1
|
Liang M, Xu J, Luo Y, Qu J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Ann Med 2024; 56:2396570. [PMID: 39221718 PMCID: PMC11370679 DOI: 10.1080/07853890.2024.2396570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This review aims to summarize the epidemiology, etiology, pathogenesis, clinical manifestations, and current diagnostic and therapeutic approaches for mucormycosis. The goal is to improve understanding of mucormycosis and promote early diagnosis and treatment to reduce mortality. METHODS A comprehensive literature review was conducted, focusing on recent studies and data on mucormycosis. The review includes an analysis of the disease's epidemiology, etiology, and pathogenesis, as well as current diagnostic techniques and therapeutic strategies. RESULTS Mucormycosis is increasingly prevalent due to the growing immunocompromised population, the COVID-19 pandemic, and advances in detection methods. The pathogenesis is closely associated with the host immune status, serum-free iron levels, and the virulence of Mucorales. However, the absence of typical clinical manifestations complicates diagnosis, leading to missed or delayed diagnoses and higher mortality. CONCLUSION An enhanced understanding of the epidemiology, pathogenesis, and clinical presentation of mucormycosis, along with the adoption of improved diagnostic and therapeutic approaches, is essential for reducing mortality rates associated with this opportunistic fungal infection. Early diagnosis and prompt treatment are critical to improving patient outcomes.
Collapse
Affiliation(s)
- Mei Liang
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Xu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Luo
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
White PL. Progress on nonculture based diagnostic tests for invasive mould infection. Curr Opin Infect Dis 2024; 37:451-463. [PMID: 39270052 DOI: 10.1097/qco.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW This review describes the current status of diagnosing invasive mould disease and Pneumocystis pneumonia using nonconventional diagnostics methods. RECENT FINDINGS There has been significant development in the range of nonculture mycological tests. Lateral flow tests (LFTs) for diagnosing aspergillosis complement galactomannan ELISA testing, and LFTs for other fungal diseases are in development. Rapid and low through-put B-D-Glucan assays increase access to testing and there has been significant progress in the standardization/development of molecular tests. Despite this, no single perfect test exists and combining tests (e.g., antigen and molecular testing) is likely required for the optimal diagnosis of most fungal diseases. SUMMARY Based on established clinical performance few mycological tests can be used alone for optimal diagnosis of fungal disease (FD) and combining tests, including classical approaches is the preferred route for confirming and excluding disease. Next-generation sequencing will likely play an increasing role in how we diagnose disease, but optimization, standardization and validation of the entire molecular process is needed and we must consider how host biomarkers can stratify risk. Given the burden of FD in low- and medium-income countries, improved access to novel but more so existing diagnostic testing is critical along with simplification of testing processes.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
3
|
Safiia J, Díaz MA, Alshaker H, Atallah CJ, Sakr P, Moshovitis DG, Nawlo A, Franceschi AE, Liakos A, Koo S. Recent Advances in Diagnostic Approaches for Mucormycosis. J Fungi (Basel) 2024; 10:727. [PMID: 39452679 PMCID: PMC11509022 DOI: 10.3390/jof10100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mucormycosis, an invasive fungal infection caused by members of the order Mucorales, often progresses fulminantly if not recognized in a timely manner. This comprehensive review discusses the latest developments in diagnostic approaches for mucormycosis, from traditional histopathology and culture-based methods to advanced and emerging techniques such as molecular assays, imaging, serology, and metabolomics. We discuss challenges in the diagnosis of mucormycosis and emphasize the importance of rapid and accurate identification of this life-threatening infection.
Collapse
Affiliation(s)
- Jawad Safiia
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
| | - Marco Aurelio Díaz
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Alshaker
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Christine J. Atallah
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Paul Sakr
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Dimitrios G. Moshovitis
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmad Nawlo
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Andres E. Franceschi
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Liakos
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sophia Koo
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Matsuo T, Wurster S, Hoenigl M, Kontoyiannis DP. Current and emerging technologies to develop Point-of-Care Diagnostics in medical mycology. Expert Rev Mol Diagn 2024; 24:841-858. [PMID: 39294931 DOI: 10.1080/14737159.2024.2397515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Advances in diagnostic technologies, particularly Point-of-Care Diagnostics (POCDs), have revolutionized clinical practice by providing rapid, user-friendly, and affordable testing at or near the patient's location. POCDs have been increasingly introduced in medical mycology and hold promise to improve patient outcomes in a variety of important human fungal diseases. AREAS COVERED This review focuses on validated POCDs, particularly lateral flow assays (LFAs), for various fungal diseases. Additionally, we discuss emerging innovative techniques such as body fluid analysis, imaging methods, loop-mediated isothermal amplification (LAMP), microfluidic systems, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, and the emerging role of artificial intelligence. EXPERT OPINION Compact and user-friendly POCDs have been increasingly introduced in medical mycology, and some of these tests (e.g. Cryptococcus and Histoplasma antigen LFAs) have become mainstream diagnostics, while others, such as LFA in invasive aspergillosis show promise to become part of our routine diagnostic armamentarium. POCDs offer immense benefits such as timely and accurate diagnostic results, reduced patient discomfort, and lower healthcare costs and might contribute to antifungal stewardship. Integrated fluidics combined with microtechnology having multiplex capabilities will be pivotal in medical mycology.
Collapse
Affiliation(s)
- Takahiro Matsuo
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria
- Bio TechMed, Graz, Austria
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Zacharias M, Thüringer A, Krause R, Kashofer K, Gorkiewicz G. The mutual value of histopathology and ITS sequencing in the diagnosis of mucormycosis. Histopathology 2024; 84:702-706. [PMID: 38192085 DOI: 10.1111/his.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
AIMS Mucormycosis is a fast-progressing disease with a high mortality rate. The most important factor determining survival of patients is early and accurate diagnosis. Although histopathology often recognises invasive mould infections at first, histomorphology alone is insufficient in providing an accurate diagnosis. Unbiased molecular methods to detect and identify fungi are promising, yet their role in complementing routine histopathological workflows has not been studied sufficiently. METHODS AND RESULTS We performed a retrospective single-centre study examining the clinical value of complementing histopathology with internal transcribed spacer (ITS) sequencing of fungal DNA in the routine diagnosis of mucormycosis. At our academic centre, we identified 14 consecutive mucormycosis cases diagnosed by histopathology and subsequent ITS sequencing. Using histomorphological examination, fungal hyphae could be detected in all cases; however, morphological features were unreliable regarding specifying the taxa. Subsequent ITS sequencing identified a remarkable phylogenetic diversity among Mucorales: the most common species was Rhizopus microsporus (six of 14; 42.9%), followed by Lichtheimia corymbifera (three of 14, 21.4%) and single detections of Rhizopus oryzae, Actinomucor elegans, Mucor circinelloides, Rhizomucor pusillus and Rhizomucor miehei (one of 14; 7.1%, respectively). In one case, we additionally detected Pneumocystis jirovecii in the same lung tissue specimen, suggesting a clinically relevant co-infection. Fungal culture was performed in 10 cases but yielded positive results in only two of 10 (20%), revealing its limited value in the diagnosis of mucormycosis. CONCLUSIONS Our study demonstrates that a combination of histopathology and ITS sequencing is a practically feasible approach that outperforms fungal culture in detecting Mucorales in tissue-associated infections. Therefore, pathologists might adapt diagnostic workflows accordingly when mucormycosis is suspected.
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Thüringer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Gullì SP, Hallur V, Kale P, Menezes GA, Russo A, Singla N. From Spores to Solutions: A Comprehensive Narrative Review on Mucormycosis. Diagnostics (Basel) 2024; 14:314. [PMID: 38337830 PMCID: PMC10855476 DOI: 10.3390/diagnostics14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Mucormycosis is an infrequent but fatal illness that mainly affects patients with uncontrolled diabetes mellitus, diabetic ketoacidosis, solid and hematologic neoplasms, organ transplantation, chronic steroid intake, prolonged neutropenia, iron overload states, neonatal prematurity, severe malnutrition, and HIV. Many cases were reported across the world recently following the COVID-19 pandemic. Recent research has led to a better understanding of the pathogenesis of the disease, and global guidelines are now available for managing this serious infection. Herein, we comprehensively review the etiological agents, pathogenesis, clinical presentations, diagnosis, and management of mucormycosis.
Collapse
Affiliation(s)
- Sara Palma Gullì
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.P.G.); (A.R.)
| | - Vinaykumar Hallur
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Pratibha Kale
- Department of Clinical Microbiology, Institute of Liver and Biliary Sciences, New Delhi 110070, India;
| | - Godfred Antony Menezes
- Department of Medical Microbiology & Immunology, RAK College of Medical Sciences, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.P.G.); (A.R.)
| | - Nidhi Singla
- Department of Microbiology, Government Medical College and Hospital, Chandigarh 160030, India;
| |
Collapse
|
7
|
Thornton CR, Davies GE, Dougherty L. Development of a monoclonal antibody and a lateral-flow device for the rapid detection of a Mucorales-specific biomarker. Front Cell Infect Microbiol 2023; 13:1305662. [PMID: 38145040 PMCID: PMC10739493 DOI: 10.3389/fcimb.2023.1305662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Mucoromycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. While Rhizopus arrhizus is the principal agent of mucoromycosis, other Mucorales fungi including Apophysomyces, Cunninghamella, Lichtheimia, Mucor, Rhizomucor and Syncephalastrum are able to cause life-threatening rhino-orbital-cerebral, pulmonary, gastro-intestinal and necrotising cutaneous infections in humans. Diagnosis of the disease currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Mucorales-specific biomarkers of infection, and which allow point-of-care diagnosis of mucoromycosis. Here, we report the development of an IgG2b monoclonal antibody (mAb), TG11, which binds to extracellular polysaccharide (EPS) antigens of between 20 kDa and 250 kDa secreted during hyphal growth of Mucorales fungi. The mAb is Mucorales-specific and does not cross-react with other yeasts and molds of clinical importance including Aspergillus, Candida, Cryptococcus, Fusarium, Lomentospora and Scedosporium species. Using the mAb, we have developed a Competitive lateral-flow device that allows rapid (30 min) detection of the EPS biomarker in human serum and bronchoalveolar lavage (BAL), with a limit of detection (LOD) in human serum of ~100 ng/mL serum (~224.7 pmol/L serum). The LFD therefore provides a potential novel opportunity for detection of mucoromycosis caused by different Mucorales species.
Collapse
Affiliation(s)
- Christopher R. Thornton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- ISCA Diagnostics Ltd., Hatherly Laboratories, Exeter, United Kingdom
| | - Genna E. Davies
- ISCA Diagnostics Ltd., Hatherly Laboratories, Exeter, United Kingdom
| | - Laura Dougherty
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Maggioni G, Fedrigo M, Visentin A, Carturan E, Ruocco V, Trentin L, Alaibac M, Angelini A. Severe Fatal Mucormycosis in a Patient with Chronic Lymphocytic Leukaemia Treated with Zanubrutinib: A Case Report and Review of the Literature. Curr Oncol 2023; 30:8255-8265. [PMID: 37754514 PMCID: PMC10529318 DOI: 10.3390/curroncol30090599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Severe mucormycosis is a fatal disease rarely complicating chronic lymphoproliferative disorders. We present a fulminant and fatal case of a 74-year-old Caucasian woman suffering from CLL treated with second-generation BTK inhibitor zanubrutinib. After a first septic episode a month prior, originating from the lung with later systemic involvement by an unidentified agent and treated with large-spectrum antibiotics and fluconazonle, a slow-onset enlarging tender warm and erythematous nodular swollen cutaneous lesion appeared in her lower limbs and spread subsequently to her upper limbs, progressing towards central ulceration with a necrotic core. Suspecting a mycotic dissemination from an unknown agent, a skin punch biopsy was performed, and intraconazole was started. Due to spread of the skin lesions, the patient was hospitalized and intravenous liposomal ampthotericin B was started. Histopathology showed an atypical sporangium-rich mycotic angioinvasion of the small vessels. Only the increase of BDG and GM could corroborate the hypothesis of mycotic infection. However, long-term CLL, immunosuppressive therapies, neutropenia, and prior use of azoles and other antimycotic agents were risk factors for mucormycosis; BTK inhibitor could also be added as another novel risk factor. Despite all therapeutic efforts, the patient died. Post-mortem molecular exams confirmed the diagnosis of disseminated mucormycosis.
Collapse
Affiliation(s)
- Giuseppe Maggioni
- Pathology Unit, Department of Medicine, University of Padova, Via A. Gabelli 61, 35121 Padova, Italy
| | - Marny Fedrigo
- Cardiovascular Pathology Unit, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Elisa Carturan
- Cardiovascular Pathology Unit, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Valeria Ruocco
- Hematology Unit, Department of Medicine, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Annalisa Angelini
- Cardiovascular Pathology Unit, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
9
|
Pham D, Howard-Jones AR, Sparks R, Stefani M, Sivalingam V, Halliday CL, Beardsley J, Chen SCA. Epidemiology, Modern Diagnostics, and the Management of Mucorales Infections. J Fungi (Basel) 2023; 9:659. [PMID: 37367595 DOI: 10.3390/jof9060659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mucormycosis is an uncommon, yet deadly invasive fungal infection caused by the Mucorales moulds. These pathogens are a WHO-assigned high-priority pathogen group, as mucormycosis incidence is increasing, and there is unacceptably high mortality with current antifungal therapies. Current diagnostic methods have inadequate sensitivity and specificity and may have issues with accessibility or turnaround time. Patients with diabetes mellitus and immune compromise are predisposed to infection with these environmental fungi, but COVID-19 has established itself as a new risk factor. Mucorales also cause healthcare-associated outbreaks, and clusters associated with natural disasters have also been identified. Robust epidemiological surveillance into burden of disease, at-risk populations, and emerging pathogens is required. Emerging serological and molecular techniques may offer a faster route to diagnosis, while newly developed antifungal agents show promise in preliminary studies. Equitable access to these emerging diagnostic techniques and antifungal therapies will be key in identifying and treating mucormycosis, as delayed initiation of therapy is associated with higher mortality.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Annaleise R Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Douglass Hanly Moir Pathology, Sydney, NSW 2113, Australia
| | - Maurizio Stefani
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Varsha Sivalingam
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Justin Beardsley
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Lamoth F. Novel Approaches in the Management of Mucormycosis. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360854 PMCID: PMC10165581 DOI: 10.1007/s12281-023-00463-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review Invasive mucormycosis (IM), caused by fungi of the order Mucorales, is one of the deadliest fungal infection among hematologic cancer patients. Its incidence is also increasingly reported in immunocompetent individuals, notably with the COVID-19 pandemic. Therefore, there is an urgent need for novel diagnostic and therapeutic approaches of IM. This review discusses the current advances in this field. Recent Findings Early diagnosis of IM is crucial and can be improved by Mucorales-specific PCR and development of lateral-flow immunoassays for specific antigen detection. The spore coat proteins (CotH) are essential for virulence of the Mucorales and may represent a target for novel antifungal therapies. Adjuvant therapies boosting the immune response, such as interferon-γ, anti-PDR1 or fungal-specific chimeric antigen receptor (CAR) T-cells, are also considered. Summary The most promising perspectives for improved management of IM consist of a multilayered approach targeting both the pathogen and the host immune system.
Collapse
Affiliation(s)
- Frederic Lamoth
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
11
|
Osman NA, Anwar MM, Singh B, Gupta GK, Rabie AM. A peek behind the curtain in the diagnosis and management of COVID‑19‑Associated Mucormycosis (CAM). J Egypt Public Health Assoc 2023; 98:4. [PMID: 36859556 PMCID: PMC9977480 DOI: 10.1186/s42506-022-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) is responsible for a high mortality rate due to its unique and severe host-pathogen interactions. Critically ill or immunocompromised COVID-19 patients are more prone to suffer from aggressive mycoses. Probable victims include those with uncontrolled diabetes mellitus (DM), metabolic acidosis, prolonged neutropenia, increased ferritin levels, hypoxia, and prolonged hospitalization with/without mechanical ventilators and corticosteroids administration. The current review aims to outline the journey of patients with CAM as well as the advantages and disadvantages of the currently available diagnostic techniques. It also discussed the current status of treatment options and caveats in the management of mucormycosis. Multidisciplinary team, early diagnosis, controlling the predisposing condition(s), complete surgical debridement, effective antifungal therapies (e.g., amphotericin B, isavuconazole, and posaconazole), and implementing antifungal stewardship programs are imperative in CAM cases.
Collapse
Affiliation(s)
- Nermin A. Osman
- Biomedical Informatics and Medical Statistics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | | | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot, 145001 Punjab India
| | - Amgad M. Rabie
- Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City, 35744 Dikernis, Dakahlia Governorate Egypt
| |
Collapse
|
12
|
What Is New in Pulmonary Mucormycosis? J Fungi (Basel) 2023; 9:jof9030307. [PMID: 36983475 PMCID: PMC10057210 DOI: 10.3390/jof9030307] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Mucormycosis is a rare but life-threatening fungal infection due to molds of the order Mucorales. The incidence has been increasing over recent decades. Worldwide, pulmonary mucormycosis (PM) presents in the lungs, which are the third main location for the infection after the rhino-orbito-cerebral (ROC) areas and the skin. The main risk factors for PM include hematological malignancies and solid organ transplantation, whereas ROC infections are classically favored by diabetes mellitus. The differences between the ROC and pulmonary locations are possibly explained by the activation of different mammalian receptors—GRP78 in nasal epithelial cells and integrin β1 in alveolar epithelial cells—in response to Mucorales. Alveolar macrophages and neutrophils play a key role in the host defense against Mucorales. The diagnosis of PM relies on CT scans, cultures, PCR tests, and histology. The reversed halo sign is an early, but very suggestive, sign of PM in neutropenic patients. Recently, the serum PCR test showed a very encouraging performance for the diagnosis and follow-up of mucormycosis. Liposomal amphotericin B is the drug of choice for first-line therapy, together with correction of underlying disease and surgery when feasible. After a stable or partial response, the step-down treatment includes oral isavuconazole or posaconazole delayed release tablets until a complete response is achieved. Secondary prophylaxis should be discussed when there is any risk of relapse, such as the persistence of neutropenia or the prolonged use of high-dose immunosuppressive therapy. Despite these novelties, the mortality rate from PM remains higher than 50%. Therefore, future research must define the place for combination therapy and adjunctive treatments, while the development of new treatments is necessary.
Collapse
|
13
|
Dam P, Cardoso MH, Mandal S, Franco OL, Sağıroğlu P, Polat OA, Kokoglu K, Mondal R, Mandal AK, Ocsoy I. Surge of mucormycosis during the COVID-19 pandemic. Travel Med Infect Dis 2023; 52:102557. [PMID: 36805033 PMCID: PMC9940844 DOI: 10.1016/j.tmaid.2023.102557] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Patients with respiratory viral infections are more likely to develop co-infections leading to increased fatality. Mucormycosis is an epidemic amidst the COVID-19 pandemic that conveys a 'double threat' to the global health fraternity. Mucormycosis is caused by the Mucorales group of fungi and exhibits acute angioinvasion generally in immunocompromised patients. The most familiar foci of infections are sinuses (39%), lungs (24%), and skin tissues (19%) where the overall dissemination occurs in 23% of cases. The mortality rate in the case of disseminated mucormycosis is found to be 96%. Symptoms are mostly nonspecific and often resemble other common bacterial or fungal infections. Currently, COVID-19-associated mucormycosis (CAM) is being reported from a number of countries such as the USA, Turkey, France, Mexico, Iran, Austria, UK, Brazil, and Italy, while India is the hotspot for this deadly co-infection, accounting for approximately 28,252 cases up to June 8, 2021. It strikes patients within 12-18 days after COVID-19 recovery, and nearly 80% require surgery. Nevertheless, the mortality rate can reach 94% if the diagnosis is delayed or remains untreated. Sometimes COVID-19 is the sole predisposing factor for CAM. Therefore, this study may provide a comprehensive resource for clinicians and researchers dealing with fungal infections, intending to link the potential translational knowledge and prospective therapeutic challenges to counter this opportunistic pathogen.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 700019, India
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Pınar Sağıroğlu
- Department of Medical Microbiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Kerem Kokoglu
- Department of Otolaryngology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India; Centre for Nanotechnology Science (CeNS), Raiganj University, North Dinajpur, West Bengal, 733134, India.
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
14
|
Maheshwari A. Innate Immune Memory in Macrophages. NEWBORN (CLARKSVILLE, MD.) 2023; 2:60-79. [PMID: 37206580 PMCID: PMC10193650 DOI: 10.5005/jp-journals-11002-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Macrophages have been recognized as the primary mediators of innate immunity starting from embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific as adaptive immunity, but increasing information suggests that these responses do strengthen with repeated immunological triggers. The concept of innate memory in macrophages has been described as "trained immunity" or "innate immune memory (IIM)." As currently understood, this cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM may be particularly important in the fetus and the young neonate who are yet to develop protective levels of adaptive immunity, and could even be of preventive/therapeutic importance in many disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. This article presents a review of the properties, mechanisms, and possible clinical significance of macrophage-mediated IIM.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
15
|
Ponnaiyan D, Anitha C, Prakash P, Subramanian S, Rughwani RR, Kumar G, Nandipati SR. Mucormycosis diagnosis revisited: Current and emerging diagnostic methodologies for the invasive fungal infection (Review). Exp Ther Med 2023; 25:47. [PMID: 36569440 PMCID: PMC9764280 DOI: 10.3892/etm.2022.11746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mucormycosis, which is a life threatening condition, is one of the side effects experienced by post-COVID-19 patients. Early identification and timely treatment are essential to stop the dissemination of the disease, since invasive mucormycosis has a very high fatality rate and significant disease dispersion. Conventional diagnostic techniques, including clinical diagnosis, serology, histopathology and radiology, have limitations in diagnosing the disease at an early stage. This warrants the need for advanced diagnostic tools such as nucleic acid diagnostics, advanced serological tests (ELISpot), PCR (pan-Mucorale test) and multiplex PCR. These techniques have been introduced to identify this invasive fungal infection at an incipient stage, thereby helping clinicians to prevent adverse outcomes. The use of biosensors and micro-needle based diagnostic methodologies will pave the way for devising more point-of-care tests that can be employed for the detection of mucormycosis at an incipient stage. The present review discusses the current techniques available and their drawbacks, and the usefulness of advanced diagnostic tools. Furthermore, the possibility of using future diagnostic methods for the diagnosis of mucormycosis is highlighted.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| | - C.M. Anitha
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| | - P.S.G. Prakash
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| | - Roshan R. Rughwani
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| | - Gayathri Kumar
- Department of Periodontics, SRM Kattankulathur Dental College, Chengalpettu, Kanchipuram, Tamil Nadu 603203, Republic of India
| | - Sowmya Reddy Nandipati
- Department of Periodontics, SRM Dental College, Ramapuram, Chennai, Tamil Nadu 600089, Republic of India
| |
Collapse
|
16
|
Lecointe K, Coulon P, Krzewinski F, Charlet R, Bortolus C, Sendid B, Cornu M. Parietal composition of Lichtheimia corymbifera: Differences between spore and germ tube stages and host-pathogen interactions. Med Mycol 2022; 61:6960681. [PMID: 36565722 DOI: 10.1093/mmy/myac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The molecular composition and structural organization of the cell wall of filamentous fungi underlie the ability of the host to identify them as pathogens. Although the organization of the fungal cell wall, composed of 90% polysaccharides, is similar from one fungus to another, small variations condition their ability to trigger pattern recognition receptors. Because the incidence of mucormycosis, an emerging life-threatening infection caused by the species of the order Mucorales is increasing worldwide, the precise composition of the cell wall of two strains of Lichtheimia corymbifera was investigated in the early growth stages of germination (spores and germ-tubes) using trimethylsilylation and confocal microscopy. This study also characterizes the response of THP-1 cells to Mucorales. The study identified the presence of uncommon monosaccharides (fucose, galactose, and glucuronic acid) whose respective proportions vary according to the germination stage, revealing early parietal reorganization. Immunofluorescence studies confirmed the exposure of β-glucan on the surface of swollen spores and germ-tubes. Both spores and germ-tubes of L. corymbifera promoted an early and strong pro-inflammatory response, through TLR-2. Our results show the singularity of the cell wall of the order Mucorales, opening perspectives for the development of specific diagnostic biomarkers.
Collapse
Affiliation(s)
- Karine Lecointe
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Pauline Coulon
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Frédéric Krzewinski
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France
| | - Rogatien Charlet
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Clovis Bortolus
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Marjorie Cornu
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
17
|
COVID-19-Associated Mucormycosis: A Matter of Concern Amid the SARS-CoV-2 Pandemic. Vaccines (Basel) 2022; 10:vaccines10081266. [PMID: 36016154 PMCID: PMC9415927 DOI: 10.3390/vaccines10081266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an invasive fungal infection caused by fungi belonging to order Mucorales. Recently, with the increase in COVID-19 infections, mucormycosis infections have become a matter of concern globally, because of the high morbidity and mortality rates associated with them. Due to the association of mucormycosis with COVID-19 disease, it has been termed COVID-19-associated mucormycosis (CAM). In the present review, we focus on mucormycosis incidence, pathophysiology, risk factors, immune dysfunction, interactions of Mucorales with endothelial cells, and the possible role of iron in Mucorales growth. We review the limitations associated with current diagnostic procedures and the requirement for more specific, cost-effective, convenient, and sensitive assays, such as PCR-based assays and monoclonal antibody-based assays for the effective diagnosis of mucormycosis. We discuss the current treatment options involving antifungal drug therapies, adjunctive therapy, surgical treatment, and their limitations. We also review the importance of nutraceuticals-based therapy for the prevention as well as treatment of mucormycosis. Our review also highlights the need to explore the potential of novel immunotherapeutics, which include antibody-based therapy, cytokine-based therapy, and combination/synergistic antifungal therapy, as treatment options for mucormycosis. In summary, this review provides a complete overview of COVID-19-associated mucormycosis, addressing the current research gaps and future developments required in the field.
Collapse
|
18
|
Davies GE, Thornton CR. Development of a Monoclonal Antibody and a Serodiagnostic Lateral-Flow Device Specific to Rhizopus arrhizus (Syn. R. oryzae), the Principal Global Agent of Mucormycosis in Humans. J Fungi (Basel) 2022; 8:jof8070756. [PMID: 35887511 PMCID: PMC9325280 DOI: 10.3390/jof8070756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mucormycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. Though a number of different species can cause mucormycosis, the principal agent of the disease worldwide is Rhizopus arrhizus, which accounts for the majority of rhino-orbital-cerebral, pulmonary, and disseminated infections in immunocompromised individuals. It is also the main cause of life-threatening infections in patients with poorly controlled diabetes mellitus, and in corticosteroid-treated patients with SARS-CoV-2 infection, where it causes the newly described disease, COVID-19-associated mucormycosis (CAM). Diagnosis currently relies on non-specific CT, a lengthy and insensitive culture from invasive biopsy, and a time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests for the disease that detect biomarkers of infection, and which allow point-of-care diagnosis. Here, we report the development of an IgG1 monoclonal antibody (mAb), KC9, which is specific to Rhizopus arrhizus var. arrhizus (syn. Rhizopus oryzae) and Rhizopus arrhizus var. delemar (Rhizopus delemar), and which binds to a 15 kDa extracellular polysaccharide (EPS) antigen secreted during hyphal growth of the pathogen. Using the mAb, we have developed a competitive lateral-flow device (LFD) that allows rapid (30 min) and sensitive (~50 ng/mL running buffer) detection of the EPS biomarker, and which is compatible with human serum (limit of detection of ~500 ng/mL) and bronchoalveolar lavage fluid (limit of detection of ~100 ng/mL). The LFD, therefore, provides a potential novel opportunity for the non-invasive detection of mucormycosis caused by Rhizopus arrhizus.
Collapse
Affiliation(s)
- Genna E. Davies
- ISCA Diagnostics Ltd., B12A, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
| | - Christopher R. Thornton
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Correspondence:
| |
Collapse
|
19
|
COVID-19, Mucormycosis and Cancer: The Triple Threat-Hypothesis or Reality? J Pers Med 2022; 12:jpm12071119. [PMID: 35887616 PMCID: PMC9320339 DOI: 10.3390/jpm12071119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/09/2023] Open
Abstract
COVID-19 has been responsible for widespread morbidity and mortality worldwide. Invasive mucormycosis has death rates scaling 80%. India, one of the countries hit worst by the pandemic, is also a hotbed with the highest death rates for mucormycosis. Cancer, a ubiquitously present menace, also contributes to higher case fatality rates. All three entities studied here are individual, massive healthcare threats. The danger of one disease predisposing to the other, the poor performance status of patients with all three diseases, the impact of therapeutics for one disease on the pathology and therapy of the others all warrant physicians having a better understanding of the interplay. This is imperative so as to effectively establish control over the individual patient and population health. It is important to understand the interactions to effectively manage all three entities together to reduce overall morbidity. In this review article, we search for an inter-relationship between the COVID-19 pandemic, emerging mucormycosis, and the global giant, cancer.
Collapse
|
20
|
Gupta AK, Hall DC, Cooper EA, Ghannoum MA. Diagnosing Onychomycosis: What's New? J Fungi (Basel) 2022; 8:464. [PMID: 35628720 PMCID: PMC9146047 DOI: 10.3390/jof8050464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
An overview of the long-established methods of diagnosing onychomycosis (potassium hydroxide testing, fungal culture, and histopathological examination) is provided followed by an outline of other diagnostic methods currently in use or under development. These methods generally use one of two diagnostic techniques: visual identification of infection (fungal elements or onychomycosis signs) or organism identification (typing of fungal genus/species). Visual diagnosis (dermoscopy, optical coherence tomography, confocal microscopy, UV fluorescence excitation) provides clinical evidence of infection, but may be limited by lack of organism information when treatment decisions are needed. The organism identification methods (lateral flow techniques, polymerase chain reaction, MALDI-TOF mass spectroscopy and Raman spectroscopy) seek to provide faster and more reliable identification than standard fungal culture methods. Additionally, artificial intelligence methods are being applied to assist with visual identification, with good success. Despite being considered the 'gold standard' for diagnosis, clinicians are generally well aware that the established methods have many limitations for diagnosis. The new techniques seek to augment established methods, but also have advantages and disadvantages relative to their diagnostic use. It remains to be seen which of the newer methods will become more widely used for diagnosis of onychomycosis. Clinicians need to be aware of the limitations of diagnostic utility calculations as well, and look beyond the numbers to assess which techniques will provide the best options for patient assessment and management.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Department of Medicine, Division of Dermatology, University of Toronto School of Medicine, Toronto, ON M5S 3H2, Canada
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (D.C.H.); (E.A.C.)
| | - Deanna C. Hall
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (D.C.H.); (E.A.C.)
| | | | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Garre V. Recent Advances and Future Directions in the Understanding of Mucormycosis. Front Cell Infect Microbiol 2022; 12:850581. [PMID: 35281441 PMCID: PMC8907824 DOI: 10.3389/fcimb.2022.850581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mucormycosis is an emerging infection caused by fungi of the order Mucorales that has recently gained public relevance due to the high incidence among COVID-19 patients in some countries. The reduced knowledge about Mucorales pathogenesis is due, in large part, to the historically low interest for these fungi fostered by their reluctance to be genetically manipulated. The recent introduction of more tractable genetic models together with an increasing number of available whole genome sequences and genomic analyses have improved our understanding of Mucorales biology and mucormycosis in the last ten years. This review summarizes the most significant advances in diagnosis, understanding of the innate and acquired resistance to antifungals, identification of new virulence factors and molecular mechanisms involved in the infection. The increased awareness about the disease and the recent successful genetic manipulation of previous intractable fungal models using CRISPR-Cas9 technology are expected to fuel the characterization of Mucorales pathogenesis, facilitating the development of effective treatments to fight this deadly infection.
Collapse
Affiliation(s)
- Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
Darwish RM, AlMasri M, Al‐Masri MM. Mucormycosis: The Hidden and Forgotten Disease. J Appl Microbiol 2022; 132:4042-4057. [DOI: 10.1111/jam.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy The University of Jordan Amman Jordan
| | | | | |
Collapse
|
23
|
Lackner N, Posch W, Lass-Flörl C. Microbiological and Molecular Diagnosis of Mucormycosis: From Old to New. Microorganisms 2021; 9:microorganisms9071518. [PMID: 34361953 PMCID: PMC8304313 DOI: 10.3390/microorganisms9071518] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the order Mucorales may cause severe invasive fungal infections (mucormycosis) in immune-compromised and otherwise ill patients. Diagnosis of Mucorales infections and discrimination from other filamentous fungi are crucial for correct management. Here, we present an overview of current state-of-the-art mucormycosis diagnoses, with a focus on recent developments in the molecular field. Classical diagnostic methods comprise histology/microscopy as well as culture and are still the gold standard. Newer molecular methods are evolving quickly and display great potential in early diagnosis, although standardization is still missing. Among them, quantitative PCR assays with or without melt curve analysis are most widely used to detect fungal DNA in clinical samples. Depending on the respective assay, sequencing of the resulting PCR product can be necessary for genus or even species identification. Further, DNA-based methods include microarrays and PCR-ESI-MS. However, general laboratory standards are still in development, meaning that molecular methods are currently limited to add-on analytics to culture and microscopy.
Collapse
|
24
|
Cheong JZA, Johnson CJ, Wan H, Liu A, Kernien JF, Gibson ALF, Nett JE, Kalan LR. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. THE ISME JOURNAL 2021; 15:2012-2027. [PMID: 33558690 PMCID: PMC8245565 DOI: 10.1038/s41396-021-00901-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Polymicrobial biofilms are a hallmark of chronic wound infection. The forces governing assembly and maturation of these microbial ecosystems are largely unexplored but the consequences on host response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm and a stable microbial community structure is associated with impaired tissue repair resulting in a non-healing chronic wound. These types of wounds can persist for years simmering below the threshold of classically defined clinical infection (which includes heat, pain, redness, and swelling) and cycling through phases of recurrent infection. In the most severe outcome, amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological perspective to study priority effects and competitive exclusion on overall biofilm community structure in a three-membered community comprised of strains of Staphylococcus aureus, Citrobacter freundii, and Candida albicans derived from a chronic wound. We show that both priority effects and inter-bacterial competition for binding to C. albicans biofilms significantly shape community structure on both abiotic and biotic substrates, such as ex vivo human skin wounds. We further show attachment of C. freundii to C. albicans is mediated by mannose-binding lectins. Co-cultures of C. freundii and C. albicans trigger the yeast-to-hyphae transition, resulting in a significant increase in neutrophil death and inflammation compared to either species alone. Collectively, the results presented here facilitate our understanding of fungal-bacterial interactions and their effects on host-microbe interactions, pathogenesis, and ultimately, wound healing.
Collapse
Affiliation(s)
- J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - John F Kernien
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
25
|
Pałka Ł, Gaur V. The importance of mucormycosis infections on
example of Rhino Orbital Cerebral Mucormycosis. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mucormycosis is an angioinvasive fungal infection, characterized by high morbidity and mortality
and is strongly dependent on the patient’s general health condition, initial site of infection,
and the time from diagnosis to treatment commencement. It has been reported that the
occurrence of mucormycosis has increased rapidly, also among immunocompetent patients.
Moreover, the rise in number is expected to continue. Among all clinical manifestations of
mucormycosis, the rhino-orbital-cerebral type (ROCM) is the most common. The aim of this
article is to increase the awareness of mucoral infections, especially ROCM, and to describe its
first symptoms, as proper treatment requires immediate surgical and medical intervention.
Collapse
Affiliation(s)
| | - Vivek Gaur
- Jaipur Dental College, Maharaj Vinayek Global University, Jaipur, India
| |
Collapse
|
26
|
Freeman Weiss Z, Leon A, Koo S. The Evolving Landscape of Fungal Diagnostics, Current and Emerging Microbiological Approaches. J Fungi (Basel) 2021; 7:jof7020127. [PMID: 33572400 PMCID: PMC7916227 DOI: 10.3390/jof7020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections are increasingly recognized in immunocompromised hosts. Current diagnostic techniques are limited by low sensitivity and prolonged turnaround times. We review emerging diagnostic technologies and platforms for diagnosing the clinically invasive disease caused by Candida, Aspergillus, and Mucorales.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
- Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
- Correspondence:
| | - Armando Leon
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| | - Sophia Koo
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| |
Collapse
|
27
|
Skiada A, Pavleas I, Drogari-Apiranthitou M. Epidemiology and Diagnosis of Mucormycosis: An Update. J Fungi (Basel) 2020; 6:jof6040265. [PMID: 33147877 PMCID: PMC7711598 DOI: 10.3390/jof6040265] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Mucormycosis is an angioinvasive fungal infection, due to fungi of the order Mucorales. Its incidence cannot be measured exactly, since there are few population-based studies, but multiple studies have shown that it is increasing. The prevalence of mucormycosis in India is about 80 times the prevalence in developed countries, being approximately 0.14 cases per 1000 population. Diabetes mellitus is the main underlying disease globally, especially in low and middle-income countries. In developed countries the most common underlying diseases are hematological malignancies and transplantation. Τhe epidemiology of mucormycosis is evolving as new immunomodulating agents are used in the treatment of cancer and autoimmune diseases, and as the modern diagnostic tools lead to the identification of previously uncommon genera/species such as Apophysomyces or Saksenaea complex. In addition, new risk factors are reported from Asia, including post-pulmonary tuberculosis and chronic kidney disease. New emerging species include Rhizopus homothallicus, Thamnostylum lucknowense, Mucor irregularis and Saksenaea erythrospora. Diagnosis of mucormycosis remains challenging. Clinical approach to diagnosis has a low sensitivity and specificity, it helps however in raising suspicion and prompting the initiation of laboratory testing. Histopathology, direct examination and culture remain essential tools, although the molecular methods are improving. The internal transcribed spacer (ITS) region is the most widely sequenced DNA region for fungi and it is recommended as a first-line method for species identification of Mucorales. New molecular platforms are being investigated and new fungal genetic targets are being explored. Molecular-based methods have gained acceptance for confirmation of the infection when applied on tissues. Methods on the detection of Mucorales DNA in blood have shown promising results for earlier and rapid diagnosis and could be used as screening tests in high-risk patients, but have to be validated in clinical studies. More, much needed, rapid methods that do not require invasive procedures, such as serology-based point-of-care, or metabolomics-based breath tests, are being developed and hopefully will be evaluated in the near future.
Collapse
Affiliation(s)
- Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-2107-462-607
| | | | - Maria Drogari-Apiranthitou
- Fourth Department of Internal Medicine, General University Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
28
|
Ohashi T, Tanaka T, Tanaka N, Takegawa K. SpMnn9p and SpAnp1p form a protein complex involved in mannan synthesis in the fission yeast Schizosaccharomyces pombe. J Biosci Bioeng 2020; 130:335-340. [DOI: 10.1016/j.jbiosc.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
|
29
|
|
30
|
Abstract
Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin β1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin β1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin β1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.
Collapse
|
31
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
32
|
Therapeutic Challenges of Non- Aspergillus Invasive Mold Infections in Immunosuppressed Patients. Antimicrob Agents Chemother 2019; 63:AAC.01244-19. [PMID: 31481441 DOI: 10.1128/aac.01244-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While Aspergillus spp. remain the major cause of invasive mold infections in hematologic cancer patients and transplant recipients, other opportunistic molds, such as Mucorales, Fusarium, and Scedosporium spp. are increasingly encountered in an expanding population of patients with severe and prolonged immunosuppression. High potential for tissue invasion and dissemination, resistance to multiple antifungals and high mortality rates are hallmarks of these non-Aspergillus invasive mold infections (NAIMIs). Assessment of drug efficacy is particularly difficult in the complex treatment scenarios of NAIMIs. Specifically, correlation between in vitro susceptibility and in vivo responses to antifungals is hard to assess, in view of the multiple, frequently interrelated factors influencing outcomes, such as pharmacokinetic/pharmacodynamic parameters determining drug availability at the site of infection, the net state of immune suppression, delay in diagnosis, or surgical debulking of infectious foci. Our current therapeutic approach of NAIMIs should evolve toward a better integration of the dynamic interactions between the pathogen, the drug and the host. Innovative concepts of experimental research may consist in manipulating the host immune system to induce a specific antifungal response or targeted drug delivery. In this review, we discuss the challenges in the management of NAIMIs and provide an update about the latest advances in diagnostic and therapeutic approaches.
Collapse
|
33
|
Chikley A, Ben-Ami R, Kontoyiannis DP. Mucormycosis of the Central Nervous System. J Fungi (Basel) 2019; 5:jof5030059. [PMID: 31288475 PMCID: PMC6787740 DOI: 10.3390/jof5030059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mucormycosis involves the central nervous system by direct extension from infected paranasal sinuses or hematogenous dissemination from the lungs. Incidence rates of this rare disease seem to be rising, with a shift from the rhino-orbital-cerebral syndrome typical of patients with diabetes mellitus and ketoacidosis, to disseminated disease in patients with hematological malignancies. We present our current understanding of the pathobiology, clinical features, and diagnostic and treatment strategies of cerebral mucormycosis. Despite advances in imaging and the availability of novel drugs, cerebral mucormycosis continues to be associated with high rates of death and disability. Emerging molecular diagnostics, advances in experimental systems and the establishment of large patient registries are key components of ongoing efforts to provide a timely diagnosis and effective treatment to patients with cerebral mucormycosis.
Collapse
Affiliation(s)
- Amanda Chikley
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, The University of Texas, M.D. Anderson Cancer Center, Houston 77030, TexasTX 77030, USA.
| |
Collapse
|
34
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
35
|
Liu X, Li J, Zhao H, Liu B, Günther-Pomorski T, Chen S, Liesche J. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol 2019; 218:1408-1421. [PMID: 30782779 PMCID: PMC6446840 DOI: 10.1083/jcb.201810121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Jiazhou Li
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Heyu Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Boyang Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China .,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| |
Collapse
|