1
|
Oluwasemowo OO, Graham ME, Murugesh DK, Borucki MK. Improved Zika virus plaque assay using Vero/TMPRSS2 cell line. Microbiol Spectr 2025; 13:e0162424. [PMID: 39611828 PMCID: PMC11705888 DOI: 10.1128/spectrum.01624-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Plaque assay is the gold standard for the quantification of viable cytopathic viruses like Zika virus (ZIKV). Some strains of ZIKV produce plaques that are very difficult to accurately visualize and count on the commonly used Vero cell line. From data generated in our lab, we became curious if Vero/TMPRSS2 cells may be a better alternative; therefore, we compared the plaque forming units of two strains of ZIKV on Vero/TMPRSS2 cells to those produced by Vero cells. We also compared the virus stock titer generated on Vero/TMPRSS2 cells to that generated by the Vero cell line. Although the Vero cells generated higher quantity of ZIKV stocks, the Vero/TMPRSS2 cells produced plaques with significantly improved morphology and visibility and may, therefore, be a better alternative to use for performing plaque assays for strains of ZIKV that are more difficult to titer on regular Vero cells. IMPORTANCE While there are several methods of viral quantification, the plaque assay remains the gold standard for accurate quantification of replication-competent, cytopathic viruses including Zika virus (ZIKV). Vero cells are commonly used to titer ZIKV stock via the plaque assay. Prior to the initiation of this study, we observed that ZIKV-PRV strain plaque assays using Vero cells often yielded plaques that were very small, overly diffuse, and hard to count. We also observed that the ZIKV-CAM strain often did not produce plaques at all on Vero cells. This study shows that Vero cells expressing TMPRSS2 improve the morphology and visibility of plaques produced by ZIKV-PRV and ZIKV-CAM compared to regular Vero cells and may, therefore, be a better alternative to use for performing plaque assays for these strains and perhaps for other strains of ZIKV that are difficult to titer. However, Vero cells proved to be superior for generating high titer stock.
Collapse
Affiliation(s)
- Olukunle O. Oluwasemowo
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica E. Graham
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Deepa K. Murugesh
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica K. Borucki
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Niyomdecha N, Boonarkart C, Thongon S, Auewarakul P. Comparative study of the propagation and plaque titration conditions for human coronavirus OC43 as a surrogate for SARS-CoV-2. Arch Virol 2024; 169:214. [PMID: 39365483 DOI: 10.1007/s00705-024-06146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
The ongoing COVID-19 pandemic is threatening human health globally. The development of effective drugs and vaccines against SARS-CoV-2 is hindered by the limited access to high-biosafety-level facilities. Although human coronavirus (HCoV) OC43, a low-pathogenic endemic human coronavirus, has been used as a surrogate virus for SARS-CoV-2 research, a standard technique for HCoV-OC43 culture and plaque titration has not been established. Our objective was to establish optimized culture and titration protocols for HCoV-OC43. The growth kinetics and permissibility to HCoV-OC43 infection of seven different cell lines were examined concurrently at two different temperatures, 33°C and 37°C. Cell lines exhibiting a cytopathic effect (CPE) were selected for plaque titration. No significant difference in the rate of cell growth was observed at the two temperatures tested. Interestingly, HCoV-OC43 was found not to be a high-temperature-sensitive virus, since it grew well at 37°C. Although RD, LLC-MK2, MRC-5, and HCT-8 cell lines supported virus growth with an obvious cytopathic effect and a high yield of virus after two days of infection, only RD cells were suitable for producing countable plaques. The incubation of the cells with 1.2% low-viscosity Avicel as an overlay medium at 37°C for 4 days appeared to promote clearer and sharper plaque morphology. However, further optimization of the plaque titration protocol is still required due to the continued observation of plaque size variation and hazy zones. We propose a cost-effective protocol for HCoV-OC43 culture and plaque titration that can be implemented at a standard conventional temperature without the need for additional special equipment.
Collapse
Affiliation(s)
- Nattamon Niyomdecha
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani, 12120, Thailand.
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
3
|
Siragam V, Maltseva M, Castonguay N, Galipeau Y, Srinivasan MM, Soto JH, Dankar S, Langlois MA. Seasonal human coronaviruses OC43, 229E, and NL63 induce cell surface modulation of entry receptors and display host cell-specific viral replication kinetics. Microbiol Spectr 2024; 12:e0422023. [PMID: 38864599 PMCID: PMC11218498 DOI: 10.1128/spectrum.04220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.
Collapse
MESH Headings
- Humans
- Virus Replication
- Coronavirus NL63, Human/physiology
- Coronavirus NL63, Human/genetics
- Coronavirus 229E, Human/physiology
- Coronavirus 229E, Human/genetics
- Coronavirus OC43, Human/physiology
- Coronavirus OC43, Human/genetics
- Cell Line
- Virus Internalization
- Seasons
- Kinetics
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Common Cold/virology
- Common Cold/metabolism
- SARS-CoV-2/physiology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Animals
- COVID-19/virology
- COVID-19/metabolism
- Coronavirus/physiology
- Coronavirus/genetics
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mrudhula Madapuji Srinivasan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Justino Hernandez Soto
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- The Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Zhang M, Leong MW, Mitch WA, Blish CA, Boehm A. Persistence and free chlorine disinfection of human coronaviruses and their surrogates in water. Appl Environ Microbiol 2024; 90:e0005524. [PMID: 38511945 PMCID: PMC11022552 DOI: 10.1128/aem.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The coronavirus disease 2019 pandemic illustrates the importance of understanding the behavior and control of human pathogenic viruses in the environment. Exposure via water (drinking, bathing, and recreation) is a known route of transmission of viruses to humans, but the literature is relatively void of studies on the persistence of many viruses, especially coronaviruses, in water and their susceptibility to chlorine disinfection. To fill that knowledge gap, we evaluated the persistence and free chlorine disinfection of human coronavirus OC43 (HCoV-OC43) and its surrogates, murine hepatitis virus (MHV) and porcine transmissible gastroenteritis virus (TGEV), in drinking water and laboratory buffer using cell culture methods. The decay rate constants of human coronavirus and its surrogates in water varied, depending on virus and water matrix. In drinking water without disinfectant addition, MHV showed the largest decay rate constant (estimate ± standard error, 2.25 ± 0.09 day-1) followed by HCoV-OC43 (0.99 ± 0.12 day-1) and TGEV (0.65 ± 0.06 day-1), while in phosphate buffer without disinfectant addition, HCoV-OC43 (0.51 ± 0.10 day-1) had a larger decay rate constant than MHV (0.28 ± 0.03 day-1) and TGEV (0.24 ± 0.02 day-1). Upon free chlorine disinfection, the inactivation rates of coronaviruses were independent of free chlorine concentration and were not affected by water matrix, though they still varied between viruses. TGEV showed the highest susceptibility to free chlorine disinfection with the inactivation rate constant of 113.50 ± 7.50 mg-1 min-1 L, followed by MHV (81.33 ± 4.90 mg-1 min-1 L) and HCoV-OC43 (59.42 ± 4.41 mg-1 min-1 L). IMPORTANCE This study addresses an important knowledge gap on enveloped virus persistence and disinfection in water. Results have immediate practical applications for shaping evidence-based water policies, particularly in the development of disinfection strategies for pathogenic virus control.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Michelle Wei Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - William A. Mitch
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Martínez-Arribas B, Annang F, Díaz-González R, Pérez-Moreno G, Martín J, Mackenzie TA, Castillo F, Reyes F, Genilloud O, Ruiz-Pérez LM, Vicente F, Ramos MC, González-Pacanowska D. Establishment of a screening platform based on human coronavirus OC43 for the identification of microbial natural products with antiviral activity. Microbiol Spectr 2024; 12:e0167923. [PMID: 38009959 PMCID: PMC10783114 DOI: 10.1128/spectrum.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.
Collapse
Affiliation(s)
- Blanca Martínez-Arribas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Rosario Díaz-González
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Francisco Castillo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - María C. Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
6
|
Diefenbacher MV, Baric TJ, Martinez DR, Baric RS, Catanzaro NJ, Sheahan TP. A nano-luciferase expressing human coronavirus OC43 for countermeasure development. Virus Res 2024; 339:199286. [PMID: 38016504 PMCID: PMC10714359 DOI: 10.1016/j.virusres.2023.199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV.
Collapse
Affiliation(s)
- Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Li Y, Wang K, Sun H, Wu S, Wang H, Shi Y, Li X, Yan H, Yang G, Wu M, Li Y, Ding X, Si S, Jiang J, Du Y, Li Y, Hong B. Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2. Antiviral Res 2023; 214:105606. [PMID: 37076089 PMCID: PMC10110284 DOI: 10.1016/j.antiviral.2023.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate as a broad-spectrum anti-coronavirus agent that could rapidly respond to emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Yihua Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Du
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Watanabe N, Hirose R, Yamauchi K, Miyazaki H, Bandou R, Yoshida T, Doi T, Inoue K, Dohi O, Yoshida N, Uchiyama K, Ishikawa T, Takagi T, Konishi H, Ikegaya H, Nakaya T, Itoh Y. Evaluation of Environmental Stability and Disinfectant Effectiveness for Human Coronavirus OC43 on Human Skin Surface. Microbiol Spectr 2023; 11:e0238122. [PMID: 36840603 PMCID: PMC10100891 DOI: 10.1128/spectrum.02381-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/04/2023] [Indexed: 02/24/2023] Open
Abstract
The environmental stability of human coronavirus OC43 (HCoV-OC43) on the surface of human skin and the effectiveness of disinfectant against HCoV-OC43, which are important to prevent contact transmission, have not been clarified in previous studies. Using previously generated models, we evaluated HCoV-OC43 stability and disinfection effectiveness. Then we compared the results with those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The median survival time of HCoV-OC43 on the surface of human skin was 24.6 h (95% confidence interval, 19.7 to 29.6 h), which was higher than that of SARS-CoV-2 (10.8 h). Although the in vitro disinfectant effectiveness evaluation showed that HCoV-OC43 has a higher ethanol resistance than SARS-CoV-2, HCoV-OC43 on the skin surface was completely inactivated by a minimum of 50% ethanol within 5 s (the log reduction values were >4.0). Moreover, 1.0% chlorhexidine gluconate and 0.2% benzalkonium chloride showed relatively high disinfectant effectiveness, and the log reduction values when these disinfectants were applied for 15 s were >3.0. HCoV-OC43 is highly stable on the skin surface, which may increase the risk of contact transmission. Although HCoV-OC43 has relatively high ethanol resistance, appropriate hand hygiene practices with current alcohol-based disinfectants sufficiently reduce the risk of contact transmission. IMPORTANCE This study revealed the environmental stability of HCoV-OC43 and disinfectant effectiveness against HCoV-OC43, which had not been demonstrated in previous studies. HCoV-OC43 is highly stable on the surface of human skin, with a survival time of approximately 25 h. High stability of HCoV-OC43 may increase the risk of contact transmission. Furthermore, the in vitro disinfectant effectiveness evaluation showed that HCoV-OC43, which is classified as an envelope virus, has a relatively high ethanol resistance. This finding suggests that disinfectant effectiveness may vary greatly depending on the virus and that each virus targeted for infection control should be evaluated individually. HCoV-OC43 on the skin surface was rapidly inactivated by 50% ethanol, which suggests that appropriate hand hygiene practices with current alcohol-based disinfectants can sufficiently reduce the risk of HCoV-OC43 contact transmission.
Collapse
Affiliation(s)
- Naoto Watanabe
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryohei Hirose
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuma Yamauchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Miyazaki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Bandou
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Forensics Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- Department of Forensics Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Lazuardi M, Suharjono S, Chien CH, He JL, Lee CW, Peng CK, Sukmanadi M, Sugihartuti R, Maslachah L. Toxicity test of flavonoid compounds from the leaves of Dendrophthoe pentandra (L.) Miq. using in vitro culture cell models. Vet World 2022; 15:2896-2902. [PMID: 36718322 PMCID: PMC9880835 DOI: 10.14202/vetworld.2022.2896-2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Aim The flavonoids from mistletoe are thought to have antimicrobial action. This encouraging finding supports the benefits of medicinal plants as a substitute for synthetic antimicrobials, thus promoting healthy lifestyles. In contrast, it is known that the use of topical drug formulations made from flavonoids of mistletoe (Dendrophthoe pentandra (L.) Miq. Loranthaceae) with Indonesian name, Benalu duku (BD) is required in skin cell irritation. This study aimed to assess the toxic effects of the flavonoid substances of BD, as an initial screening. Materials and Methods A myeloma cell line was cultured in Roswell Park Memorial Institute medium, and the Baby Hamster Kidney clone 12 (BHK21) cell line was cultured in Dulbecco's Modified Eagle's Medium from stock (±9 × 107 cells/mL), and 1.2 mL of culture were distributed into each well of a microtiter plate. Subsequently, 0.2 mL of serially diluted flavonoid compounds (0.5-3 μg/mL) were added to 12 wells for each concentration, as trial groups (including control groups), followed by a 2-day incubation. Observations were performed based on the cytopathic effect (CPE) using an inverted microscope at a magnification of 100×. Results Cytopathic effect was detected on the microtiter plate wells for the groups of myeloma and BHK21 cells at a flavonoid concentration of 0.5 μg/mL-3 μg/mL. Conclusion Flavonoid compounds from BD were safely used for topical treatment of cancer cells at a concentration <2.491 μg/mL, whereas for non-cancerous cells, a concentration <2.582 μg/mL was sufficient (p < 0.05).
Collapse
Affiliation(s)
- Mochamad Lazuardi
- Sub-division Veterinary-Pharmacy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Road, 60115, Surabaya, Indonesia,Corresponding author: Mochamad Lazuardi, e-mail: Co-authors: SS: , CC: , JH: , CL: , CP: , MS: , RS: , LM:
| | - Suharjono Suharjono
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Mulyorejo Road, 60115, Surabaya, Indonesia
| | - Chi-Hsien Chien
- Department of Veterinary Medicine, Asia University, No. 500, Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
| | - Jie-Long He
- Department of Veterinary Medicine, Asia University, No. 500, Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
| | - Chi-Wen Lee
- Department of Veterinary Medicine, Asia University, No. 500, Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
| | - Chia-Kang Peng
- Department of Veterinary Medicine, Asia University, No. 500, Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
| | - Mohammad Sukmanadi
- Sub-division Veterinary-Pharmacy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Road, 60115, Surabaya, Indonesia
| | - Rahmi Sugihartuti
- Sub-division Veterinary-Pharmacy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Road, 60115, Surabaya, Indonesia
| | - Lilik Maslachah
- Sub-division Veterinary-Pharmacy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Road, 60115, Surabaya, Indonesia
| |
Collapse
|
10
|
Kim S, Nowakowska A, Kim YB, Shin HY. Integrated CRISPR-Cas9 System-Mediated Knockout of IFN-γ and IFN-γ Receptor 1 in the Vero Cell Line Promotes Viral Susceptibility. Int J Mol Sci 2022; 23:ijms23158217. [PMID: 35897807 PMCID: PMC9368479 DOI: 10.3390/ijms23158217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The current pandemic and the possible emergence of new viruses urgently require the rapid development of antiviral vaccines and therapeutics. However, some viruses or newly generated variants are difficult to culture in common cell types or exhibit low viral susceptibility in vivo, making it difficult to manufacture viral vector-based vaccines and understand host-virus interactions. To address these issues, we established new cell lines deficient in both type I and type II interferon responses, which are essential for host immunity and interference with virus replication. These cell lines were generated by developing an integrated CRISPR-Cas9 system that simultaneously expresses dual-guide RNA cassettes and Cas9 nuclease in a single plasmid. Using this highly efficient gene-editing system, we successfully established three cell lines starting from IFN-α/β-deficient Vero cells, deleting the single interferon-gamma (IFNG) gene, the IFNG receptor 1 (IFNGR1) gene, or both genes. All cell lines clearly showed a decrease in IFN-γ-responsive antiviral gene expression and cytokine production. Moreover, production of IFN-γ-induced cytokines remained low, even after HSV-1 or HCoV-OC43 infection, while expression of the receptor responsible for viral entry increased. Ultimately, knockout of IFN-signaling genes in these cell lines promoted cytopathic effects and increased apoptosis after viral infection up to three-fold. These results indicate that our integrated CRISPR-Cas9-mediated IFNG- and IFNGR1-knockout cell lines promote virus replication and will be useful in viral studies used to design novel vaccines and therapies.
Collapse
|
11
|
Savoie C, Lippé R. Optimizing human coronavirus OC43 growth and titration. PeerJ 2022; 10:e13721. [PMID: 35833016 PMCID: PMC9272819 DOI: 10.7717/peerj.13721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023] Open
Abstract
Coronaviruses have been at the forefront of the news for the last 2 years. Unfortunately, SARS-CoV-2, the etiologic agent for the COVID-19 pandemic, must be manipulated in biosecurity level 3 settings, which significantly limits research. Meanwhile, several less pathogenic human coronaviruses (HCoV) exist and can be studied in much more common biosafety level 2 laboratories. Among them, HCoV-OC43 is a good surrogate candidate for SARS-CoV-2 since both are phylogenetically related human Betacoronaviruses. However, one issue has been the lack of standardized means among laboratories to propagate and titer this less virulent coronavirus. The present study probes the optimal parameters to propagate HCoV-OC43. First, testing of five different cell lines (MRC-5, Huh7.5, Vero, HCT-8, HRT-18) indicated that the physiologically relevant MRC-5 human lung cell line produced among the highest viral titers. HRT-18 may however be an interesting alternative as they are quick growing cells that also led to higher viral titers and a better tropism for various HCoV-OC43 variants. We also probed the impact of serum and temperature during viral expansion and confirmed that the normal temperature of the upper respiratory track (33 °C) improves viral yields over the typical 37 °C used to grow many other viruses. Meanwhile, we did not notice any evidence that serum concentrations significantly affected the virus but interestingly noted that the virus grew quite efficiently in a serum-free media formulation. Meanwhile sonication of viral stocks somewhat improved viral titers. Four titration methods (plaque assays, TCID50-CPE, TCID50-IFA and TCID50-IPA) were also probed using two cell lines (VeroE6 and HRT-18). In our hands, plaque assays proved unreliable and quantification of the virus by scoring CPE positive wells was significantly less sensitive than antibody-based assays (IFA and IPA). While the latter methods were equally sensitive, we favor the TCID50-IPA method since simpler, faster and cheaper than the IFA protocol. Moreover, the HRT-18 cells appeared more sensitive to quantify the virus. Perhaps most importantly, these optimized protocols routinely led to high titer viral stocks in the order of 108 TCID50/ml magnitude, which should fulfill the requirements of most experimental settings.
Collapse
Affiliation(s)
| | - Roger Lippé
- Centre de Recherche du CHU-Sainte-Justine, Montreal, Quebec, Canada,Department of Pathology and Cell biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Weil T, Lawrenz J, Seidel A, Münch J, Müller JA. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Res 2022; 203:105343. [PMID: 35598779 PMCID: PMC9119192 DOI: 10.1016/j.antiviral.2022.105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Institute of Virology, Philipps University of Marburg, 35043, Marburg, Germany.
| |
Collapse
|
13
|
Potential Use of Tea Tree Oil as a Disinfectant Agent against Coronaviruses: A Combined Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123786. [PMID: 35744913 PMCID: PMC9228983 DOI: 10.3390/molecules27123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.
Collapse
|
14
|
DeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, Alter G, Amara RR, Baric RS, Barouch DH, Bloom JD, Bloyet LM, Bonenfant G, Boon ACM, Boritz EA, Bratt DL, Bricker TL, Brown L, Buchser WJ, Carreño JM, Cohen-Lavi L, Darling TL, Davis-Gardner ME, Dearlove BL, Di H, Dittmann M, Doria-Rose NA, Douek DC, Drosten C, Edara VV, Ellebedy A, Fabrizio TP, Ferrari G, Fischer WM, Florence WC, Fouchier RAM, Franks J, García-Sastre A, Godzik A, Gonzalez-Reiche AS, Gordon A, Haagmans BL, Halfmann PJ, Ho DD, Holbrook MR, Huang Y, James SL, Jaroszewski L, Jeevan T, Johnson RM, Jones TC, Joshi A, Kawaoka Y, Kercher L, Koopmans MPG, Korber B, Koren E, Koup RA, LeGresley EB, Lemieux JE, Liebeskind MJ, Liu Z, Livingston B, Logue JP, Luo Y, McDermott AB, McElrath MJ, Meliopoulos VA, Menachery VD, Montefiori DC, Mühlemann B, Munster VJ, Munt JE, Nair MS, Netzl A, Niewiadomska AM, O'Dell S, Pekosz A, Perlman S, Pontelli MC, Rockx B, Rolland M, Rothlauf PW, Sacharen S, Scheuermann RH, Schmidt SD, Schotsaert M, Schultz-Cherry S, Seder RA, Sedova M, Sette A, Shabman RS, Shen X, Shi PY, Shukla M, Simon V, Stumpf S, Sullivan NJ, Thackray LB, Theiler J, Thomas PG, Trifkovic S, Türeli S, Turner SA, Vakaki MA, van Bakel H, VanBlargan LA, Vincent LR, Wallace ZS, Wang L, Wang M, Wang P, Wang W, Weaver SC, Webby RJ, Weiss CD, Wentworth DE, Weston SM, Whelan SPJ, Whitener BM, Wilks SH, Xie X, Ying B, Yoon H, Zhou B, Hertz T, Smith DJ, Diamond MS, Post DJ, Suthar MS. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 2022; 605:640-652. [PMID: 35361968 PMCID: PMC9345323 DOI: 10.1038/s41586-022-04690-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.
Collapse
Affiliation(s)
- Marciela M DeGrace
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Elodie Ghedin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jesse D Bloom
- Fred Hutch Cancer Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaston Bonenfant
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Eli A Boritz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Debbie L Bratt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- CAMRIS, Contractor for NIAID, Bethesda, MD, USA
| | - Traci L Bricker
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Liliana Brown
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - William J Buchser
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liel Cohen-Lavi
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Tamarand L Darling
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Han Di
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meike Dittmann
- Microbiology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicole A Doria-Rose
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
| | - Venkata-Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thomas P Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Will M Fischer
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - William C Florence
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Godzik
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bart L Haagmans
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases Integrated Research Facility, Frederick, MD, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sarah L James
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lukasz Jaroszewski
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert M Johnson
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Astha Joshi
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Lisa Kercher
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bette Korber
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Eilay Koren
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Richard A Koup
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Mariel J Liebeskind
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James P Logue
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Adrian B McDermott
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | | | - Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jenny E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Sijy O'Dell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Marjorie C Pontelli
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Barry Rockx
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Morgane Rolland
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sinai Sacharen
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | - Stephen D Schmidt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert A Seder
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Mayya Sedova
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Reed S Shabman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maulik Shukla
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nancy J Sullivan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - James Theiler
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Samuel A Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Maria A Vakaki
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Leah R Vincent
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Li Wang
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David E Wentworth
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart M Weston
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Bin Zhou
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tomer Hertz
- Department of Microbiology, Immunology and Genetics Faculty of Health Sciences Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Michael S Diamond
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Diane J Post
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Hu Y, Ma C, Wang J. Cytopathic Effect Assay and Plaque Assay to Evaluate in vitro Activity of Antiviral Compounds Against Human Coronaviruses 229E, OC43, and NL63. Bio Protoc 2022; 12:e4314. [PMID: 35284599 PMCID: PMC8855088 DOI: 10.21769/bioprotoc.4314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 10/03/2023] Open
Abstract
Coronaviruses are important human pathogens, among which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. To combat the SARS-CoV-2 pandemic, there is a pressing need for antivirals, especially broad-spectrum antivirals that are active against all seven human coronaviruses (HCoVs). For this reason, we are interested in developing antiviral assays to expedite the drug discovery process. Here, we provide the detailed protocol for the cytopathic effect (CPE) assay and the plaque assay for human coronaviruses 229E (HCoV-229E), HCoV-OC43, and HCoV-NL63, to identify novel antivirals against HCoVs. Neutral red was used in the CPE assay, as it is relatively inexpensive and more sensitive than other reagents. Multiple parameters including multiplicity of infection, incubation time and temperature, and staining conditions have been optimized for CPE and plaque assays for HCoV-229E in MRC-5, Huh-7, and RD cell lines; HCoV-OC43 in RD, MRC-5, and BSC-1 cell lines, and HCoV-NL63 in Vero E6, Huh-7, MRC-5, and RD cell lines. Both CPE and plaque assays have been calibrated with the positive control compounds remdesivir and GC-376. Both CPE and plaque assays have high sensitivity, excellent reproducibility, and are cost-effective. The protocols described herein can be used as surrogate assays in the biosafety level 2 facility to identify entry inhibitors and protease inhibitors for SARS-CoV-2, as HCoV-NL63 also uses ACE2 as the receptor for cell entry, and the main proteases of HCoV-OC43 and SARS-CoV-2 are highly conserved. In addition, these assays can also be used as secondary assays to profile the broad-spectrum antiviral activity of existing SARS-CoV-2 drug candidates.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Schirtzinger EE, Kim Y, Davis AS. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J Virol Methods 2022; 299:114317. [PMID: 34634321 PMCID: PMC8500843 DOI: 10.1016/j.jviromet.2021.114317] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has renewed interest in human coronaviruses that cause the common cold, particularly as research with them at biosafety level (BSL)-2 avoids the added costs and biosafety concerns that accompany work with SARS-CoV-2, BSL-3 research. One of these, human coronavirus OC43 (HCoV-OC43), is a well-matched surrogate for SARS-CoV-2 because it is also a Betacoronavirus, targets the human respiratory system, is transmitted via respiratory aerosols and droplets and is relatively resistant to disinfectants. Unfortunately, growth of HCoV-OC43 in the recommended human colon cancer (HRT-18) cells does not produce obvious cytopathic effect (CPE) and its titration in these cells requires expensive antibody-based detection. Consequently, multiple quantification approaches for HCoV-OC43 using alternative cell lines exist, which complicates comparison of research results. Hence, we investigated the basic growth parameters of HCoV-OC43 infection in three of these cell lines (HRT-18, human lung fibroblasts (MRC-5) and African green monkey kidney (Vero E6) cells) including the differential development of cytopathic effect (CPE) and explored reducing the cost, time and complexity of antibody-based detection assay. Multi-step growth curves were conducted in each cell type in triplicate at a multiplicity of infection of 0.1 with daily sampling for seven days. Samples were quantified by tissue culture infectious dose50(TCID50)/mL or plaque assay (cell line dependent) and additionally analyzed on the Sartorius Virus Counter 3100 (VC), which uses flow virometry to count the total number of intact virus particles in a sample. We improved the reproducibility of a previously described antibody-based detection based TCID50 assay by identifying commercial sources for antibodies, decreasing antibody concentrations and simplifying the detection process. The growth curves demonstrated that HCoV-O43 grown in MRC-5 cells reached a peak titer of ˜107 plaque forming units/mL at two days post infection (dpi). In contrast, HCoV-OC43 grown on HRT-18 cells required six days to reach a peak titer of ˜106.5 TCID50/mL. HCoV-OC43 produced CPE in Vero E6 cells but these growth curve samples failed to produce CPE in a plaque assay after four days. Analysis of the VC data in combination with plaque and TCID50 assays together revealed that the defective:infectious virion ratio of MRC-5 propagated HCoV-OC43 was less than 3:1 for 1-6 dpi while HCoV-OC43 propagated in HRT-18 cells varied from 41:1 at 1 dpi, to 329:4 at 4 dpi to 94:1 at 7 dpi. These results should enable better comparison of extant HCoV-OC43 study results and prompt further standardization efforts.
Collapse
|
17
|
Hirose R, Itoh Y, Ikegaya H, Miyazaki H, Watanabe N, Yoshida T, Bandou R, Daidoji T, Nakaya T. Evaluation of the Residual Disinfection Effects of Commonly Used Skin Disinfectants against Viruses: An Innovative Contact Transmission Control Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16044-16055. [PMID: 34841856 DOI: 10.1021/acs.est.1c05296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lasting disinfection effects, that is, the residual disinfection effects (RDEs), of skin-coated disinfectants have rarely been considered for infection control owing to the challenges involved in the accurate evaluation of RDEs. In this study, we constructed a new skin evaluation model and determined the RDEs of existing disinfectants against viruses. Our results showed that ethanol and isopropanol had no RDE, whereas povidone-iodine, chlorhexidine gluconate, and benzalkonium chloride (BAC) exhibited RDEs, with 10% povidone-iodine and 0.2% BAC showing particularly strong RDEs. The RDE of 0.2% BAC was strong enough to reduce the median survival times of severe acute respiratory syndrome coronavirus-2, human coronavirus-OC43, and influenza virus from 670 to 5.2, 1300 to 12, and 120 to 4.2 min, respectively. Additionally, this strong RDE was maintained even 4 h after coating the skin. Clinical data also showed that the strong RDE of 0.2% BAC was maintained for more than 2 h. Thus, applying disinfectants with strong RDEs on the skin correlates with a reduction in virus survival time and appears to create a skin surface environment that is not conducive to virus survival. A prolonged reduction in virus survival decreases the contact transmission risk, thereby enabling stronger infection control.
Collapse
Affiliation(s)
- Ryohei Hirose
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hajime Miyazaki
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoto Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuma Yoshida
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Risa Bandou
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|