1
|
Vergoz D, Schaumann A, Schmitz I, van Agthoven M, Martí S, Vila J, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Direct analysis by ultra-high-resolution mass spectrometry of lipid A and phospholipids from Acinetobacter baumannii cells. Biochimie 2024; 227:3-11. [PMID: 39326489 DOI: 10.1016/j.biochi.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Acinetobacter baumannii, classified as priority number one by the World Health Organization (WHO), is an opportunistic pathogen responsible for infection and is able to develop antibiotic resistance easily. Membranes are bacteria's first line of defense against external aggression, such as antibiotics. A chemical modification of a lipid family or a change in lipid composition can lead to resistance to antibiotics. In this work, we analyzed different A. baumannii strains from various environments with different antibiotic resistance profiles, using matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS). This study shows that it is possible to describe the main lipidome (phospholipids and lipid A) from the simple preparation of lysed cells, and that despite the complexity of the mixture. This ultra-high resolution mass spectrometry technique enables the separation of isobaric ion, to report a new class of lipids. Given its performance, this technique can be used to quickly and reliably characterize the lipidome of clinical strains from different environments.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France.
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Maria van Agthoven
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Sara Martí
- Department of Microbiology, Hospital Universitari de Bellvitge, CIBERes, IDIBELL, Barcelona, Spain
| | - Jordi Vila
- Servei de Microbiologia, Centre de Diagnòstic Biomèdic, Hospital Clínic, ISGLOBAL, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| |
Collapse
|
2
|
Karthikeyan D, Kumar S, Jayaprakash NS. A comprehensive review of recent developments in the gram-negative bacterial UDP-2,3-diacylglucosamine hydrolase (LpxH) enzyme. Int J Biol Macromol 2024; 267:131327. [PMID: 38574903 DOI: 10.1016/j.ijbiomac.2024.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.
Collapse
Affiliation(s)
- Divyapriya Karthikeyan
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya, Bilaspur (A Central University), Chhattisgarh 495009, India
| | - N S Jayaprakash
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
3
|
Wang H, Ishchenko A, Skudlarek J, Shen P, Dzhekieva L, Painter RE, Chen YT, Bukhtiyarova M, Leithead A, Tracy R, Babaoglu K, Bahnck-Teets C, Buevich A, Cabalu TD, Labroli M, Lange H, Lei Y, Li W, Liu J, Mann PA, Meng T, Mitchell HJ, Mulhearn J, Scapin G, Sha D, Shaw AW, Si Q, Tong L, Wu C, Wu Z, Xiao JC, Xu M, Zhang LK, McKenney D, Miller RR, Black TA, Cooke A, Balibar CJ, Klein DJ, Raheem I, Walker SS. Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii. Nat Microbiol 2024; 9:1244-1255. [PMID: 38649414 DOI: 10.1038/s41564-024-01667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.
Collapse
Affiliation(s)
- Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ying Lei
- Merck & Co., Inc., West Point, PA, USA
| | - Wei Li
- Merck & Co., Inc., West Point, PA, USA
| | - Jian Liu
- Merck & Co., Inc., West Point, PA, USA
| | | | - Tao Meng
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Deyou Sha
- Merck & Co., Inc., West Point, PA, USA
| | | | - Qian Si
- Merck & Co., Inc., West Point, PA, USA
| | - Ling Tong
- Merck & Co., Inc., West Point, PA, USA
| | | | - Zhe Wu
- Merck & Co., Inc., West Point, PA, USA
| | | | - Min Xu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hussein M, Jasim R, Gocol H, Baker M, Thombare VJ, Ziogas J, Purohit A, Rao GG, Li J, Velkov T. Comparative Proteomics of Outer Membrane Vesicles from Polymyxin-Susceptible and Extremely Drug-Resistant Klebsiella pneumoniae. mSphere 2023; 8:e0053722. [PMID: 36622250 PMCID: PMC9942579 DOI: 10.1128/msphere.00537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria serve as transporters for the delivery of cargo such as virulence and antibiotic resistance factors. OMVs play a key role in the defense against membrane-targeting antibiotics such as the polymyxin B. Herein, we conducted comparative proteomics of OMVs from paired Klebsiella pneumoniae ATCC 700721 polymyxin-susceptible (polymyxin B MIC = 0.5 mg/L) and an extremely resistant (polymyxin B MIC ≥128 mg/L), following exposure to 2 mg/L of polymyxin B. Comparative profiling of the OMV subproteome of each strain revealed proteins from multiple perturbed pathways, particularly in the polymyxin-susceptible strain, including outer membrane assembly (lipopolysaccharide, O-antigen, and peptidoglycan biosynthesis), cationic antimicrobial peptide resistance, β-lactam resistance, and quorum sensing. In the polymyxin-susceptible strain, polymyxin B treatment reduced the expression of OMV proteins in the pathways related to adhesion, virulence, and the cell envelope stress responses, whereas, in the polymyxin-resistant strain, the proteins involved in LPS biosynthesis, RNA degradation, and nucleotide excision repair were significantly overexpressed in response to polymyxin B treatment. Intriguingly, the key polymyxin resistance enzymes 4-amino-4-deoxy-l-arabinose transferase and the PhoPQ two-component protein kinase were significantly downregulated in the OMVs of the polymyxin-susceptible strain. Additionally, a significant reduction in class A β-lactamase proteins was observed following polymyxin B treatment in the OMVs of both strains, particularly the OMVs of the polymyxin-susceptible strain. These findings shed new light on the OMV subproteome of extremely polymyxin resistant K. pneumoniae, which putatively may serve as active decoys to make the outer membrane more impervious to polymyxin attack. IMPORTANCE OMVs can help bacteria to fight antibiotics not only by spreading antibiotic resistance genes but also by acting as protective armor against antibiotics. By employing proteomics, we found that OMVs have a potential role in shielding K. pneumoniae and acting as decoys to polymyxin attack, through declining the export of proteins (e.g., 4-amino-4-deoxy-l-arabinose transferase) involved in polymyxin resistance. Furthermore, polymyxin B treatment of both strains leads to shedding of the OMVs with perturbed proteins involved in outer membrane remodeling (e.g., LPS biosynthesis) as well as pathogenic potential of K. pneumoniae (e.g., quorum sensing). The problematic extended spectrum beta-lactamases SHV and TEM were significantly reduced in both strains, suggesting that polymyxin B may act as a potentiator to sensitize the bacterium to β-lactam antibiotics. This study highlights the importance of OMVs as "molecular mules" for the intercellular transmission and delivery of resistance and cellular repair factors in the bacterial response to polymyxins.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Raad Jasim
- Department of Pharmacology, College of Pharmacy, University of Babylon, Iraq
| | - Hakan Gocol
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Baker
- Discipline of Biological Sciences, Priority Research Centre in Reproductive Biology, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Varsha J. Thombare
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Ziogas
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aayush Purohit
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Wijers CDM, Pham L, Douglass MV, Skaar EP, Palmer LD, Noto MJ. Gram-negative bacteria act as a reservoir for aminoglycoside antibiotics that interact with host factors to enhance bacterial killing in a mouse model of pneumonia. FEMS MICROBES 2022; 3:xtac016. [PMID: 35909464 PMCID: PMC9326624 DOI: 10.1093/femsmc/xtac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
In vitro exposure of multiple Gram-negative bacteria to an aminoglycoside (AG) antibiotic has previously been demonstrated to result in bacterial alterations that interact with host factors to suppress Gram-negative pneumonia. However, the mechanisms resulting in suppression are not known. Here, the hypothesis that Gram-negative bacteria bind and retain AGs, which are introduced into the lung and interact with host defenses to affect bacterial killing, was tested. Following in vitro exposure of one of several, pathogenic Gram-negative bacteria to the AG antibiotics kanamycin or gentamicin, AGs were detected in bacterial cell pellets (up to 208 μg/mL). Using inhibitors of AG binding and internalization, the bacterial outer membrane was implicated as the predominant kanamycin and gentamicin reservoir. Following intranasal administration of gentamicin-bound bacteria or gentamicin solution at the time of infection with live, AG-naïve bacteria, gentamicin was detected in the lungs of infected mice (up to 8 μg/g). Co-inoculation with gentamicin-bound bacteria resulted in killing of AG-naïve bacteria by up to 3-log10, mirroring the effects of intranasal gentamicin treatment. In vitro killing of AG-naïve bacteria mediated by kanamycin-bound bacteria required the presence of detergents or pulmonary surfactant, suggesting that increased bacterial killing inside the murine lung is facilitated by the detergent component of pulmonary surfactant. These findings demonstrate that Gram-negative bacteria bind and retain AGs that can interact with host-derived pulmonary surfactant to enhance bacterial killing in the lung. This may help explain why AGs appear to have unique efficacy in the lung and might expand their clinical utility.
Collapse
Affiliation(s)
- Christiaan D M Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Martin V Douglass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, United States
| | - Michael J Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| |
Collapse
|
6
|
A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022; 601:606-611. [PMID: 34987225 DOI: 10.1038/s41586-021-04264-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Gram-negative bacteria are responsible for an increasing number of deaths caused by antibiotic-resistant infections1,2. The bacterial natural product colistin is considered the last line of defence against a number of Gram-negative pathogens. The recent global spread of the plasmid-borne mobilized colistin-resistance gene mcr-1 (phosphoethanolamine transferase) threatens the usefulness of colistin3. Bacteria-derived antibiotics often appear in nature as collections of similar structures that are encoded by evolutionarily related biosynthetic gene clusters. This structural diversity is, at least in part, expected to be a response to the development of natural resistance, which often mechanistically mimics clinical resistance. Here we propose that a solution to mcr-1-mediated resistance might have evolved among naturally occurring colistin congeners. Bioinformatic analysis of sequenced bacterial genomes identified a biosynthetic gene cluster that was predicted to encode a structurally divergent colistin congener. Chemical synthesis of this structure produced macolacin, which is active against Gram-negative pathogens expressing mcr-1 and intrinsically resistant pathogens with chromosomally encoded phosphoethanolamine transferase genes. These Gram-negative bacteria include extensively drug-resistant Acinetobacter baumannii and intrinsically colistin-resistant Neisseria gonorrhoeae, which, owing to a lack of effective treatment options, are considered among the highest level threat pathogens4. In a mouse neutropenic infection model, a biphenyl analogue of macolacin proved to be effective against extensively drug-resistant A. baumannii with colistin-resistance, thus providing a naturally inspired and easily produced therapeutic lead for overcoming colistin-resistant pathogens.
Collapse
|
7
|
Zhou P, Hong J. Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria. Acc Chem Res 2021; 54:1623-1634. [PMID: 33720682 DOI: 10.1021/acs.accounts.0c00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to Acinetobacter baumannii. Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities in vitro and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
8
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Essential gene analysis in Acinetobacter baumannii by high-density transposon mutagenesis and CRISPR interference. J Bacteriol 2021; 203:e0056520. [PMID: 33782056 DOI: 10.1128/jb.00565-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is a poorly understood bacterium capable of life-threatening infections in hospitals. Few antibiotics remain effective against this highly resistant pathogen. Developing rationally-designed antimicrobials that can target A. baumannii requires improved knowledge of the proteins that carry out essential processes allowing growth of the organism. Unfortunately, studying essential genes has been challenging using traditional techniques, which usually require time-consuming recombination-based genetic manipulations. Here, we performed saturating mutagenesis with dual transposon systems to identify essential genes in A. baumannii and we developed a CRISPR-interference (CRISPRi) system for facile analysis of these genes. We show that the CRISPRi system enables efficient transcriptional silencing in A. baumannii Using these tools, we confirmed the essentiality of the novel cell division protein AdvA and discovered a previously uncharacterized AraC-family transcription factor (ACX60_RS03245) that is necessary for growth. In addition, we show that capsule biosynthesis is a conditionally essential process, with mutations in late-acting steps causing toxicity in strain ATCC 17978 that can be bypassed by blocking early-acting steps or activating the BfmRS stress response. These results open new avenues for analysis of essential pathways in A. baumannii ImportanceNew approaches are urgently needed to control A. baumannii, one of the most drug resistant pathogens known. To facilitate the development of novel targets that allow inhibition of the pathogen, we performed a large-scale identification of genes whose products the bacterium needs for growth. We also developed a CRISPR-based gene knockdown tool that operates efficiently in A. baumannii, allowing rapid analysis of these essential genes. We used these methods to define multiple processes vital to the bacterium, including a previously uncharacterized gene-regulatory factor and export of a protective polymeric capsule. These tools will enhance our ability to investigate processes critical for the essential biology of this challenging hospital-acquired pathogen.
Collapse
|
10
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Brennan RE, Rice CV. Expanding the Spectrum of Antibiotics Capable of Killing Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa. ChemMedChem 2020; 15:1421-1428. [PMID: 32497366 PMCID: PMC7485129 DOI: 10.1002/cmdc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Infections from antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa are a serious threat because reduced antibiotic efficacy complicates treatment decisions and prolongs the disease state in many patients. To expand the arsenal of treatments against antimicrobial-resistant (AMR) pathogens, 600-Da branched polyethylenimine (BPEI) can overcome antibiotic resistance mechanisms and potentiate β-lactam antibiotics against Gram-positive bacteria. BPEI binds cell-wall teichoic acids and disables resistance factors from penicillin binding proteins PBP2a and PBP4. This study describes a new mechanism of action for BPEI potentiation of antibiotics generally regarded as agents effective against Gram-positive pathogens but not Gram-negative bacteria. 600-Da BPEI is able to reduce the barriers to drug influx and facilitate the uptake of a non-β-lactam co-drug, erythromycin, which targets the intracellular machinery. Also, BPEI can suppress production of the cytokine interleukin IL-8 by human epithelial keratinocytes. This enables BPEI to function as a broad-spectrum antibiotic potentiator, and expands the opportunities to improve drug design, antibiotic development, and therapeutic approaches against pathogenic bacteria, especially for wound care.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Erika L Moen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
11
|
Yang P, Li FJ, Huang SW, Luo M, Lin W, Yuan GQ, Li QQ. Physiological and Transcriptional Response of Xanthomonas oryzae pv. oryzae to Berberine, an Emerging Chemical Control. PHYTOPATHOLOGY 2020; 110:1027-1038. [PMID: 31961254 DOI: 10.1094/phyto-09-19-0327-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Berberine, a botanical drug, has great ability to inhibit the growth of Xanthomonas oryzae pv. oryzae. However, the antibacterial mechanism of berberine against X. oryzae pv. oryzae remains poorly understood. In this study, we investigated the physiological and transcriptional response of X. oryzae pv. oryzae to berberine. When strain X. oryzae pv. oryzae GX13 was treated with berberine (10 µg/ml), the hypersensitive response in tobacco, virulence to rice, pathogen population in the rice xylem, production of extracellular polysaccharide (EPS), and activity of extracellular hydrolases decreased, but the levels of pyruvate and ATP increased. Moreover, biofilm formation was inhibited, and the cell membrane was damaged. Transcriptome sequencing analysis showed downregulated expression of gspD, gspE, and gspF, involved in the type II secretion system (T2SS); hrcC, hrcJ, hrcN, and others, involved in the type III secretion system (T3SS); gumB and gumC, associated with EPS; zapE, ftsQ, and zapA, associated with cell division; lpxH, lpxK, kdtA, and others, associated with the membrane; and pyk, pgk, and mdh, encoding pyruvate kinase, phosphoglycerate kinase, and malate dehydrogenase, respectively. Upregulated expression was observed for nuoA, nuoB, and nuoH, encoding the NADH dehydrogenase complex, and atpF, atpC, and atpB, encoding ATP synthase. An adenylate cyclase (CyaA) fusion assay showed that berberine affects type three effector protein secretion via the T3SS and reduces effector translocation in X. oryzae pv. oryzae. It is speculated that the negative growth and virulence phenotypes of berberine-treated X. oryzae pv. oryzae GX13 may involve differentially expressed genes associated with cytoarchitecture and energy metabolism, and these effects on primary cell function may further dampen virulence and result in differential expression of T3SS- and T2SS-related genes.
Collapse
Affiliation(s)
- Ping Yang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Jing Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Shi-Wen Huang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
- Rice Technology R&D Center, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Man Luo
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Wei Lin
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Gao-Qing Yuan
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Qi-Qin Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
12
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
14
|
Garcia Casallas JC, Robayo-Amortegui H, Corredor-Rozo Z, Carrasco-Márquez AM, Escobar-Perez J. Bacteremia by colistin-resistant Acinetobacter baumannii isolate: a case report. J Med Case Rep 2019; 13:141. [PMID: 31064407 PMCID: PMC6505100 DOI: 10.1186/s13256-019-2062-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii infections are a major public health problem worldwide, requiring the use of "old" antibiotics such as polymyxin B and E (colistin). However, there is concern regarding the emergence of isolates resistant to these antibiotics. CASE PRESENTATION We report a case of a 64-year-old mestizo man hospitalized in an intensive care unit of a health institution in Colombia with identification and clinical and molecular typing of a colistin- and carbapenem-resistant A. baumannii isolate with mechanisms of resistance to colistin not previously reported, causing bacteremia. CONCLUSIONS We have identified a strain of A. baumannii with mechanisms of resistance to colistin not previously reported in a patient with bacteremia who required treatment with multiple antibiotic schemes and had an adequate response.
Collapse
Affiliation(s)
- Julio Cesar Garcia Casallas
- Facultad de Medicina, Evidence Therapeutic Group, Universidad de La Sabana, Campus Universitario, Km 7, Vía La Caro, Autopista Norte, Chía, Cundinamarca, Colombia. .,Clinical Pharmacology Department, Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia.
| | - H Robayo-Amortegui
- Facultad de Medicina, Evidence Therapeutic Group, Universidad de La Sabana, Campus Universitario, Km 7, Vía La Caro, Autopista Norte, Chía, Cundinamarca, Colombia
| | - Z Corredor-Rozo
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá DC, Colombia
| | - A M Carrasco-Márquez
- Critic Medicine and Intensive Care Resident, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Javier Escobar-Perez
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá DC, Colombia
| |
Collapse
|
15
|
González-Bello C. The Inhibition of Lipid A Biosynthesis-The Antidote Against Superbugs? ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
16
|
Interplay of Klebsiella pneumoniae fabZ and lpxC Mutations Leads to LpxC Inhibitor-Dependent Growth Resulting from Loss of Membrane Homeostasis. mSphere 2018; 3:3/5/e00508-18. [PMID: 30381354 PMCID: PMC6211225 DOI: 10.1128/msphere.00508-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors. Tight coordination of inner and outer membrane biosynthesis is very important in Gram-negative bacteria. Biosynthesis of the lipid A moiety of lipopolysaccharide, which comprises the outer leaflet of the outer membrane has garnered interest for Gram-negative antibacterial discovery. In particular, several potent inhibitors of LpxC (the first committed step of the lipid A pathway) are described. Here we show that serial passaging of Klebsiella pneumoniae in increasing levels of an LpxC inhibitor yielded mutants that grew only in the presence of the inhibitor. These strains had mutations in fabZ and lpxC occurring together (encoding either FabZR121L/LpxCV37G or FabZF51L/LpxCV37G). K. pneumoniae mutants having only LpxCV37G or LpxCV37A or various FabZ mutations alone were less susceptible to the LpxC inhibitor and did not require LpxC inhibition for growth. Western blotting revealed that LpxCV37G accumulated to high levels, and electron microscopy of cells harboring FabZR121L/LpxCV37G indicated an extreme accumulation of membrane in the periplasm when cells were subcultured without LpxC inhibitor. Significant accumulation of detergent-like lipid A pathway intermediates that occur downstream of LpxC (e.g., lipid X and disaccharide monophosphate [DSMP]) was also seen. Taken together, our results suggest that redirection of lipid A pathway substrate by less active FabZ variants, combined with increased activity from LpxCV37G was overdriving the lipid A pathway, necessitating LpxC chemical inhibition, since native cellular maintenance of membrane homeostasis was no longer functioning. IMPORTANCE Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors.
Collapse
|
17
|
Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc Natl Acad Sci U S A 2018; 115:6834-6839. [PMID: 29735709 DOI: 10.1073/pnas.1804670115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.
Collapse
|
18
|
Richie DL, Wang L, Chan H, De Pascale G, Six DA, Wei JR, Dean CR. A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii. PLoS One 2018; 13:e0193851. [PMID: 29505586 PMCID: PMC5837183 DOI: 10.1371/journal.pone.0193851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Daryl L. Richie
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Lisha Wang
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Helen Chan
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - David A. Six
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| |
Collapse
|
19
|
Powers MJ, Trent MS. Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin. Mol Microbiol 2017; 107:47-56. [PMID: 29114953 DOI: 10.1111/mmi.13872] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Asymmetry in the outer membrane has long defined the cell envelope of Gram-negative bacteria. This asymmetry, with lipopolysaccharide (LPS) or lipooligosaccharide (LOS) exclusively in the outer leaflet of the membrane, establishes an impermeable barrier that protects the cell from a number of stressors in the environment. Work done over the past 5 years has shown that Acinetobacter baumannii has the remarkable capability to survive with inactivated production of lipid A biosynthesis and the absence of LOS in its outer membrane. The implications of LOS-deficient A. baumannii are far-reaching - from impacts on cell envelope biogenesis and maintenance, bacterial physiology, antibiotic resistance and virulence. This review examines recent work that has contributed to our understanding of LOS-deficiency and compares it to studies done on Neisseria meningitidis and Moraxella catarrhalis; the two other organisms with this capability.
Collapse
Affiliation(s)
- Matthew Joseph Powers
- Department of Infectious Diseases, University of Georgia, 510 DW Brooks Drive, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, 510 DW Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|