1
|
Kruger K, Myeonghyun Y, van der Wielen N, Kok DE, Hooiveld GJ, Keshtkar S, Diepeveen-de Bruin M, Balvers MGJ, Grootte-Bromhaar M, Mudde K, Ly NTHN, Vermeiren Y, de Groot LCPGM, de Vos RCH, Gonzales GB, Steegenga WT, van Trijp MPH. Evaluation of inter- and intra-variability in gut health markers in healthy adults using an optimised faecal sampling and processing method. Sci Rep 2024; 14:24580. [PMID: 39427011 PMCID: PMC11490648 DOI: 10.1038/s41598-024-75477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Despite advances in gut health research, the variability of important gut markers within individuals over time remains underexplored. We investigated the intra-individual variation of various faecal gut health markers using an optimised processing protocol aimed at reducing variability. Faecal samples from ten healthy adults over three consecutive days demonstrated marker-specific intra-individual coefficients of variation (CV%), namely: stool consistency (16.5%), water content (5.7%), pH (3.9%), total SCFAs (17.2%), total BCFAs (27.4%), total bacteria and fungi copies (40.6% and 66.7%), calprotectin and myeloperoxidase (63.8% and 106.5%), and untargeted metabolites (on average 40%). For thirteen microbiota genera, including Bifidobacterium and Akkermansia, variability exceeded 30%, whereas microbiota diversity was less variable (Phylogenetic Diversity 3.3%, Inverse Simpson 17.2%). Mill-homogenisation of frozen faeces significantly reduced the replicates CV% for total SCFAs (20.4-7.5%) and total BCFAs (15.9-7.8%), and untargeted metabolites compared to faecal hammering only, without altering mean concentrations. Our results show the potential need for repeated sampling to accurately represent specific gut health markers. We also demonstrated the effectiveness of optimised preprocessing of human stool samples in reducing overall analytical variability.
Collapse
Affiliation(s)
- Kirsten Kruger
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yoou Myeonghyun
- Clinical Microbiomics, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Nicky van der Wielen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Shohreh Keshtkar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mechteld Grootte-Bromhaar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Karin Mudde
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Nhien T H N Ly
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Crouch AL, Monsey L, Rambeau M, Ramos C, Yracheta JM, Anderson MZ. Metagenomic discovery of microbial eukaryotes in stool microbiomes. mBio 2024; 15:e0206324. [PMID: 39207108 PMCID: PMC11481512 DOI: 10.1128/mbio.02063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Host-associated microbiota form complex microbial communities that are increasingly associated with host behavior and disease. While these microbes include bacterial, archaeal, viral, and eukaryotic constituents, most studies have focused on bacteria due to their dominance in the human host and available tools for investigation. Accumulating evidence suggests microbial eukaryotes in the microbiome play pivotal roles in host health, but our understandings of these interactions are limited to a few readily identifiable taxa because of technical limitations in unbiased eukaryote exploration. Here, we combined cell sorting, optimized eukaryotic cell lysis, and shotgun sequencing to accelerate metagenomic discovery and analysis of host-associated microbial eukaryotes. Using synthetic communities with a 1% microbial eukaryote representation, the eukaryote-optimized cell lysis and DNA recovery method alone yielded a 38-fold increase in eukaryotic DNA. Automated sorting of eukaryotic cells from stool samples of healthy adults increased the number of microbial eukaryote reads in metagenomic pools by up to 28-fold compared to commercial kits. Read frequencies for identified fungi increased by 10,000× on average compared to the Human Microbiome Project and allowed for the identification of novel taxa, de novo assembly of contigs from previously unknown microbial eukaryotes, and gene prediction from recovered genomic segments. These advances pave the way for the unbiased inclusion of microbial eukaryotes in deciphering determinants of health and disease in the host-associated microbiome.IMPORTANCEMicrobial eukaryotes are common constituents of the human gut where they can contribute to local ecology and host health, but they are often overlooked in microbiome studies. The lack of attention is due to current technical limitations that are heavily biased or poorly recovered DNA from microbial eukaryotes. We developed a method to increase the representation of these eukaryotes in metagenomic sequencing of microbiome samples that allows to improve their detection compared to prior methods and allows for the identification of new species. Application of the technique to gut microbiome samples improved detection of fungi, protists, and helminths. New eukaryotic taxa and their encoded genes could be identified by sequencing a small number of samples. This approach can improve the inclusion of eukaryotes into microbiome research.
Collapse
Affiliation(s)
- Audra L. Crouch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Laine Monsey
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Molly Rambeau
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Ramos
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Center for Genomic Science Innovation, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Sánchez Quitian ZA, Pérez Rozo GM, Firacative C. Occurrence of pathogenic yeast species in artisanal cheeses from Boyacá, Colombia, including fluconazole resistant isolates. F1000Res 2024; 13:789. [PMID: 39464777 PMCID: PMC11503810 DOI: 10.12688/f1000research.152447.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Yeasts are widely known for their application in food production, but also because of their clinical significance. As human pathogens, several species of yeasts, mainly of the genus Candida and other closely related genera, are responsible for a great number of life-threatening infections. The occurrence of yeasts in cheeses, including pathogenic species, has been largely studied, yet the antifungal susceptibility of these microorganisms is rarely reported. Here, we identified the species and determined the antifungal susceptibility profile of 45 yeast Candida isolates recovered from artisanal cheeses from 20 cities in Boyacá, Colombia. Among the species, Pichia fermentans (28.9%) prevailed, followed by Pichia kudriavzevii (24.4%), Kluyveromyces marxianus (22.2%), Clavispora lusitaniae (11.1%), Candida inconspicua (6.7%) Candida parapsilosis (4.4%) and Meyerozyma guillermondii (2.2%). Notably, all seven species have been globally reported, to a greater or lesser extent, to cause fungemia and other invasive infections with high mortality rates. Remarkably, together with the intrinsically resistant P. kudriavzevii, most isolates of P. fermentans, C. inconspicua and C. parapsilosis were resistant to fluconazole, one of the most common drugs to treat candidiasis. Our findings highlight the importance of exploring the ecological niches of pathogenic yeasts, together with their antifungal susceptibility, considering that the emergence of resistance in non-commensal opportunistic pathogens poses a serious threat to public health.
Collapse
Affiliation(s)
- Zilpa Adriana Sánchez Quitian
- Grupo de Investigación Núcleo, Facultad de Ciencias e Ingeniería, Departamento de Biología y Microbiología, Universidad de Boyacá, Tunja, Boyacá, Colombia
| | - Guisell Mariana Pérez Rozo
- Programa de Bacteriología y Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad de Boyaca, Tunja, Boyacá, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
5
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Wei G. Insights into gut fungi in pigs: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39154229 DOI: 10.1111/jpn.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Fungi in the gut microbiota of mammals play a crucial role in host physiological regulation, including intestinal homeostasis and host immune regulation. However, our understanding of gut fungi in mammals remains limited, especially in economically valuable animals, such as pigs. Therefore, this review first describes the classification and characterisation of fungi, provides insights into the methods used to study gut fungi, and summarises the recent progress on pig gut fungi. Additionally, it discusses the challenges in the study of pig gut fungi and highlights potential perspectives. The aim of this review is to serve as a valuable reference for advancing our knowledge of gut fungi in animals.
Collapse
Affiliation(s)
- Guanyue Wei
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
8
|
Marsaux B, Moens F, Vandevijver G, Marzorati M, van de Wiele T. Candida species-specific colonization in the healthy and impaired human gastrointestinal tract as simulated using the Mucosal Ileum-SHIME® model. FEMS Microbiol Ecol 2024; 100:fiae113. [PMID: 39169462 DOI: 10.1093/femsec/fiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.
Collapse
Affiliation(s)
- Benoît Marsaux
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | | | | | - Massimo Marzorati
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | - Tom van de Wiele
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
10
|
Yan Q, Li S, Yan Q, Huo X, Wang C, Wang X, Sun Y, Zhao W, Yu Z, Zhang Y, Guo R, Lv Q, He X, Yao C, Li Z, Chen F, Ji Q, Zhang A, Jin H, Wang G, Feng X, Feng L, Wu F, Ning J, Deng S, An Y, Guo DA, Martin FM, Ma X. A genomic compendium of cultivated human gut fungi characterizes the gut mycobiome and its relevance to common diseases. Cell 2024; 187:2969-2989.e24. [PMID: 38776919 DOI: 10.1016/j.cell.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.
Collapse
Affiliation(s)
- Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan 430076, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Qingsong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; First Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10027, USA
| | - Yan Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wenyu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan 430076, China
| | - Xin He
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | | | - Fang Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qianru Ji
- Puensum Genetech Institute, Wuhan 430076, China
| | - Aiqin Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hao Jin
- Puensum Genetech Institute, Wuhan 430076, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue An
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Francis M Martin
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux 54280, France; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100091, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
11
|
Duong VA, Enkhbayar A, Bhasin N, Senavirathna L, Preisner EC, Hoffman KL, Shukla R, Jenq RR, Cheng K, Bronner MP, Figeys D, Britton RA, Pan S, Chen R. A complementary metaproteomic approach to interrogate microbiome cultivated from clinical colon biopsies. Proteomics 2024:e2400078. [PMID: 38824665 DOI: 10.1002/pmic.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.
Collapse
Affiliation(s)
- Van-An Duong
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Altai Enkhbayar
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nobel Bhasin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eva C Preisner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristi L Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Richa Shukla
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Robert R Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, USA
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Ru Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
13
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
14
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
16
|
Mouzan ME, Hussaini AA, Sarkhy AA, Assiri A. Intestinal fungal profile in healthy Saudi children. Arab J Gastroenterol 2024; 25:18-21. [PMID: 37993375 DOI: 10.1016/j.ajg.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND AND STUDY AIM Fungi have a well-established role in medicine. Herein, we describe the fungal profile and abundance in the gut of healthy Saudi children. PATIENTS AND METHODS Fecal samples from a random sample of 20 school-age Saudi children were collected, stored at -80 °C, and dispatched to the laboratory in the USA where fungal DNAs were isolated and shotgun metagenomic sequencing was performed. Abundance was presented as average percentage of fungal taxa. RESULTS The median age of the participants was 12.5 years (range: 7-16 years), and 35 % were male. Ascomycota were the most abundant phyla and Eurotiomycetes, Saccharomycetes, were the most abundant class. The average abundance of fungal genera were Histoplasma (36 %) and Saccharomyces (31 %). The most abundant species were Histoplasma capsulatum (36 %) and Saccharomyces pastorianus (23 %). Other less abundant but may be functionally important genera and species included Candida (2.6 %) and Saccharomycescerevisiae (8 %). CONCLUSION The profile and abundance of the gut fungi in healthy Saudi children reveals important differences compared to Western literature. Accordingly, this report represents a more appropriate reference than Western data to use as controls for regional studies aiming to identify fungi associated with disease.
Collapse
Affiliation(s)
- Mohammad El Mouzan
- Department of Pediatrics, Gastroenterology Division, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | - Ahmed Al Sarkhy
- Department of Pediatrics, Gastroenterology Division, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Asaad Assiri
- Department of Pediatrics, Gastroenterology Division, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
17
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 PMCID: PMC11540084 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
19
|
Xie Z, Canalda-Baltrons A, d'Enfert C, Manichanh C. Shotgun metagenomics reveals interkingdom association between intestinal bacteria and fungi involving competition for nutrients. MICROBIOME 2023; 11:275. [PMID: 38098063 PMCID: PMC10720197 DOI: 10.1186/s40168-023-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The accuracy of internal-transcribed-spacer (ITS) and shotgun metagenomics has not been robustly evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome analysis using a comprehensive in-house fungal database, and correlated dietary data with both bacterial and fungal communities. RESULTS We found that shotgun DNA sequencing after a new enrichment protocol combined with the most comprehensive and novel fungal databases provided a cost-effective approach to perform gut mycobiome profiling at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome was significantly more variable than the bacterial community at the compositional and functional levels. Notably, we showed that microbial diversity, composition, and functions were associated with habitual diet composition instead of driven by global dietary changes. Our study indicates a potential competitive inter-kingdom interaction between bacteria and fungi for food foraging. CONCLUSION Together, our present work proposes an efficient workflow to study the human gut microbiome integrating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interaction between gut bacteria and fungi and pave the way for future investigations in human mycobiome. Video Abstract.
Collapse
Affiliation(s)
- Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Delavy M, Sertour N, d'Enfert C, Bougnoux ME. Metagenomics and metabolomics approaches in the study of Candida albicans colonization of host niches: a framework for finding microbiome-based antifungal strategies. Trends Microbiol 2023; 31:1276-1286. [PMID: 37652786 DOI: 10.1016/j.tim.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
In silico and experimental approaches have allowed an ever-growing understanding of the interactions within the microbiota. For instance, recently acquired data have increased knowledge of the mechanisms that support, in the gut and vaginal microbiota, the resistance to colonization by Candida albicans, an opportunistic fungal pathogen whose overgrowth can initiate severe infections in immunocompromised patients. Here, we review how bacteria from the microbiota interact with C. albicans. We show how recent OMICs-based pipelines, using metagenomics and/or metabolomics, have identified bacterial species and metabolites modulating C. albicans growth. We finally discuss how the combined use of cutting-edge OMICs-based and experimental approaches could provide new means to control C. albicans overgrowth within the microbiota and prevent its consequences.
Collapse
Affiliation(s)
- Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France; Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Necker-Enfants-Malades, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Paris, France.
| |
Collapse
|
21
|
Delavy M, Sertour N, Patin E, Le Chatelier E, Cole N, Dubois F, Xie Z, Saint-André V, Manichanh C, Walker AW, Quintana-Murci L, Duffy D, d’Enfert C, Bougnoux ME, Consortium MI. Unveiling Candida albicans intestinal carriage in healthy volunteers: the role of micro- and mycobiota, diet, host genetics and immune response. Gut Microbes 2023; 15:2287618. [PMID: 38017705 PMCID: PMC10732203 DOI: 10.1080/19490976.2023.2287618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.
Collapse
Affiliation(s)
- Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Natacha Sertour
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | | | - Nathaniel Cole
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Florian Dubois
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Zixuan Xie
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Chaysavanh Manichanh
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Alan W. Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| | - Milieu Intérieur Consortium
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
22
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
23
|
Ost KS, Round JL. Commensal fungi in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:723-734. [PMID: 37479823 DOI: 10.1038/s41575-023-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - June L Round
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
25
|
Martini GR, Tikhonova E, Rosati E, DeCelie MB, Sievers LK, Tran F, Lessing M, Bergfeld A, Hinz S, Nikolaus S, Kümpers J, Matysiak A, Hofmann P, Saggau C, Schneiders S, Kamps AK, Jacobs G, Lieb W, Maul J, Siegmund B, Seegers B, Hinrichsen H, Oberg HH, Wesch D, Bereswill S, Heimesaat MM, Rupp J, Kniemeyer O, Brakhage AA, Brunke S, Hube B, Aden K, Franke A, Iliev ID, Scheffold A, Schreiber S, Bacher P. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic T H1 cell responses in Crohn's disease. Nat Med 2023; 29:2602-2614. [PMID: 37749331 PMCID: PMC10579100 DOI: 10.1038/s41591-023-02556-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023]
Abstract
Aberrant CD4+ T cell reactivity against intestinal microorganisms is considered to drive mucosal inflammation in inflammatory bowel diseases. The disease-relevant microbial species and the corresponding microorganism-specific, pathogenic T cell phenotypes remain largely unknown. In the present study, we identified common gut commensal and food-derived yeasts, as direct activators of altered CD4+ T cell reactions in patients with Crohn's disease (CD). Yeast-responsive CD4+ T cells in CD display a cytotoxic T helper cell (TH1 cell) phenotype and show selective expansion of T cell clones that are highly cross-reactive to several commensal, as well as food-derived, fungal species. This indicates cross-reactive T cell selection by repeated encounter with conserved fungal antigens in the context of chronic intestinal disease. Our results highlighted a role of yeasts as drivers of aberrant CD4+ T cell reactivity in patients with CD and suggest that both gut-resident fungal commensals and daily dietary intake of yeasts might contribute to chronic activation of inflammatory CD4+ T cell responses in patients with CD.
Collapse
Affiliation(s)
- Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ekaterina Tikhonova
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Elisa Rosati
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Meghan Bialt DeCelie
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Lessing
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Arne Bergfeld
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sophia Hinz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Julia Kümpers
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anna Matysiak
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Philipp Hofmann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Schneiders
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ann-Kristin Kamps
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Jacobs
- Institute of Epidemiology, Christian-Albrechts-University of Kiel and popgen Biobank, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel and popgen Biobank, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jochen Maul
- Gastroenterologie am Bayerischen Platz, Berlin, Germany
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | | | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
- Friedrich Schiller Universität, Jena, Germany
| | - Sascha Brunke
- Institute of Microbiology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Friedrich Schiller Universität, Jena, Germany
- Institute of Microbiology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Iliyan D Iliev
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
26
|
Fan Y, Wu L, Zhai B. The mycobiome: interactions with host and implications in diseases. Curr Opin Microbiol 2023; 75:102361. [PMID: 37527562 DOI: 10.1016/j.mib.2023.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, our understanding of the composition and function of the human mucosal surface-associated fungal community (i.e. the mycobiome) has rapidly expanded. Fungi colonize at various sites of the mucosal surface at birth and play important roles in the development and homeostasis of immune system throughout adulthood. Here, we review the recent research progresses in the human mycobiome at different body sites, including the gastrointestinal (GI) tract, the respiratory tract, the urogenital tract, the oral cavity, the skin surface, and the tumor tissues. Researchers have made extensive effort in characterizing the interactions between mycobiome and immune system, especially in the GI tract. We discuss the mycobiome dysbiosis and its implications to the progression of diseases such as inflammatory bowel diseases, alcoholic liver diseases, systemic infections, cancers, and so on, indicating the potential of mycobiome-targeting intervention strategy for life-threatening diseases.
Collapse
Affiliation(s)
- Yani Fan
- Clinical laboratory, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, Guangdong Province, China; Maternal-Fetal Medicine Institute, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Wu
- Clinical laboratory, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, Guangdong Province, China; Maternal-Fetal Medicine Institute, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, China.
| | - Bing Zhai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
27
|
Zhao Y, Ren X, Wu H, Hu H, Cheng C, Du M, Huang Y, Zhao X, Wang L, Yi L, Tao J, Li Y, Lin Y, Su S, Dugarjaviin M. Diversity and functional prediction of fungal communities in different segments of mongolian horse gastrointestinal tracts. BMC Microbiol 2023; 23:253. [PMID: 37689675 PMCID: PMC10492400 DOI: 10.1186/s12866-023-03001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Anaerobic fungi are effective fibre-degrading microorganisms in the digestive tract of horses. However, our understanding of their diversity and community structure is limited, especially in different parts of the gastrointestinal tract. RESULTS For the first time, high-throughput sequencing technology was used to analyse and predict fungal microbial diversity in different parts of the gastrointestinal tract of Mongolian horses. The results revealed that the richness and diversity of fungi in the hindgut of Mongolian horses were much higher than those in the foregut. The foregut was dominated by Basidiomycota and Ascomycota, whereas the hindgut was dominated by Neocallimastigomycota and Basidiomycota. At the genus level, the relative abundance of many pathogenic fungi (Cryptococcus, Cladosporium, Alternaria, and Sarocladium) in the foregut was significantly higher than that in the posterior gut, indicating that Mongolian horses have strong disease resistance. The prediction of fungal function also showed significant differences in the fungal flora between the foregut and the hindgut. The fungi in Mongolian horses' foreguts were mainly pathologically nutritive and contained many animal and plant pathogens, particularly in the small intestine (jejunum and ileum). This indicates that the foregut may be the most important immune site in the digestive system of Mongolian horses, which explains the high disease resistance of Mongolian horses. The number of unassigned functional groups in the posterior gut was significantly higher than that in the anterior gut, indicating that the functions of fungal groups in the posterior gut have not been fully explored, and further studies are required in the future. CONCLUSIONS Analysis of high-throughput sequencing results revealed that the fungal composition varied greatly among different gastrointestinal tract segments in Mongolian horses, whose hindgut contains many anaerobic fungi involved in plant cellulose degradation. This provides important basic data for studying fungal diversity in the digestive system of healthy horses, which can be used for the health assessment of horses and provides clues for further research on the disease resistance and digestive capacity of horses, as well as a reference for the early diagnosis of intestinal diseases and innovative treatment methods.
Collapse
Affiliation(s)
- Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiujuan Ren
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haiqing Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - He Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Chao Cheng
- College of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Ming Du
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yao Huang
- Education Department, Baotou Light Industry Vocational Technical College, Baotou, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Liwei Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Liuxi Yi
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jinshan Tao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yajing Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanan Lin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shaofeng Su
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China.
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
28
|
Lai S, Yan Y, Pu Y, Lin S, Qiu JG, Jiang BH, Keller MI, Wang M, Bork P, Chen WH, Zheng Y, Zhao XM. Enterotypes of the human gut mycobiome. MICROBIOME 2023; 11:179. [PMID: 37563687 PMCID: PMC10416509 DOI: 10.1186/s40168-023-01586-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Yan
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yanni Pu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuchun Lin
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ge Qiu
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Marisa Isabell Keller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Mingyu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- International Human Phenome Institutes (Shanghai), Shanghai, China.
| |
Collapse
|
29
|
Shu C, Wu S, Li H, Tian J. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutr Res 2023; 116:48-59. [PMID: 37336096 DOI: 10.1016/j.nutres.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Anthocyanins are a type of natural pigment that has numerous health benefits. In recent years, the interaction of anthocyanins with gastrointestinal (GI) microbiota has been presented as a viable paradigm for explaining anthocyanin activities. The current study performed a systematic review and meta-analysis to determine the potential modulation of GI microbiota by anthocyanins in human health improvement. Clinical trials were retrieved from PubMed, Cochrane, Web of Knowledge, China Biology Medicine, China National Knowledge Infrastructure, and ClinicalTrials.gov with no language restrictions. Eight clinical trials (252 participants) were selected from the 1121 identified studies and the relative phylum abundance extracted from the trials was analyzed using a random-effects model. Based on the analysis, anthocyanins had no effect on the relative abundance of Firmicutes (standard mean difference [SMD]: -0.46 [-1.25 to 0.34], P = .26), Proteobacteria (SMD, -0.32 [-0.73 to 0.09], P = .13), nor Actinobacteria (SMD, -0.19 [-0.50 to 0.12], P = 0.24), but influenced the abundance of Bacteroidetes (SMD, 0.84 [0.17 to 1.52], P = .01) when compared with placebo/control. No significant influence on the relative abundance was detected when the data were analyzed following the "posttreatment vs. pretreatment" strategy. Our preliminary analysis revealed that the effects of anthocyanins on human GI microbiota vary between studies and individuals, and at the current stage, the clinical trials regarding the effects of anthocyanin interventions on human GI microbiota are lacking. More trials with larger sample sizes are needed to promote the clinical application of anthocyanins.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866.
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| |
Collapse
|
30
|
Vonaesch P, Billy V, Mann AE, Morien E, Habib A, Collard JM, Dédé M, Kapel N, Sansonetti PJ, Parfrey LW. The eukaryome of African children is influenced by geographic location, gut biogeography, and nutritional status. MICROLIFE 2023; 4:uqad033. [PMID: 37680753 PMCID: PMC10481997 DOI: 10.1093/femsml/uqad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincent Billy
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Allison E Mann
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Evan Morien
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Azimdine Habib
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Jean-Marc Collard
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Michel Dédé
- Laboratoire d’Analyse médicale, Institut Pasteur de Bangui, Avenue De Independence Bangui, 923 Central African Republic
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Assistance Publique- Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 47-83 Bd de l’Hôpital, 75013 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Laura Wegener Parfrey
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| |
Collapse
|
31
|
Kathrani A, Theelen B, Bond R. Isolation of Malassezia yeasts from dogs with gastrointestinal disease undergoing duodenal endoscopy. J Small Anim Pract 2023. [PMID: 37681754 DOI: 10.1111/jsap.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES To culture Malassezia and other fungi from the duodenum of dogs with gastrointestinal signs undergoing routine endoscopic examination. MATERIALS AND METHODS Quantitative microbial culture was performed on duodenal juice aspirated from dogs with suspected enteropathy during routine upper gastrointestinal endoscopy; samples were cultured on Sabouraud's dextrose agar (30, 32 and 37°C) and modified Dixon agar (32°C) for 14 days. Isolates were identified phenotypically and by matrix-assisted laser desorption ionisation-time of flight, and internal transcribed spacer sequencing. Yeast presence was also evaluated by cytological and histopathological examination of smears and biopsy specimens. RESULTS Forty-five dogs were recruited with chronic inflammatory enteropathy (n=38), granulomatous colitis (n=2), gastric adenocarcinoma (n=2), duodenal small cell lymphoma (n=1) and idiopathic severe gastrointestinal haemorrhage (n=2). Fungi were cultured from 14 dogs: Malassezia pachydermatis was isolated from eight [chronic inflammatory enteropathy (n=7) (along with Candida albicans n=1); granulomatous colitis (n=1)] and Malassezia sympodialis from another (gastric adenocarcinoma). Five dogs with chronic inflammatory enteropathy yielded other yeasts (C. albicans, Candida glabrata, Kazachstania slooffiae, Kazachstania telluris, Pichia kudriavzevii [syn. C. krusei]). Yeasts were never observed in histopathological specimens. Fluorescent microscopical examination of cytological specimens showed yeast in only one case, from which K. slooffiae was subsequently isolated. CLINICAL SIGNIFICANCE Based on a literature search, this is the first report of isolation of M. pachydermatis, M. sympodialis, K. slooffiae and K. telluris from the canine duodenum. Further studies are needed to determine whether these are resident or transient fungi in the canine duodenum and whether their presence has a pathogenic effect on the host.
Collapse
Affiliation(s)
- A Kathrani
- Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA, UK
| | - B Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R Bond
- Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA, UK
| |
Collapse
|
32
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
34
|
Tian Y, Gou W, Ma Y, Shuai M, Liang X, Fu Y, Zheng JS. The Short-Term Variation of Human Gut Mycobiome in Response to Dietary Intervention of Different Macronutrient Distributions. Nutrients 2023; 15:2152. [PMID: 37432284 DOI: 10.3390/nu15092152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
While the human gut is home to a complex and diverse community of microbes, including bacteria and fungi, research on the gut microbiome has largely focused on bacteria, with relatively little attention given to the gut mycobiome. This study aims to investigate how diets with different dietary macronutrient distributions impact the gut mycobiome. We investigated gut mycobiome response to high-carbohydrate, low-fat (HC) and low-carbohydrate high-fat (LC) diet interventions based on a series of 72-day feeding-based n-of-1 clinical trials. A total of 30 participants were enrolled and underwent three sets of HC and LC dietary interventions in a randomized sequence. Each set lasted for 24 days with a 6-day washout period between dietary interventions. We collected and analyzed the fungal composition of 317 stool samples before and after each intervention period. To account for intra-individual variation across the three sets, we averaged the mycobiome data from the repeated sets for analysis. Of the 30 participants, 28 (aged 22-34 years) completed the entire intervention. Our results revealed a significant increase in gut fungal alpha diversity (p < 0.05) and significant changes in fungal composition (beta diversity, p < 0.05) after the HC dietary intervention. Specifically, we observed the enrichment of five fungal genera (Pleurotus, Kazachstania, Auricularia, Paraphaeosphaeria, Ustilaginaceae sp.; FDR < 0.052) and depletion of one fungal genus (Blumeria; FDR = 0.03) after the HC intervention. After the LC dietary intervention, one fungal genus was enriched (Ustilaginaceae sp.; FDR = 0.003), and five fungal genera were depleted (Blumeria, Agaricomycetes spp., Malassezia, Rhizopus, and Penicillium; FDR < 0.1). This study provides novel evidence on how the gut mycobiome structure and composition change in response to the HC and LC dietary interventions and reveals diet-specific changes in the fungal genera.
Collapse
Affiliation(s)
- Yunyi Tian
- School of Medicine, Zhejiang University, Hangzhou 310058, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
| | - Wanglong Gou
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| | - Yue Ma
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| | - Menglei Shuai
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| | - Xinxiu Liang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| | - Yuanqing Fu
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| | - Ju-Sheng Zheng
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
35
|
Abstract
The last decade has witnessed a meteoric rise in research focused on characterizing the human microbiome and identifying associations with disease risk. The advent of sequencing technology has all but eradicated gel-based fingerprinting approaches for studying microbial ecology, while at the same time traditional microbiological culture is undergoing a renaissance. Although multiplexed high-throughput sequencing is relatively new, the discoveries leading to this are nearly 50 years old, coinciding with the inaugural Microbiology Society Fleming Prize lecture. It was an honour to give the 2022 Fleming Prize lecture and this review will cover the topics from that lecture. The focus will be on the bacterial community in early life, beginning with term infants before moving on to infants delivered prematurely. The review will discuss recent work showing how human milk oligosaccharides (HMOs), an abundant but non-nutritious component of breast milk, can modulate infant microbiome and promote the growth of Bifidobacterium spp. This has important connotations for preterm infants at risk of necrotizing enterocolitis, a devastating intestinal disease representing the leading cause of death and long-term morbidity in this population. With appropriate mechanistic studies, it may be possible to harness the power of breast milk bioactive factors and infant gut microbiome to improve short- and long-term health in infants.
Collapse
|
36
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Gutierrez MW, Mercer EM, Moossavi S, Laforest-Lapointe I, Reyna ME, Becker AB, Simons E, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Azad MB, Arrieta MC. Maturational patterns of the infant gut mycobiome are associated with early-life body mass index. Cell Rep Med 2023; 4:100928. [PMID: 36736319 PMCID: PMC9975311 DOI: 10.1016/j.xcrm.2023.100928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Unlike the bacterial microbiome, the role of early-life gut fungi in host metabolism and childhood obesity development remains poorly characterized. To address this, we investigate the relationship between the gut mycobiome of 100 infants from the Canadian Healthy Infant Longitudinal Development (CHILD) Cohort Study and body mass index Z scores (BMIz) in the first 5 years of life. An increase in fungal richness during the first year of life is linked to parental and infant BMI. The relationship between richness pattern and early-life BMIz is modified by maternal BMI, maternal diet, infant antibiotic exposure, and bacterial beta diversity. Further, the abundances of Saccharomyces, Rhodotorula, and Malassezia are differentially associated with early-life BMIz. Using structural equation modeling, we determine that the mycobiome's contribution to BMIz is likely mediated by the bacterial microbiome. This demonstrates that mycobiome maturation and infant growth trajectories are distinctly linked, advocating for inclusion of fungi in larger pediatric microbiome studies.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Myrtha E Reyna
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Allan B Becker
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Meghan B Azad
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; International Microbiome Center, University of Calgary, Calgary, AB T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
38
|
Cheung MK, Tong SLY, Wong MCS, Chan JYK, Ip M, Hui M, Lai CKC, Ng RWY, Ho WCS, Yeung ACM, Chan PKS, Chen Z. Extent of Oral-Gut Transmission of Bacterial and Fungal Microbiota in Healthy Chinese Adults. Microbiol Spectr 2023; 11:e0281422. [PMID: 36625652 PMCID: PMC9927295 DOI: 10.1128/spectrum.02814-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have provided evidence on the presence of an oral-gut microbiota axis in gastrointestinal diseases; however, whether a similar axis exists in healthy individuals is still in debate. Here, we characterized the bacterial and fungal microbiomes in paired oral rinse and stool samples collected from 470 healthy Chinese adults by sequencing the 16S rRNA V3-V4 and ITS1 regions, respectively. We hypothesized that there is limited oral-gut transmission of both the bacterial and fungal microbiota in healthy Chinese adults. Our results showed that the oral and gut microbiota in healthy individuals differed in taxonomic composition, alpha and beta diversity, metabolic potential, and network properties. Bayesian analysis showed that the vast majority of subjects had negligible or low bacterial and fungal oral-to-stool contribution. Detailed examination of the prevalent amplicon sequence variants (ASVs) also revealed limited cases of sharing between the oral and stool samples within the same individuals, except a few bacterial and fungal ASVs. Association analysis showed that sharing of the potentially transmissible fungal ASVs was associated with host factors, including an older age and a higher body mass index. Our findings indicate that oral-gut transmission of both bacterial and fungal microbiota in healthy adults is limited. Detection of a large amount of shared bacterial or fungal members between the oral and gut microbiome of an individual may indicate medical conditions that warrant detailed checkup. IMPORTANCE The oral-gut microbiota axis in health is a fundamentally important and clinically relevant topic; however, our current understanding of it remains biased and incomplete. By characterizing the bacterial and fungal microbiomes in paired oral rinse and stool samples from a large cohort of healthy Chinese adults, here we provided new evidence that oral-gut microbiota transmission is limited in non-Western population and across biological domains. Our study has established an important baseline of a healthy oral-gut microbiota axis, with which other disease conditions can be compared. Besides, our findings have practical implications that detection of a large amount of shared bacterial or fungal members between the oral cavity and gut within the same individual as an indicator of potential medical conditions.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Sylvia L. Y. Tong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Martin C. S. Wong
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jason Y. K. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Mamie Hui
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Christopher K. C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Rita W. Y. Ng
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wendy C. S. Ho
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Apple C. M. Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
39
|
Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients 2023; 15:nu15040844. [PMID: 36839202 PMCID: PMC9966200 DOI: 10.3390/nu15040844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Beer is one of the most consumed drinks worldwide. It contains numerous categories of antioxidants, phenolic products, traces of group B vitamins, minerals (selenium, silicon, potassium), soluble fibers and microorganisms. Low or moderate beer consumption, with or without alcohol, showed positive effects on health by stimulating the development of a healthy microbiota. In the present review we focused on four components responsible with interaction with gut microbiota: microorganisms, polyphenols, fiber and melanoidins, their presence in usual beers and on perspectives of development of fortified beers with enhanced effects on gut microbiota. Though microorganisms rarely escape pasteurization of beer, there are new unpasteurized types that might bring strains with probiotic effects. The polyphenols from beer are active on the gut microbiota stimulating its development, with consequent local anti-inflammatory and antioxidant effects. Their degradation products have prebiotic action and may combat intestinal dysbiosis. Beer contains dietary fiber such as non-starchy, non-digestible carbohydrates (β-glucans, arabinoxylans, mannose, fructose polymers, etc.) that relate with gut microbiota through fermentation, serving as a nutrient substrate. Another type of substances that are often considered close to fiber because they have an extremely low digestibility, melanoidins (melanosaccharides), give beer antioxidant and antibacterial properties. Though there are not many research studies in this area, the conclusion of this review is that beer seems a good candidate for a future functional food and that there are many pathways by which its ingredients can influence in a positive manner the human gut microbiota. Of course, there are many technological hinderances to overcome. However, designing functional beers fortified with fiber, antioxidants and probiotics, with a very low or no alcoholic content, will counteract the negative perception of beer consumption, will nullify the negative effects of alcohol, while simultaneously exerting a positive action on the gut microbiota.
Collapse
|
40
|
Wang H, Wu H, Li KD, Wang YY, Huang RG, Du YJ, Jin X, Zhang QR, Li XB, Li BZ. Intestinal fungi and systemic autoimmune diseases. Autoimmun Rev 2023; 22:103234. [PMID: 36423833 DOI: 10.1016/j.autrev.2022.103234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Nearly 20 years of studies have shown that fungi and the human immune system (non-specific immunity and specific immunity) and bacterial--fungal interactions maintain a balance that can't lead to diseases. Fungi--microorganism that lives in human intestine--may play an important role in human health and disease. Population studies and animal models in some diseases have found the changes in the diversity and composition of fungi. The dysregulation of the fungi can disrupt the normal "running" of the immune system and bacteria, which triggers the development of inflammatory diseases. The latest studies of fungi in inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and type 1 diabetes mellitus were summarized. This review considers how the healthy host protect against the potential harm of intestinal fungi through the immune system and how fungal dysregulation alters host immunity.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
41
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
42
|
Studying Fungal-Bacterial Relationships in the Human Gut Using an In Vitro Model (TIM-2). J Fungi (Basel) 2023; 9:jof9020174. [PMID: 36836289 PMCID: PMC9963012 DOI: 10.3390/jof9020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The complex microbial community found in the human gut consist of members of multiple kingdoms, among which are bacteria and fungi. Microbiome research mainly focuses on the bacterial part of the microbiota, thereby neglecting interactions that can take place between bacteria and fungi. With the rise of sequencing techniques, the possibilities to study cross-kingdom relationships has expanded. In this study, fungal-bacterial relationships were investigated using the complex, dynamic computer-controlled in vitro model of the colon (TIM-2). Interactions were investigated by disruption of either the bacterial or fungal community by the addition of antibiotics or antifungals to TIM-2, respectively, compared to a control without antimicrobials. The microbial community was analyzed with the use of next generation sequencing of the ITS2 region and the 16S rRNA. Moreover, the production of SCFAs was followed during the interventions. Correlations between fungi and bacteria were calculated to investigate possible cross-kingdom interactions. The experiments showed that no significant differences in alpha-diversity were observed between the treatments with antibiotics and fungicide. For beta-diversity, it could be observed that samples treated with antibiotics clustered together, whereas the samples from the other treatments were more different. Taxonomic classification was done for both bacteria and fungi, but no big shifts were observed after treatments. At the level of individual genera, bacterial genus Akkermansia was shown to be increased after fungicide treatment. SCFAs levels were lowered in samples treated with antifungals. Spearman correlations suggested that cross-kingdom interactions are present in the human gut, and that fungi and bacteria can influence each other. Further research is required to gain more insights in these interactions and their molecular nature and to determine the clinical relevance.
Collapse
|
43
|
Dagar S, Singh J, Saini A, Kumar Y, Chhabra S, Minz RW, Rani L. Gut bacteriome, mycobiome and virome alterations in rheumatoid arthritis. Front Endocrinol (Lausanne) 2023; 13:1044673. [PMID: 36699026 PMCID: PMC9868751 DOI: 10.3389/fendo.2022.1044673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease of the joints which causes significant pain, functional disability, and mortality. Although aberrant immune cell activation induced by the imbalance between T helper Th1/Th17 and Treg cells is implicated in the RA development, its etiopathogenesis remains unclear. The presence of mucosal inflammation and systemic IgA-isotype-autoantibodies (anti-citrullinated peptide antibodies and rheumatoid factor) in pre-clinical RA supports the mucosal origin hypothesis involving altered microbiota in disease development. The gut microbiota comprises diverse bacteria, fungal and viral components, which are critical in developing host immunity. Alterations in microbial abundance are known to exacerbate or attenuate immune responses in the gut microenvironment subsequently affecting the joints. Further, these changes can provide biomarkers for disease activity and outcome in RA. Most of the research till date has been focused on describing gut bacterial components in RA. Studies on gut mycobiome and virome components in RA are relatively new and burgeoning field. Given the paucity of mycobiome or virome specific studies in RA, this review, discusses the recent findings on alterations in gut bacterial, fungal, and viral components as well as their role in regulating the spectrum of immune-pathogenic events occurring in RA which might be explored in future as a potential therapeutic target. Further, we provide an overview on inter-kingdom interactions between bacteria, fungi, and viruses in RA. The current understanding on gut microbiota modulation for managing RA is also summarised.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lekha Rani
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
44
|
Abstract
In recent years, it has become clear that gut microbiota plays a major role in the human body, both in health and disease. Because of that, the gut microbiome and its impact on human well-being are getting wider and wider attention. Studies focused on the liver are not an exception. However, the majority of the analyses are concentrated on the bacterial part of the gut microbiota, while the fungi living in the human intestines are often omitted or underappreciated. This review is focused on the gut mycobiome as an important factor that should be taken into consideration regarding liver homeostasis and its perturbations. We have collected the findings in this field and we discuss their importance. We aim to emphasize the fungal compositional changes related to liver diseases and, by that, provide novel insights into the directions of liver research and gut microbiota as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
45
|
Association between ustekinumab therapy and changes in specific anti-microbial response, serum biomarkers, and microbiota composition in patients with IBD: A pilot study. PLoS One 2022; 17:e0277576. [PMID: 36584073 PMCID: PMC9803183 DOI: 10.1371/journal.pone.0277576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/29/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-β1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.
Collapse
|
46
|
Santus W, Rana AP, Devlin JR, Kiernan KA, Jacob CC, Tjokrosurjo J, Underhill DM, Behnsen J. Mycobiota and diet-derived fungal xenosiderophores promote Salmonella gastrointestinal colonization. Nat Microbiol 2022; 7:2025-2038. [PMID: 36411353 DOI: 10.1038/s41564-022-01267-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
Abstract
The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis, such as inflammatory bowel disease. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. Here we investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium, a major cause of gastroenteritis worldwide. We found that, in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella and elucidates an additional function of the gut mycobiota, revealing the importance of these understudied members of the gut ecosystem during bacterial infection.
Collapse
Affiliation(s)
- William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P Rana
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Jason R Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Kaitlyn A Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Carol C Jacob
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Joshua Tjokrosurjo
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Vitte J, Michel M, Malinovschi A, Caminati M, Odebode A, Annesi-Maesano I, Caimmi DP, Cassagne C, Demoly P, Heffler E, Menu E, Nwaru BI, Sereme Y, Ranque S, Raulf M, Feleszko W, Janson C, Galán C. Fungal exposome, human health, and unmet needs: A 2022 update with special focus on allergy. Allergy 2022; 77:3199-3216. [PMID: 35976185 DOI: 10.1111/all.15483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/28/2023]
Abstract
Humans inhale, ingest, and touch thousands of fungi each day. The ubiquity and diversity of the fungal kingdom, reflected by its complex taxonomy, are in sharp contrast with our scarce knowledge about its distribution, pathogenic effects, and effective interventions at the environmental and individual levels. Here, we present an overview of salient features of fungi as permanent players of the human exposome and key determinants of human health, through the lens of fungal allergy and other fungal hypersensitivity reactions. Improved understanding of the fungal exposome sheds new light on the epidemiology of fungal-related hypersensitivity diseases, their immunological substratum, the currently available methods, and biomarkers for environmental and medical fungi. Unmet needs are described and potential approaches are highlighted as perspectives.
Collapse
Affiliation(s)
- Joana Vitte
- IDESP, University of Montpellier and INSERM, Montpellier, France.,MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Moïse Michel
- IDESP, University of Montpellier and INSERM, Montpellier, France.,MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France.,Immunology Laboratory, University Hospital Nîmes, Nîmes, France
| | - Andrei Malinovschi
- Department of Medical Sciences Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Marco Caminati
- Asthma, Allergy and Clinical Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Adeyinka Odebode
- Department of Basic Science, Kampala International University, Kampala, Uganda
| | | | - Davide Paolo Caimmi
- IDESP, University of Montpellier and INSERM, Montpellier, France.,Departement of Pneumology, University Hospital of Montpellier, Montpellier, France
| | - Carole Cassagne
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Pascal Demoly
- IDESP, University of Montpellier and INSERM, Montpellier, France.,Departement of Pneumology, University Hospital of Montpellier, Montpellier, France
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy Humanitas Clinical and Research Center IRCCS Rozzano, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Estelle Menu
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Youssouf Sereme
- MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France.,Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Descartes, Paris, France
| | - Stéphane Ranque
- VITROME, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
| | - Monika Raulf
- Department of Allergology and Immunology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Christer Janson
- Department of Medical Sciences Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Carmen Galán
- International Campus of Excellence on Agrifood (ceiA3), University of Cordoba, Córdoba, Spain.,Andalusian Inter-University Institute for Earth System Research (IISTA), University of Cordoba, Córdoba, Spain
| | | |
Collapse
|
48
|
Colicins of Escherichia coli Lead to Resistance against the Diarrhea-Causing Pathogen Enterotoxigenic E. coli in Pigs. Microbiol Spectr 2022; 10:e0139622. [PMID: 36190425 PMCID: PMC9603048 DOI: 10.1128/spectrum.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.
Collapse
|
49
|
Into the wild: How exposure to wild or domesticated fungi shapes immune responses in mice. PLoS Pathog 2022; 18:e1010841. [PMID: 36227856 PMCID: PMC9562158 DOI: 10.1371/journal.ppat.1010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|