06/28/2015] [Indexed: 06/05/2023]
Abstract
Using an appropriate animal model is crucial for mimicking human disease conditions, and various facets including genetics, anatomy, and pathophysiology should be considered before selecting a model. Rabbits (Oryctolagus cuniculus) are well known for their wide use in production of antibodies, eye research, atherosclerosis and other cardiovascular diseases. However, a systematic description of the rabbit as primary experimental models for the study of various human infectious diseases is unavailable. This review focuses on the human infectious diseases for which rabbits are considered a classic or highly appropriate model, including AIDS (caused by HIV1), adult T-cell leukemia-lymphoma (human T-lymphotropic virus type 1), papilloma or carcinoma (human papillomavirus) , herpetic stromal keratitis (herpes simplex virus type 1), tuberculosis (Mycobacterium tuberculosis), and syphilis (Treponema pallidum). In addition, particular aspects of the husbandry and care of rabbits used in studies of human infectious diseases are described.
Collapse
Affiliation(s)
- Xuwen Peng
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA.
| | - John A Knouse
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Krista M Hernon
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
16
|
Houston S, Taylor JS, Denchev Y, Hof R, Zuerner RL, Cameron CE. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum. Infect Immun 2015; 83:4204-16. [PMID: 26283341 PMCID: PMC4598410 DOI: 10.1128/iai.00643-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yavor Denchev
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard L Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Research, Uppsala, Sweden
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Dwivedi UN, Tiwari S, Singh P, Singh S, Awasthi M, Pandey VP. Treponema pallidum putative novel drug target identification and validation: rethinking syphilis therapeutics with plant-derived terpenoids. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:104-14. [PMID: 25683888 DOI: 10.1089/omi.2014.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Syphilis, a slow progressive and the third most common sexually transmitted disease found worldwide, is caused by a spirochete gram negative bacteria Treponema pallidum. Emergence of antibiotic resistant T. pallidum has led to a search for novel drugs and their targets. Subtractive genomics analyses of pathogen T. pallidum and host Homo sapiens resulted in identification of 126 proteins essential for survival and viability of the pathogen. Metabolic pathway analyses of these essential proteins led to discovery of nineteen proteins distributed among six metabolic pathways unique to T. pallidum. One hundred plant-derived terpenoids, as potential therapeutic molecules against T. pallidum, were screened for their drug likeness and ADMET (absorption, distribution, metabolism, and toxicity) properties. Subsequently the resulting nine terpenoids were docked with five unique T. pallidum targets through molecular modeling approaches. Out of five targets analyzed, D-alanine:D-alanine ligase was found to be the most promising target, while terpenoid salvicine was the most potent inhibitor. A comparison of the inhibitory potential of the best docked readily available natural compound, namely pomiferin (flavonoid) with that of the best docked terpenoid salvicine, revealed that salvicine was a more potent inhibitor than that of pomiferin. To the best of our knowledge, this is the first report of a terpenoid as a potential therapeutic molecule against T. pallidum with D-alanine:D-alanine ligase as a novel target. Further studies are warranted to evaluate and explore the potential clinical ramifications of these findings in relation to syphilis that has public health importance worldwide.
Collapse
Affiliation(s)
- Upendra N Dwivedi
- Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility, University of Lucknow , Lucknow, U.P., India
| | | | | | | | | | | |
Collapse
|
18
|
Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein. mBio 2015; 6:e00519-15. [PMID: 25944861 PMCID: PMC4436053 DOI: 10.1128/mbio.00519-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. Treponema pallidum, the syphilis spirochete, exploits its periplasmic lipoproteins for a number of essential physiologic processes. One of these, flavin-trafficking protein (Ftp), not only exploits its catalytic center to mediate posttranslational flavinylation of proteins (to create flavoproteins) but also likely maintains the periplasmic flavin pool via its unique ability to hydrolyze FAD. This functional diversity within a single lipoprotein is quite remarkable and reflects the enzymatic versatility of the treponemal lipoproteins, as well as molecular parsimony in an organism with a limited genome. Ftp-mediated protein flavinylation in the periplasm also likely is a key aspect of a predicted flavin-dependent Rnf-based redox homeostasis system at the cytoplasmic membrane of T. pallidum. In addition to its importance in T. pallidum physiology, Ftp homologs exist in other bacteria, thereby expanding our understanding of the bacterial periplasm as a metabolically active subcellular compartment for flavoprotein biogenesis as well as flavin homeostasis.
Collapse
|
19
|
Morshed MG, Singh AE. Recent trends in the serologic diagnosis of syphilis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:137-47. [PMID: 25428245 PMCID: PMC4308867 DOI: 10.1128/cvi.00681-14] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complexities in the diagnosis of syphilis continue to challenge clinicians. While direct tests (e.g., microscopy or PCR) are helpful in early syphilis, the mainstay of diagnosis remains serologic tests. The traditional algorithm using a nontreponemal test (NTT) followed by a treponemal test (TT) remains the standard in many parts of the world. More recently, the ability to automate the TT has led to the increasingly widespread use of reverse algorithms using treponemal enzyme immunoassays (EIAs). Rapid, point-of-care TTs are in widespread use in developing countries because of low cost, ease of use, and reasonable performance. However, none of the current diagnostic algorithms are able to distinguish current from previously treated infections. In addition, the reversal of traditional syphilis algorithms has led to uncertainty in the clinical management of patients. The interpretation of syphilis tests is further complicated by the lack of a reliable gold standard for syphilis diagnostics, and the newer tests can result in false-positive reactions similar to those seen with older tests. Little progress has been made in the area of serologic diagnostics for congenital syphilis, which requires assessment of maternal treatment and serologic response as well as clinical and laboratory investigation of the neonate for appropriate management. The diagnosis of neurosyphilis continues to require the collection of cerebrospinal fluid for a combination of NTT and TT, and, while newer treponemal EIAs look promising, more studies are needed to confirm their utility. This article reviews current tests and discusses current controversies in syphilis diagnosis, with a focus on serologic tests.
Collapse
Affiliation(s)
- Muhammad G Morshed
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, and BC Public Health Microbiology and Reference Laboratory, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Ameeta E Singh
- Department of Medicine/Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Performance evaluation of the Elecsys syphilis assay for the detection of total antibodies to Treponema pallidum. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:17-26. [PMID: 25355799 DOI: 10.1128/cvi.00505-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Syphilis is a health problem of increasing incidence in recent years that may have severe complications if not diagnosed and treated at an early stage. There are many diagnostic tests available for syphilis, but there is no gold standard, and diagnosis therefore usually relies upon a combination of tests. In this multicenter study, we evaluated the treponemal Elecsys syphilis assay for use in the diagnosis of syphilis in routine samples, i.e., when syphilis is suspected or during antenatal or blood donation screening. The sensitivity and specificity of the Elecsys syphilis assay were compared head to head with those of other treponemal assays used in routine clinical practice and were assessed in potentially cross-reactive samples from patients with Epstein-Barr virus, HIV, and Lyme disease. In a total of 8,063 syphilis-negative samples collected from routine diagnostic requests and blood donations, the Elecsys syphilis assay had a specificity of 99.88%. In 928 samples previously identified as syphilis positive, the sensitivity was 99.57 to 100% (the result is presented as a range depending on whether four initially indeterminate samples are included in the assessment). The specificity of the Elecsys syphilis assay in patients with other infections was 100%; no false-positive samples were identified.
Collapse
|
21
|
Nakamura S, Leshansky A, Magariyama Y, Namba K, Kudo S. Direct measurement of helical cell motion of the spirochete leptospira. Biophys J 2014; 106:47-54. [PMID: 24411236 DOI: 10.1016/j.bpj.2013.11.1118] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 01/19/2023] Open
Abstract
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan.
| | | | - Yukio Magariyama
- National Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Quantitative Biology Center, RIKEN, Osaka, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan.
| |
Collapse
|
22
|
Franken AA, Oliver JH, Litwin CM. Comparison of a combined nontreponemal (VDRL) and treponemal immunoblot to traditional nontreponemal and treponemal assays. J Clin Lab Anal 2014; 29:68-73. [PMID: 24390867 DOI: 10.1002/jcla.21730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serology is the mainstay for the diagnosis and management of patients with syphilis. Newer technologies such as immunoblotting are now available for the diagnosis of syphilis. METHODS A commercial IgM/IgG immunoblot assay that detects both nontreponemal (VDRL-Venereal Disease Research Laboratory) and treponemal antibodies was compared with standard nontreponemal and treponemal assays. The immunoblot and T. pallidum particle agglutination assay (TP-PA) were performed on 198 samples. Ninety-seven samples were Rapid plasma reagin (RPR)-positive and one hundred one were RPR-negative. Positive RPR samples were titered by VDRL. RESULTS The agreement, sensitivity, and specificity of the IgM/IgG VDRL results of the immunoblot compared to RPR were 74.2% (95% CI: 67.2-80.2), 77.3% (95% CI: 70.2-83.4), and 71.3% (95% CI: 64.4-77.1), respectively. The agreement, sensitivity, and specificity of the IgM/IgG treponemal immunoblot compared to TP-PA were 100% for all parameters, if the ten equivocal results were not used in the calculation. CONCLUSION The treponemal portion of the ViraBlot IgM/IgG immunoblot compared well with the treponemal confirmation assay and could be a useful supplemental method to fluorescent treponemal antibody or TP-PA for the confirmation of syphilis. The addition of the detection of nontreponemal antibodies to the immunoblot assay, however, may not be of added benefit to the overall assay, due to decreased sensitivity and specificity compared to standard assays.
Collapse
Affiliation(s)
- Alicia A Franken
- Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | | | | |
Collapse
|
23
|
Abstract
Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host. Syphilis remains a public health problem, but very little is known about the causative bacterium. This is because Treponema pallidum still cannot be cultured in the laboratory. Rather, T. pallidum must be cultivated in laboratory rabbits, a restriction that poses many insurmountable experimental obstacles. Approaches to learn more about the structure and function of T. pallidum’s cell envelope, which is both the physical and functional interface between T. pallidum and its human host, are severely limited. One approach for elucidating T. pallidum’s cell envelope has been to determine the three-dimensional structures of its membrane lipoproteins, molecules that serve many critical survival functions. Herein, we describe a previously unknown transport system that T. pallidum uses to import riboflavin, an essential nutrient for the organism’s survival. Moreover, we found that this transport system is present in other pathogenic spirochetes. This is the first description of this new type of bacterial riboflavin transport system.
Collapse
|
24
|
ROTANOV SV, HAYRULIN RF, FRIGO NV. Studies of T.pallidum proteome for the purpose of improving laboratory assessments for the syphilis diagnostics. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The review covers problems related to the ways of development of modern methods of laboratory assessment used for syphilis diagnostics on the basis of the use of specific antigens of the pathogenic agent. Results of studies of some immune proteome proteins of T.pallidum have been provided. The data on the possibility of their use for the development of new laboratory methods based on the detection of antibodies to Т. pallidum target proteins in blood serum samples of patients with different clinical forms of syphilis.
Collapse
|
25
|
Houston S, Hof R, Honeyman L, Hassler J, Cameron CE. Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog 2012; 8:e1002822. [PMID: 22910436 PMCID: PMC3406077 DOI: 10.1371/journal.ppat.1002822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Treponema pallidum is a highly invasive pathogen that undergoes rapid dissemination to establish widespread infection. Previous investigations identified the T. pallidum adhesin, pallilysin, as an HEXXH-containing metalloprotease that undergoes autocatalytic cleavage and degrades laminin and fibrinogen. In the current study we characterized pallilysin's active site, activation requirements, cellular location, and fibrin clot degradation capacity through both in vitro assays and heterologous treponemal expression and degradation studies. Site-directed mutagenesis showed the pallilysin HEXXH motif comprises at least part of the active site, as introduction of three independent mutations (AEXXH [H198A], HAXXH [E199A], and HEXXA [H202A]) abolished pallilysin-mediated fibrinogenolysis but did not adversely affect host component binding. Attainment of full pallilysin proteolytic activity was dependent upon autocatalytic cleavage of an N-terminal pro-domain, a process which could not occur in the HEXXH mutants. Pallilysin was shown to possess a thrombin cleavage site within its N-terminal pro-domain, and in vitro studies confirmed cleavage of pallilysin with thrombin generates a truncated pallilysin fragment that has enhanced proteolytic activity, suggesting pallilysin can also exploit the host coagulation process to facilitate protease activation. Opsonophagocytosis assays performed with viable T. pallidum demonstrated pallilysin is a target of opsonic antibodies, consistent with a host component-interacting, surface-exposed cellular location. Wild-type pallilysin, but not the HEXXA mutant, degraded fibrin clots, and similarly heterologous expression of pallilysin in the non-invasive spirochete Treponema phagedenis facilitated fibrin clot degradation. Collectively these results identify pallilysin as a surface-exposed metalloprotease within T. pallidum that possesses an HEXXH active site motif and requires autocatalytic or host-mediated cleavage of a pro-domain to attain full host component-directed proteolytic activity. Furthermore, our finding that expression of pallilysin confers upon T. phagedenis the capacity to degrade fibrin clots suggests this capability may contribute to the dissemination potential of T. pallidum. Syphilis, caused by the spirochete Treponema pallidum, is a chronic sexually transmitted disease which infects 12 million people annually. Treponema pallidum is highly invasive and undergoes widespread dissemination via the circulatory system. Similar to other invasive pathogens, T. pallidum has been shown to express a host-component-degrading protease, pallilysin, that binds and degrades human fibrinogen and laminin, suggesting a role for pallilysin in bacterial dissemination. Here we identify pallilysin active site residues using mutagenesis and show that, unlike wild-type, mutants fail to degrade fibrinogen. We show that pallilysin is converted into a highly proteolytically active form via truncation of a pro-domain through either autocatalytic cleavage or host-derived, thrombin-mediated cleavage. We also demonstrate that recombinant pallilysin enables clot dissolution and that pallilysin expressed on the surface of the non-invasive spirochete Treponema phagedenis confers the ability to degrade fibrin clots. Further, we show that pallilysin is present on the surface of T. pallidum and thus resides in a cellular location that facilitates direct contact with host components. Our study provides insight into the mechanism of interaction between pallilysin and two important coagulation system proteins, fibrinogen and thrombin, and suggests a novel mechanism that T. pallidum may utilize for dissemination during infection.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Lisa Honeyman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julia Hassler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
26
|
Ping L, Platzer M, Wen G, Delaroque N. Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis. ScientificWorldJournal 2012; 2012:504905. [PMID: 22454608 PMCID: PMC3289904 DOI: 10.1100/2012/504905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/14/2011] [Indexed: 11/17/2022] Open
Abstract
A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell) but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.
Collapse
Affiliation(s)
- Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
27
|
Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 2012; 416:678-96. [PMID: 22306465 DOI: 10.1016/j.jmb.2012.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/22/2023]
Abstract
Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of "tetratricopeptide repeat" (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mardanly CG, Arsen'eva VA, Frigo NV, Rotanov SV, Amelina EA, Zakharov MV, Mardanly SG, Arseniyeva VA, Frigo NV, Rotanov SV, Amelina YA, Zakharov MV. Using the Line Blot Syphilis test system for diagnosingsyphilis by the linear immunoblotting method. VESTNIK DERMATOLOGII I VENEROLOGII 2011. [DOI: 10.25208/vdv1022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
ZAO ECOlab (Russia) developed Line Blot Syphilis, a new test system on the basis of the linear immunoblotting method
using Treponema рallidum recombinant antigens. The article assessed the diagnostic value of the Line Blot Syphilis test
system in the form of a confirmatory test. As a part of the conducted study, the test system demonstrated its absolute
sensitivity and specificity to serum-positive (n = 237) and serum-negative (n = 114) samples, in which the presence
or absence of Т.pallidum antibodies was confirmed by two treponemal tests. As a result of examining 14 samples
attributed to doubtful analytes based on two test results (passive hemagglutination test and immunofluorescence test
with absorption), the data compliance between the Line Blot Syphilis test system and data from INNO-LIA Syphilis Score
amounted to 100% (14/14) or 93% (13/14) for the immune-enzyme assay and 57% (8/14) for the immunofluorescence
test with absorption. It is recommended to use the Line Blot Syphilis test system (ZAO ECOlab) as a confirmatory syphilis
test.
Collapse
|
29
|
Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 2010; 403:546-61. [PMID: 20850455 DOI: 10.1016/j.jmb.2010.09.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/25/2022]
Abstract
High-resolution cryo electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member of the spirochetal family. High-resolution cryo-ET reconstructions provided detailed structures of the cell envelope, which is significantly different from that of Gram-negative bacteria. The 4-nm lipid bilayer of both outer membrane and cytoplasmic membrane resolved in 3D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High-resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located cone-shaped structure at both ends of the bacterium. Furthermore, 3D subvolume averages of periplasmic flagellar motors and flagellar filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Our findings provide the most detailed structural understanding of periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and to escape host immune responses.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin, MSB 2.228, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease characterized by widespread tissue dissemination and chronic infection. In this study, we analyzed the proteome of T. pallidum by the isoelectric focusing (IEF) and nonequilibrating pH gel electrophoresis (NEPHGE) forms of two-dimensional gel electrophoresis (2DGE), coupled with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis. We determined the identity of 148 T. pallidum protein spots, representing 88 T. pallidum polypeptides; 63 of these polypeptides had not been identified previously at the protein level. To examine which of these proteins are important in the antibody response to syphilis, we performed immunoblot analysis using infected rabbit sera or human sera from patients at different stages of syphilis infection. Twenty-nine previously described antigens (predominantly lipoproteins) were detected, as were a number of previously unidentified antigens. The reactivity patterns obtained with sera from infected rabbits and humans were similar; these patterns included a subset of antigens reactive with all serum samples tested, including CfpA, MglB-2, TmpA, TmpB, flagellins, and the 47-kDa, 17-kDa, and 15-kDa lipoproteins. A unique group of antigens specifically reactive with infected human serum was also identified and included the previously described antigen TpF1 and the hypothetical proteins TP0584, TP0608, and TP0965. This combined proteomic and serologic analysis further delineates the antigens potentially useful as vaccine candidates or diagnostic markers and may provide insight into the host-pathogen interactions that occur during T. pallidum infection.
Collapse
|
31
|
Abstract
The expression of flagellin genes in most bacteria is typically regulated by the flagellum-specific sigma(28) factor FliA, and an anti-sigma(28) factor, FlgM. However, the regulatory hierarchy in several bacteria that have multiple flagellins is more complex. In these bacteria, the flagellin genes are often transcribed by at least two different sigma factors. The flagellar filament in spirochetes consists of one to three FlaB core proteins and at least one FlaA sheath protein. Here, the genetically amenable bacterium Brachyspira hyodysenteriae was used as a model spirochete to investigate the regulation of its four flagellin genes, flaA, flaB1, flaB2, and flaB3. We found that the flaB1 and flaB2 genes are regulated by sigma(28), whereas the flaA and flaB3 genes are controlled by sigma(70). The analysis of a flagellar motor switch fliG mutant further supported this proposition; in the mutant, the transcription of flaB1 and flaB2 was inhibited, but that of flaA and flaB3 was not. In addition, the continued expression of flaA and flaB3 in the mutant resulted in the formation of incomplete flagellar filaments that were hollow tubes and consisted primarily of FlaA. Finally, our recent studies have shown that each flagellin unit contributes to the stiffness of the periplasmic flagella, and this stiffness directly correlates with motility. The regulatory mechanism identified here should allow spirochetes to change the relative ratio of these flagellin proteins and, concomitantly, vary the stiffness of their flagellar filament.
Collapse
|
32
|
Rheumatic diseases in the ancient Americas: the skeletal manifestations of treponematoses. J Clin Rheumatol 2009; 15:280-3. [PMID: 19734732 DOI: 10.1097/rhu.0b013e3181b0c848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The effect of rheumatic and infectious diseases on skeletal remains provides an important source of information for knowledge of contemporary medicine. Few pathologic conditions have attracted so much interest as treponematoses. One of these, syphilis, was the most feared venereal disease throughout the civilized world until the introduction of penicillin in the 20th century. OBJECTIVE To describe paleopathological and ceramic illustrations of treponematoses in ancient Mexico. MATERIALS AND METHODS Paleopathological and ceramic material examples from the National Institute of Anthropology and History of Mexico were reviewed. RESULTS A unique paleopathologic site for treponemal diseases comprises the La Candelaria Cave skeletal collection from northern Mexico. The cave was used as a burial site and contained the bones of at least 83 adults and 33 subadults. Fifty-one percent of the recovered skulls possess erosions of the vault consistent with treponematoses. Some of these exhibit the impressive frontal bone lytic changes with irregular borders typical of caries sicca. In addition, periostosis of the long bones was found in up to 88% of the study sample, including 6 examples of saber-shin deformity of tibias. Radiocarbon dating (-C) of a bone retrieved from the cave ranges from 1100 to 1300 A.D. Additionally, a Pre-Hispanic ceramic figurine from the Mexican state of Nayarit depicting a lame man with multiple nodular skin lesions that suggest gummatous treponemal infection is described. CONCLUSIONS These ancient specimens reinforce the notion that treponemal infection was present on the American Continent before European penetration of the New World. These very advanced paleopathologic lesions and ceramic representations demonstrate the degree to which these diseases wrought devastation before the antibiotic era. In ancient times, treponematoses were true rheumatic diseases that produced profound skeletal abnormalities marked by periosteal accretion and bone destruction.
Collapse
|
33
|
Padilla-Carlin DJ, McMurray DN, Hickey AJ. The guinea pig as a model of infectious diseases. Comp Med 2008; 58:324-340. [PMID: 18724774 PMCID: PMC2706043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/05/2007] [Accepted: 12/27/2007] [Indexed: 05/26/2023]
Abstract
The words 'guinea pig' are synonymous with scientific experimentation, but much less is known about this species than many other laboratory animals. This animal model has been used for approximately 200 y and was the first to be used in the study of infectious diseases such as tuberculosis and diphtheria. Today the guinea pig is used as a model for a number of infectious bacterial diseases, including pulmonary, sexually transmitted, ocular and aural, gastrointestinal, and other infections that threaten the lives of humans. Most studies on the immune response to these diseases, with potential therapies and vaccines, have been conducted in animal models (for example, mouse) that may have less similarity to humans because of the large number of immunologic reagents available for these other species. This review presents some of the diseases for which the guinea pig is regarded as the premier model to study infections because of its similarity to humans with regard to symptoms and immune response. Furthermore, for diseases in which guinea pigs share parallel pathogenesis of disease with humans, they are potentially the best animal model for designing treatments and vaccines. Future studies of immune regulation of these diseases, novel therapies, and preventative measures require the development of new immunologic reagents designed specifically for the guinea pig.
Collapse
Affiliation(s)
- Danielle J Padilla-Carlin
- School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC
| | - David N McMurray
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, College Station, TX
| | - Anthony J Hickey
- School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
34
|
Martin IE, Lau A, Sawatzky P, Tsang RSW, Cuff W, Lee C, Macpherson PA, Mazzulli T. Serological diagnosis of syphilis: enzyme-linked immunosorbent assay to measure antibodies to individual recombinant Treponema pallidum antigens. J Immunoassay Immunochem 2008; 29:143-51. [PMID: 18360809 DOI: 10.1080/15321810801887771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We standardized an indirect ELISA for measurement of serum antibody levels to four individual treponemal recombinant proteins that have been commonly used in a number of commercial EIAs, mostly as a mixture of antigens. When tested with 127 syphilis-negative and 37 secondary syphilis sera, ELISA O.D.s obtained for each of the four antigens clearly distinguished between these two groups of samples. Sensitivity and specificity of 100% was obtained with the current set of samples. Further evaluations with sera from different stages of syphilis can help to define the applications of this ELISA test for each of the four antigens studied.
Collapse
Affiliation(s)
- Irene E Martin
- Pathogenic Neisseria and Syphilis Diagnostic Section, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV. Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 2007; 373:681-94. [PMID: 17868688 PMCID: PMC2094014 DOI: 10.1016/j.jmb.2007.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/03/2007] [Accepted: 08/09/2007] [Indexed: 11/18/2022]
Abstract
Tp0655 of Treponema pallidum, the causative agent of syphilis, is predicted to be a 40 kDa membrane lipoprotein. Previous sequence analysis of Tp0655 noted its homology to polyamine-binding proteins of the bacterial PotD family, which serve as periplasmic ligand-binding proteins of ATP-binding-cassette (ABC) transport systems. Here, the 1.8 A crystal structure of Tp0655 demonstrated structural homology to Escherichia coli PotD and PotF. The latter two proteins preferentially bind spermidine and putrescine, respectively. All of these proteins contain two domains that sandwich the ligand between them. The ligand-binding site of Tp0655 can be occupied by 2-(N-morpholino)ethanesulfanoic acid, a component of the crystallization medium. To discern the polyamine binding preferences of Tp0655, the protein was subjected to isothermal titration calorimetric experiments. The titrations established that Tp0655 binds polyamines avidly, with a marked preference for putrescine (Kd=10 nM) over spermidine (Kd=430 nM), but the related compounds cadaverine and spermine did not bind. Structural comparisons and structure-based sequence analyses provide insights into how polyamine-binding proteins recognize their ligands. In particular, these comparisons allow the derivation of rules that may be used to predict the function of other members of the PotD family. The sequential, structural, and functional homology of Tp0655 to PotD and PotF prompt the conclusion that the former likely is the polyamine-binding component of an ABC-type polyamine transport system in T. pallidum. We thus rename Tp0655 as TpPotD. The ramifications of TpPotD as a polyamine-binding protein to the parasitic strategy of T. pallidum are discussed.
Collapse
Affiliation(s)
- Mischa Machius
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tomson FL, Conley PG, Norgard MV, Hagman KE. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes Infect 2007; 9:1267-75. [PMID: 17890130 PMCID: PMC2112743 DOI: 10.1016/j.micinf.2007.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum.
Collapse
Affiliation(s)
- Farol L Tomson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
37
|
Brinkman MB, McKevitt M, McLoughlin M, Perez C, Howell J, Weinstock GM, Norris SJ, Palzkill T. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 2006; 44:888-91. [PMID: 16517872 PMCID: PMC1393150 DOI: 10.1128/jcm.44.3.888-891.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify antigens important in the human immune response to syphilis, the serum antibody reactivity of syphilitic patients was examined with 908 of the 1,039 proteins in the proteome of Treponema pallidum subsp. pallidum using a protein array enzyme-linked immunosorbent assay. Thirty-four proteins exhibited significant reactivity when assayed with human sera from patients in the early latent stage of syphilis. A subset of antigens identified were further scrutinized for antibody reactivity at primary, secondary, and latent disease stages, and the results demonstrate that the humoral immune response to individual T. pallidum proteins develops at different rates during the time course of infection.
Collapse
Affiliation(s)
- Mary Beth Brinkman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Deka RK, Brautigam CA, Yang XF, Blevins JS, Machius M, Tomchick DR, Norgard MV. The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. J Biol Chem 2006; 281:8072-81. [PMID: 16418175 DOI: 10.1074/jbc.m511405200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treponema pallidum, the bacterial agent of syphilis, cannot be cultivated in vitro. This constraint has severely impeded the study of the membrane biology of this complex human pathogen. A structure-to-function approach thus was adopted as a means of discerning the likely function of Tp0319, a 35-kDa cytoplasmic membrane-associated lipoprotein of T. pallidum formerly designated as TmpC. A 1.7-A crystal structure showed that recombinant Tp0319 (rTp0319) consists of two alpha/beta domains, linked by three crossovers, with a deep cleft between them akin to ATP-binding cassette (ABC) receptors. In the cleft, a molecule of inosine was bound. Isothermal titration calorimetry demonstrated that rTp0319 specifically binds purine nucleosides (dissociation constant (Kd) approximately 10(-7) M). This predilection for purine nucleosides by rTp0319 is consistent with its likely role as a receptor component of a cytoplasmic membrane-associated transporter system. Reverse transcription-PCR analysis of RNA isolated from rabbit tissue-extracted T. pallidum additionally showed that tp0319 is transcriptionally linked to four other downstream open reading frames, thereby supporting the existence of an ABC-like operon (tp0319-0323). We herein thus re-name tp0319 as purine nucleoside receptor A (pnrA), with its operonic partners tp0320-0323 designated as pnrB-E, respectively. Our study not only infers that PnrA transports purine nucleosides essential for the survival of T. pallidum within its obligate human host, but to our knowledge, this is the first description of an ABC-type nucleoside transport system in any bacterium. PnrA has been grouped with a functionally uncharacterized protein family (HBG016869), thereby implying that other members of the family may have similar nucleoside-binding function(s).
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Syphilis rates in women and congenital syphilis rates have declined steadily in the United States in recent years. However, syphilis remains a worldwide public health problem, with more than 12 million cases in adults and more than half a million pregnancies affected yearly. Prenatal screening and treatment programs are limited or nonexistent in many developing countries. The genome of Treponema pallidum, one of the smallest among prokaryotes, has been sequenced, but methods for continuous in vitro cultivation of the microbe remain elusive. There are no promising candidates for future vaccines at this time. Serologic testing, for both specific treponemal and nontreponemal antibodies, continues to be a primary means of diagnosis. Penicillin remains the drug of choice for congenital and acquired syphilis in childhood. The diagnosis of syphilis beyond early infancy raises concerns for possible child sexual abuse, although progression of congenital syphilis may account for some cases. Syphilis is a potentially eradicable disease, but this can be achieved only with sustained international will and cooperation to fund the necessary screening and treatment programs.
Collapse
Affiliation(s)
- Charles R Woods
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
40
|
McKevitt M, Brinkman MB, McLoughlin M, Perez C, Howell JK, Weinstock GM, Norris SJ, Palzkill T. Genome scale identification of Treponema pallidum antigens. Infect Immun 2005; 73:4445-50. [PMID: 15972547 PMCID: PMC1168556 DOI: 10.1128/iai.73.7.4445-4450.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody responses for 882 of the 1,039 proteins in the proteome of Treponema pallidum were examined. Sera collected from infected rabbits were used to systematically identify 106 antigenic proteins, including 22 previously identified antigens and 84 novel antigens. Additionally, sera collected from rabbits throughout the course of infection demonstrated a progression in the breadth and intensity of humoral immunoreactivity against a representative panel of T. pallidum antigens.
Collapse
Affiliation(s)
- Matthew McKevitt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Smajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, Palzkill T, Weinstock GM. Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol 2005; 187:1866-74. [PMID: 15716460 PMCID: PMC1063989 DOI: 10.1128/jb.187.5.1866-1874.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA transcript levels in the syphilis spirochete Treponema pallidum subsp. pallidum (Nichols) isolated from experimentally infected rabbits were determined by the use of DNA microarray technology. This characterization of the T. pallidum transcriptome during experimental infection provides further insight into the importance of gene expression levels for the survival and pathogenesis of this bacterium.
Collapse
Affiliation(s)
- David Smajs
- Human Genome Sequencing Center, University of Texas-Houston Medical School, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
An important theme that emerges from all early historical accounts is that in addition to the decreased virulence of Treponema pallidum, the incidence of secondary syphilis has decreased drastically over the past three centuries. Even in the early 20th century, most syphilologists were of the opinion that the disease had undergone changes in its manifestations and that they were dealing with an attenuated form of the spirochete. Such opinions were based primarily on the observations that violent cutaneous reactions and fatalities associated with the secondary stage had become extremely rare. The rate of primary and secondary syphilis in the United States increased in 2002 for the second consecutive year. After a decade-long decline that led to an all-time low in 2000, the recent trend is attributable, to a large extent, by a increase in reported syphilis cases among men, particularly homosexual and bisexual men having sex with men. The present review addresses the clinical and diagnostic criteria for the recognition of secondary syphilis, the clinical course and manifestations of the disease if allowed to proceed past the primary stage of disease in untreated individuals, and the treatment for this stage of the disease.
Collapse
Affiliation(s)
- Robert E Baughn
- Baylor College of Medicine, Syphilis Research Laboratory, Bldg. 109, Room 234A, VA Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Deka RK, Neil L, Hagman KE, Machius M, Tomchick DR, Brautigam CA, Norgard MV. Structural Evidence That the 32-Kilodalton Lipoprotein (Tp32) of Treponema pallidum Is an l-Methionine-binding Protein. J Biol Chem 2004; 279:55644-50. [PMID: 15489229 DOI: 10.1074/jbc.m409263200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A structure-to-function approach was undertaken to gain insights into the potential function of the 32-kDa membrane lipoprotein (Tp32) of Treponema pallidum, the syphilis bacterium. The crystal structure of rTp32 (determined at a resolution of 1.85 A) shows that the organization of rTp32 is similar to other periplasmic ligand-binding proteins (PLBPs), in that it consists of two alpha/beta domains, linked by two crossovers, with a binding pocket between them. In the pocket, a molecule of L-methionine was detected in the electron density map. Residues from both domains interact with the ligand. One of the crossover regions is comprised of a 3(10)-helix, a feature not typical in other ligand-binding proteins. Sequence comparison shows strong similarity to other hypothetical methionine-binding proteins. Together, the data support the notion that rTp32 is a component of a periplasmic methionine uptake transporter system in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Schmidt BL. Evaluation of a new particle gel immunoassay for determination of antibodies against Treponema pallidum. J Clin Microbiol 2004; 42:2833-5. [PMID: 15184485 PMCID: PMC427853 DOI: 10.1128/jcm.42.6.2833-2835.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new particle gel immunoassay (DiaMed AG, Cressier sur Morat, Switzerland) with three recombinant Treponema pallidum antigens was evaluated with serum samples from patients with syphilis (n = 124) and patients without syphilis (n = 490). It proved to be a simple, rapid (20 min), and useful test with sensitivity, specificity, and positive and negative predictive values of 91.9, 99.8, 99.2, and 98%, respectively.
Collapse
Affiliation(s)
- Bruno L Schmidt
- Department of Dermatology, Hospital of the City of Vienna-Lainz, Wolkersbergenstr. 1, A-1130 Vienna, Austria.
| |
Collapse
|
45
|
Motaleb MA, Sal MS, Charon NW. The decrease in FlaA observed in a flaB mutant of Borrelia burgdorferi occurs posttranscriptionally. J Bacteriol 2004; 186:3703-11. [PMID: 15175283 PMCID: PMC419964 DOI: 10.1128/jb.186.12.3703-3711.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Lyme disease bacterium Borrelia burgdorferi is a motile spirochete with a flat-wave morphology. The periplasmic flagella, which are situated between the outer membrane sheath and cell cylinder, are essential for both the cell's wavy shape and motility. Here we focus on the structure and regulation of its periplasmic flagella. Previous studies have suggested that the periplasmic flagella consist of a polymer of the major filament protein FlaB and a minor protein, FlaA. We used immunoprecipitation methodology to present further evidence that FlaA is indeed a flagellar protein. In addition, in contrast to FlaA of the spirochete Brachyspira hyodysenteriae, B. burgdorferi FlaA did not impact the overall helical shape of the periplasmic flagella. We have previously shown that B. burgdorferi lacks the sigma factor-dependent cascade control of motility gene transcription found in other bacteria. To begin to understand motility gene regulation in B. burgdorferi, we examined the effects of an insertion mutation in flaB on the amounts of proteins encoded by motility genes. Of several motility gene-encoded proteins examined, only the amount of FlaA was decreased in the flaB mutant; it was 13% compared to the wild-type amount. Real-time reverse transcriptase PCR analysis indicated that this inhibition was not the result of a decrease in flaA mRNA. In addition, protein stability analysis suggested that FlaA was turned over in the flaB mutant. Our results indicate that the lack of FlaB negatively influences the amount of FlaA found in the cell and that this effect is at the level of either translational control or protein turnover.
Collapse
Affiliation(s)
- M A Motaleb
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Box 9177, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506-9177, USA.
| | | | | |
Collapse
|
46
|
McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, Norris SJ, Weinstock GM, Palzkill T. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res 2003; 13:1665-74. [PMID: 12805273 PMCID: PMC403740 DOI: 10.1101/gr.288103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A topoisomerase-based method was used to clone PCR products encoding 991 of the 1041 open reading frames identified in the genome sequence of the bacterium that causes syphilis, Treponema pallidum subsp. pallidum. Cloning the open reading frames into the univector plasmid system permitted the rapid conversion of the original clone set to other functional vectors containing a variety of promoters or tag sequences. A computational prediction of signal sequences identified 248 T. pallidum proteins that are potentially secreted from the cell. These clones were systematically converted into vectors designed to express the encoded proteins as glutathione-S-transferase fusion proteins. To test the potential of the clone set for novel antigen discovery, 85 of these fusion proteins were expressed from Escherichia coli, partially purified, and tested for antigenicity by using sera from rabbits infected with T. pallidum. Twelve of the 85 proteins bound significant levels of antibody. Of these 12 proteins, seven had previously been identified as T. pallidum antigens, and the remaining five represent novel antigens. These results demonstrate the potential of the T. pallidum clone set for antigen discovery and, more generally, for advancing the biology of this enigmatic spirochete.
Collapse
Affiliation(s)
- Matthew McKevitt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Assmar M, Soleimani M, Oreiz F, Piazak N, Hossini SM, Saghiri R, Zamani Z. Purification of periplasmic flagellar antigen from Borrelia microtti. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 34:267-72. [PMID: 12064689 DOI: 10.1080/00365540110080575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Borrelia microtti and Borrelia persica are 2 Iranian strains of Borrelia found in western Asia and responsible for relapsing fever. The outer surface antigens of Borrelia undergo variations which are responsible for the relapsing phenomenon. The fixed flagellar antigen is required for diagnosis as the variant antigens cannot be used in serological methods of diagnosis. The fixed flagellar antigen was purified for the first time from the Iranian strain of Borrelia microtti using detergent treatment and shearing in an omnimixer. Periplasmic flagella were extracted, as confirmed by electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed a band corresponding to 42 kDa. Indirect haemagglutination kits were designed using the pure flagella and the complete sonicate of Borrelia and showed 98% sensitivity and 95% specificity.
Collapse
Affiliation(s)
- Mehdi Assmar
- Department of Parasitology, Pasteur Institute of Iran, Tehran
| | | | | | | | | | | | | |
Collapse
|
48
|
Sasaki Y, Kojima A, Aoki H, Ogikubo Y, Takikawa N, Tamura Y. Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene. Vet Microbiol 2002; 86:257-67. [PMID: 11900959 DOI: 10.1016/s0378-1135(02)00002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The flagellin genes (fliC) of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum were analysed by PCR amplification and DNA sequencing. The five Clostridium species have at least two copies of the flagellin gene (fliC) arranged in tandem on the chromosome. The deduced N- and C-terminal aminoacid sequences of the flagellin proteins (FliCs) of these clostridia are well conserved but their central region aminoacid sequences are not. Phylogenic analysis based on the N-terminal aminoacid sequence of the FliC protein revealed that these clostridia, which belong to Clostridium 16S rDNA phylogenic cluster I (), are more closely related to Bacillus subtilis than to Clostridium difficile, which belongs to the cluster XI. Moreover, a multiplex polymerase reaction (PCR) system based on the fliC sequence was developed to rapidly identify C. chauvoei, C. haemolyticum, C. novyi types A and B, and C. septicum. PCR of each Clostridium amplified a species-specific band. The multiplex PCR system may be useful for rapid identification of pathogenic clostridia.
Collapse
Affiliation(s)
- Yoshimasa Sasaki
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Smajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, Weinstock GM. BAC library of T. pallidum DNA in E. coli. Genome Res 2002; 12:515-22. [PMID: 11875041 PMCID: PMC155280 DOI: 10.1101/gr.207302] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Treponema pallidum subspecies pallidum (Nichols) chromosomal DNA was used to construct a large insert bacterial artificial chromosome (BAC) library in Escherichia coli DH10B using the pBeloBAC11 cloning vector; 678 individual insert termini of 339 BAC clones (13.9 x coverage) were sequenced and the cloned chromosomal region in each clone was determined by comparison to the genomic sequence. A single 15.6-kb region of the T. pallidum chromosome was missing in the BAC library, between bp 248727 and 264323. In addition to the 12 open reading frames (ORFs) coded by this region, one additional ORF (TP0596) was not cloned as an intact gene. Altogether, 13 predicted T. pallidum ORFs (1.25% of the total) were incomplete or missing in the library. Three of 338 clones mapped by restriction enzyme digestion had detectable deletions and one clone had a detectable insertion within the insert. Of mapped clones, 19 were selected to represent the minimal set of E. coli BAC clones covering 1026 of the total 1040 (98.7%) predicted T. pallidum ORFs. Using this minimal set of clones, at least 12 T. pallidum proteins were shown to react with pooled sera from rabbits immunized with T. pallidum, indicating that at least some T. pallidum genes are transcribed and expressed in E. coli.
Collapse
Affiliation(s)
- David Smajs
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hagedorn HJ, Kraminer-Hagedorn A, De Bosschere K, Hulstaert F, Pottel H, Zrein M. Evaluation of INNO-LIA syphilis assay as a confirmatory test for syphilis. J Clin Microbiol 2002; 40:973-8. [PMID: 11880425 PMCID: PMC120265 DOI: 10.1128/jcm.40.3.973-978.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the sensitivity and specificity of a new confirmatory test for treponemal antibodies, INNO-LIA Syphilis (Innogenetics NV, Ghent, Belgium), on a large number of sera from a clinical laboratory. This multiparameter line immunoassay (LIA) uses recombinant and synthetic polypeptide antigens derived from Treponema pallidum proteins. In a single-blinded cross-sectional retrospective study, 289 seronegative sera, 219 seropositive sera, and 23 sera with an indeterminate serological status for syphilis were analyzed. All sera were tested by the T. pallidum hemagglutination assay (TPHA), the immunoglobulin (IgG)-fluorescent T. pallidum absorption assay (IgG-FTA-ABS), and the Venereal Disease Research Laboratory (VDRL) test. In addition, some seropositive samples were analyzed by the 19S-IgM-FTA-ABS test, an enzyme immunoassay (IgM-EIA), and the MarDx immunoblotting assay. Based on a consensus diagnosis derived from conventional serology, all of the sera were classified as positive, negative, or indeterminate, and the results were compared with the findings of the INNO-LIA Syphilis assay. The sensitivity and specificity of the LIA were 100% (219 of 219) and 99.3% (286 of 288), respectively. Compared to TPHA and IgG-FTA-ABS, the new test gave a significantly higher number (P = 0.021 and P < 0.0001, respectively) of correct results than either of the other two tests. The multiparameter INNO-LIA Syphilis assay is a useful confirmatory test for syphilis because it increases the reliability of syphilis diagnosis with respect to current conventional techniques.
Collapse
|