1
|
Kar S, Kawser Z, Sridhar S, Mukta SA, Hasan N, Siddik AB, Habib MT, Slater DM, Earl AM, Worby CJ, Azad K, Shamsuzzaman SM, Tanni NN, Khan RT, Moonmoon M, Qadri F, Harris JB, LaRocque RC. High Prevalence of Carbapenem-resistant Klebsiella Pneumoniae in Fecal and Water Samples in Dhaka, Bangladesh. Open Forum Infect Dis 2024; 11:ofae612. [PMID: 39494455 PMCID: PMC11530955 DOI: 10.1093/ofid/ofae612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
We evaluated Klebsiella pneumoniae (Kp) gut carriage in healthy, unrelated adults and children living in separate households in Dhaka, Bangladesh. Average Kp prevalence in stool samples ranged from 61% in young children (15/25) to 81% in adults (21/26), with significantly higher abundance in adults (P = .03, t-test). Kp was also prevalent in household water (64%, 21/33) and standing water (85%, 23/27). The presence of Kp in household water was not strongly linked to stool Kp abundance among household members. Antimicrobial resistance was notable: 9% (6/69) of stool and 16% (7/44) of water isolates exhibited multidrug resistance. Carbapenem resistance was observed in 12% of stool isolates (8/69) and 14% of water isolates (6/44). These findings underscore the commonality of Kp in human and environmental reservoirs in Dhaka, Bangladesh, and highlight the emergence of drug-resistant Kp beyond healthcare settings.
Collapse
Affiliation(s)
- Sanchita Kar
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Zannat Kawser
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
| | | | - Neamul Hasan
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Abu Bakar Siddik
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | - Damien M Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
- Massachusetts General Hospital for Children, Boston, Massachusetts USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Colin J Worby
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Kasrina Azad
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | | | - Raisa Tasnia Khan
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | - Firdausi Qadri
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- Harvard Medical School, Boston, Massachusetts USA
- Massachusetts General Hospital for Children, Boston, Massachusetts USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
| |
Collapse
|
2
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2024:10.1038/s41579-024-01105-2. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Slater D, Hutt Vater K, Sridhar S, Hwang W, Bielawski D, Turbett SE, LaRocque RC, Harris JB. Multiplexed real-time PCR for the detection and differentiation of Klebsiella pneumoniae O-antigen serotypes. Microbiol Spectr 2024; 12:e0037524. [PMID: 39115309 PMCID: PMC11371267 DOI: 10.1128/spectrum.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
Klebsiella pneumoniae has emerged as a global health threat due to its role in the spread of antimicrobial resistance and because it is a frequent cause of hospital-acquired infections and neonatal sepsis. Capsular and lipopolysaccharide (LPS) O-antigen polysaccharide surface antigens are major immunogens that are useful for strain classification and are candidates for vaccine development. We have developed real-time PCR reagents for molecular serotyping, subtyping, and quantitation of the most prevalent LPS O-antigen types (i.e., O1, O2, O3, and O5) of Klebsiella pneumoniae. We describe two applications for this O-typing assay: for screening culture isolates and for direct typing of Klebsiella pneumoniae present in stool samples. We find 100% concordance between the results of the O-typing assay and whole-genome sequencing of 81 culture isolates, and >90% agreement in O-typing performed directly on specimens of human stool, with disagreement arising primarily from a lack of sensitivity of the culture-based comparator method. Additionally, we find evidence for mixed O-type populations at varying levels of abundance in direct tests of stool from a hospitalized patient population. Taken together, these results demonstrate that this novel O-typing assay can be a useful tool for K. pneumoniae epidemiologic and vaccine studies.IMPORTANCEKlebsiella pneumoniae is an important opportunistic pathogen. The gastrointestinal (GI) tract is the primary reservoir of K. pneumoniae in humans, and GI carriage is believed to be a prerequisite for invasive infection. Knowledge about the dynamics and duration of GI carriage has been hampered by the lack of tools suitable for detection and strain discrimination. Real-time PCR is particularly suited to the higher-throughput workflows used in population-based studies, which are needed to improve our understanding of carriage dynamics and the factors influencing K. pneumoniae colonization.
Collapse
Affiliation(s)
- Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kian Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wontae Hwang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Bielawski
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
McDonald LC, Young VB, Wilcox MH, Halpin AL, Chaves RL. Public health case for microbiome-sparing antibiotics and new opportunities for drug development. mSphere 2024; 9:e0041724. [PMID: 39092918 DOI: 10.1128/msphere.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Although antibiotics remain a cornerstone of modern medicine, the issues of widespread antibiotic resistance and collateral damage to the microbiome from antibiotic use are driving a need for drug developers to consider more tailored, patient-directed products to avoid antibiotic-induced perturbations of the structure and function of the indigenous microbiota. This perspective summarizes a cascade of microbiome health effects that is initiated by antibiotic-mediated microbiome disruption at an individual level and ultimately leads to infection and transmission of multidrug-resistant pathogens across patient populations. The scientific evidence behind each of the key steps of this cascade is presented. The interruption of this cascade through the use of highly targeted, microbiome-sparing antibiotics aiming to improve health outcomes is discussed. Further, this perspective reflects on some key clinical trial design and reimbursement considerations to be addressed as part of the drug development path.
Collapse
Affiliation(s)
- L Clifford McDonald
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- United States Public Health Service, Rockville, Maryland, USA
| | | |
Collapse
|
5
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella pneumoniae-colonized patients. mSystems 2024; 9:e0078624. [PMID: 38975759 PMCID: PMC11334466 DOI: 10.1128/msystems.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious K. pneumoniae, little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of K. pneumoniae-colonized intensive care and hematology/oncology patients. Cases were K. pneumoniae-colonized patients infected by their colonizing strain (N = 83). Controls were K. pneumoniae-colonized patients who remained asymptomatic (N = 149). First, we characterized the gut community structure of K. pneumoniae-colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. K. pneumoniae relative abundance, a known risk factor for infection, had the greatest feature importance, but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype data enhanced the ability of machine learning models to discriminate cases and controls. Interestingly, inclusion of patient clinical variables failed to improve the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with K. pneumoniae-derived biomarkers improves our ability to classify infection in K. pneumoniae-colonized patients.IMPORTANCEColonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients who develop an infection versus those who do not. Additionally, we show that integrating gut microbiota data with bacterial factors improves the ability to classify infections. Surprisingly, patient clinical factors were not useful for classifying infections alone or when added to microbiota-based models. This indicates that the bacterial genotype and the microbial community in which it exists may determine the progression to infection. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Cui J, Zhang Y, Li X, Ding Z, Kong Y, Yu Z, Li Z, Tong J, Liu Z, Yuan J. Antimicrobial resistance profiles and genome characteristics of Klebsiella isolated from the faeces of neonates in the neonatal intensive care unit. J Med Microbiol 2024; 73. [PMID: 39150452 PMCID: PMC11329266 DOI: 10.1099/jmm.0.001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Introduction. Klebsiella spp. are important bacteria that colonize the human intestine, especially in preterm infants; they can induce local and systemic disease under specific circumstances, including inflammatory bowel disease, necrotizing enterocolitis and colorectal cancer.Hypothesis. Klebsiella spp. colonized in the intestine of the neonates in the neonatal intensive care unit (NICU) may be associated with disease and antibiotic resistance, which will be hazardous to the children.Aim. Our aim was to know about the prevalence, antimicrobial resistance and genome characteristics of Klebsiella spp. in neonate carriers.Methodology. Genome sequencing and analysis, and antimicrobial susceptibility testing were mainly performed in this study.Results. The isolation rates of Klebsiella spp. strains were 3.7% (16/436) in 2014 and 4.3% (18/420) in 2021. Cases with intestinal-colonized Klebsiella spp. were mainly infants with low birth weights or those with pneumonia or hyperbilirubinemia. According to the core-pan genomic analysis, 34 stains showed gene polymorphism and a sequence type (ST) of an emerging high-risk clone (ST11). Eight strains (23.5%) were found to be resistant to 2 or more antibiotics, and 46 genes/gene families along with nine plasmids were identified that conferred resistance to antibiotics. In particular, the two strains were multidrug-resistant. Strain A1256 that is related to Klebsiella quasipneumoniae subsp. similipneumoniae was uncommon, carrying two plasmids similar to IncFII and IncX3 that included five antibiotic resistance genes.Conclusion. The prevention and control of neonatal Klebsiella spp. colonization in the NICU should be strengthened by paying increased attention to preventing antimicrobial resistance in neonates.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yanan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Xiaoran Li
- 155th Hospital of Kaifeng, Kaifeng, Henan Province, 475003, PR China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zhaona Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jingjing Tong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Zunjie Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, PR China
| |
Collapse
|
7
|
Todd K, Gunter K, Bowen JM, Holmes CL, Tilston-Lunel NL, Vornhagen J. Type-2 diabetes mellitus enhances Klebsiella pneumoniae pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596766. [PMID: 38853822 PMCID: PMC11160788 DOI: 10.1101/2024.05.31.596766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and an important cause of pneumonia, bacteremia, and urinary tract infection. K. pneumoniae infections are historically associated with diabetes mellitus. There is a fundamental gap in our understanding of how diabetes mellitus, specifically type 2 diabetes, influences K. pneumoniae pathogenesis. K. pneumoniae pathogenesis is a multifactorial process that often begins with gut colonization, followed by an escape from the gut to peripheral sites, leading to host damage and infection. We hypothesized that type 2 diabetes enhances K. pneumoniae pathogenesis. To test this, we used well-established mouse models of K. pneumoniae colonization and lung infection in conjunction with a mouse model of spontaneous type 2 diabetes mellitus (T2DM). We show that T2DM enhances susceptibility to both K. pneumoniae colonization and infection. The enhancement of gut colonization is dependent on T2DM-induced modulation of the gut microbiota community structure. In contrast, lung infection is exacerbated by the increased availability of amino acids in the lung, which is associated with higher levels of vascular endothelial growth factor. These data lay the foundation for mechanistic interrogation of the relationship between K. pneumoniae pathogenesis and type 2 diabetes mellitus, and explicitly establish T2DM as a risk factor for K. pneumoniae disease.
Collapse
Affiliation(s)
- Katlyn Todd
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Krista Gunter
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - James M. Bowen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Caitlyn L. Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natasha L. Tilston-Lunel
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| |
Collapse
|
8
|
Wang X, Liu J, Li A. Incidence and risk factors for subsequent infections among rectal carriers with carbapenem-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. J Hosp Infect 2024; 145:11-21. [PMID: 38092302 DOI: 10.1016/j.jhin.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKp) is a major pathogen causing nosocomial infections with a high mortality and poor prognosis. Gastrointestinal carriage has been acknowledged as the primary reservoir of CRKp infections. AIM To explore the incidence and risk factors associated with CRKp infection following colonization. METHODS The PubMed, Web of Science, and Cochrane Library databases were searched for relevant articles published between December 1998 and June 2023. Pooled estimates with a 95% confidence interval (CI) were calculated for the incidence rate, whereas pooled odds ratios (ORs) were calculated for the risk factors for which the OR was reported in three or more studies. FINDINGS Fourteen studies were included in the review with 5483 patients for the assessment of incidence, whereas seven of these studies with 2170 patients were included for the analysis of risk factors. In the meta-analysis, the incidence of CRKp infections after colonization was 23.2% (17.9-28.5). Additionally, three independent risk factors for subsequent CRKp infections were identified as admission to the intensive care unit (ICU) (2.59; 95% CI: 1.64-4.11), invasive procedures (2.53; 95% CI: 1.59-4.03), and multi-site colonization (6.24; 95% CI: 2.38-16.33). CONCLUSION This review reveals the incidence of CRKp infections in rectal carriers in different countries, emphasizing the role of rectal colonization with CRKp as an important source of nosocomial infections. Significantly, the risk factors indicated in this review can assist clinicians in identifying CRKp carriers with an elevated risk of subsequent infections, thereby enabling further measures to be taken to prevent nosocomial infections.
Collapse
Affiliation(s)
- X Wang
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - J Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - A Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Roson-Calero N, Ballesté-Delpierre C, Fernández J, Vila J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics (Basel) 2023; 12:1074. [PMID: 37370393 DOI: 10.3390/antibiotics12061074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decades, we have witnessed a steady increase in infections caused by multidrug-resistant (MDR) bacteria. These infections are associated with higher morbidity and mortality. Several interventions should be taken to reduce the emergence and spread of MDR bacteria. The eradication of resistant pathogens colonizing specific human body sites that would likely cause further infection in other sites is one of the most conventional strategies. The objective of this narrative mini-review is to compile and discuss different strategies for the eradication of MDR bacteria from gut microbiota. Here, we analyse the prevalence of MDR bacteria in the community and the hospital and the clinical impact of gut microbiota colonisation with MDR bacteria. Then, several strategies to eliminate MDR bacteria from gut microbiota are described and include: (i) selective decontamination of the digestive tract (SDD) using a cocktail of antibiotics; (ii) the use of pre and probiotics; (iii) fecal microbiota transplantation; (iv) the use of specific phages; (v) engineered CRISPR-Cas Systems. This review intends to provide a state-of-the-art of the most relevant strategies to eradicate MDR bacteria from gut microbiota currently being investigated.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, 08036 Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-Clif), 08021 Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
10
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella -colonized patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288742. [PMID: 37131824 PMCID: PMC10153327 DOI: 10.1101/2023.04.18.23288742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious Klebsiella , little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of Klebsiella -colonized intensive care and hematology/oncology patients. Cases were Klebsiella -colonized patients infected by their colonizing strain (N = 83). Controls were Klebsiella -colonized patients that remained asymptomatic (N = 149). First, we characterized the gut community structure of Klebsiella -colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. Klebsiella relative abundance, a known risk factor for infection, had the greatest feature importance but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype or clinical variable data enhanced the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with patient- and Klebsiella -derived biomarkers improves our ability to predict infection in Klebsiella -colonized patients. Importance Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients that develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data with patient and bacterial factors improves the ability to predict infections. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
|
11
|
Gelfusa M, Murari A, Ludovici GM, Franchi C, Gelfusa C, Malizia A, Gaudio P, Farinelli G, Panella G, Gargiulo C, Casinelli K. On the Potential of Relational Databases for the Detection of Clusters of Infection and Antibiotic Resistance Patterns. Antibiotics (Basel) 2023; 12:antibiotics12040784. [PMID: 37107146 PMCID: PMC10135313 DOI: 10.3390/antibiotics12040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, several bacterial strains have acquired significant antibiotic resistance and can, therefore, become difficult to contain. To counteract such trends, relational databases can be a powerful tool for supporting the decision-making process. The case of Klebsiella pneumoniae diffusion in a central region of Italy was analyzed as a case study. A specific relational database is shown to provide very detailed and timely information about the spatial-temporal diffusion of the contagion, together with a clear assessment of the multidrug resistance of the strains. The analysis is particularized for both internal and external patients. Tools such as the one proposed can, therefore, be considered important elements in the identification of infection hotspots, a key ingredient of any strategy to reduce the diffusion of an infectious disease at the community level and in hospitals. These types of tools are also very valuable in the decision-making process related to antibiotic prescription and to the management of stockpiles. The application of this processing technology to viral diseases such as COVID-19 is under investigation.
Collapse
Affiliation(s)
- Michela Gelfusa
- Department of Industrial Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Andrea Murari
- Consorzio RFX (CNR, ENEA, INFN), University of Padua, 35127 Padua, Italy
- Istituto per la Scienza e la Tecnologia dei Plasmi, CNR, 35100 Padua, Italy
| | - Gian Marco Ludovici
- Department of Industrial Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Cristiano Franchi
- Department of Industrial Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudio Gelfusa
- Department of Industrial Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Pasqualino Gaudio
- Department of Industrial Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | - Giacinto Panella
- ASL and Fabrizio Spaziani, Frosinone Hospital, 03100 Frosinone, Italy
| | - Carla Gargiulo
- ASL and Fabrizio Spaziani, Frosinone Hospital, 03100 Frosinone, Italy
| | - Katia Casinelli
- ASL and Fabrizio Spaziani, Frosinone Hospital, 03100 Frosinone, Italy
| |
Collapse
|
12
|
Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Negl Trop Dis 2023; 17:e0011111. [PMID: 36780567 PMCID: PMC9956601 DOI: 10.1371/journal.pntd.0011111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are epidemiologically significant food-borne trematodes endemic to diverse climatic areas. O. viverrini and C. sinensis are both recognized to be 1A group of biological carcinogens to human, whereas O. felineus is not. The mechanisms of carcinogenesis by the liver flukes are studied fragmentarily, the role of host and parasite microbiome is an unexplored aspect. METHODOLOGY/PRINCIPAL FINDINGS Specific pathogen free Mesocricetus auratus hamsters were infected with C. sinensis, O. viverrini and O. felineus. The microbiota of the adult worms, colon feces and bile from the hamsters was investigated using Illumina-based sequencing targeting the prokaryotic 16S rRNA gene. The analysis of 43 libraries revealed 18,830,015 sequences, the bacterial super-kingdom, 16 different phyla, 39 classes, 63 orders, 107 families, 187 genera-level phylotypes. O. viverrini, a fluke with the most pronounced carcinogenic potential, has the strongest impact on the host bile microbiome, changing the abundance of 92 features, including Bifidobacteriaceae, Erysipelotrichaceae, [Paraprevotellaceae], Acetobacteraceae, Coriobacteraceae and Corynebacteriaceae bacterial species. All three infections significantly increased Enterobacteriaceae abundance in host bile, reduced the level of commensal bacteria in the gut microbiome (Parabacteroides, Roseburia, and AF12). CONCLUSIONS/SIGNIFICANCE O. felineus, O. viverrini, and C. sinensis infections cause both general and species-specific qualitative and quantitative changes in the composition of microbiota of bile and colon feces of experimental animals infected with these trematodes. The alterations primarily concern the abundance of individual features and the phylogenetic diversity of microbiomes of infected hamsters.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina V. Baginskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Viatcheslav A. Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Dahdouh E, Cendejas-Bueno E, Ruiz-Carrascoso G, Schüffelmann C, Lázaro-Perona F, Castro-Martínez M, Moreno-Ramos F, Escosa-García L, Alguacil-Guillén M, Mingorance J. Intestinal loads of extended-spectrum beta-lactamase and Carbapenemase genes in critically ill pediatric patients. Front Cell Infect Microbiol 2023; 13:1180714. [PMID: 37201116 PMCID: PMC10188119 DOI: 10.3389/fcimb.2023.1180714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Intestinal colonization by Multi-Drug Resistant Organisms (MDROs) can pose a threat on the health of critically ill patients. The extent of colonization by these organisms is related to previous antibiotic treatments and their ability to cause infections among adult patients. The aim of this study is to determine the relationship between the intestinal Relative Loads (RLs) of selected antibiotic resistance genes, antibiotic consumption and extra-intestinal spread among critically ill pediatric patients. Methods RLs of bla CTX-M-1-Family, bla OXA-1, bla OXA-48 and bla VIM were determined in 382 rectal swabs obtained from 90 pediatric critically ill patients using qPCRs. The RLs were compared to the patients' demographics, antibiotic consumption, and detection of MDROs from extra-intestinal sites. 16SrDNA metagenomic sequencing was performed for 40 samples and clonality analyses were done for representative isolates. Results and discussion 76 (74.45%) patients from which 340 (89.01%) rectal swabs were collected had at least one swab that was positive for one of the tested genes. Routine cultures did not identify carbapenemases in 32 (45.1%) and 78 (58.2%) swabs that were positive by PCR for bla OXA-48 and blaVIM, respectively. RLs of above 6.5% were associated with extra-intestinal spread of blaOXA-48-harboring MDROs. Consumption of carbapenems, non-carbapenem β-lactams, and glycopeptides were statistically associated with testing negative for bla CTX-M-1-Family and bla OXA-1 while the consumption of trimethoprim/sulfamethoxazole and aminoglycosides was associated with testing negative for blaOXA-48 (P<0.05). In conclusion, targeted qPCRs can be used to determine the extent of intestinal dominance by antibiotic resistant opportunistic pathogens and their potential to cause extra-intestinal infections among a critically ill pediatric population.
Collapse
Affiliation(s)
- Elias Dahdouh
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- *Correspondence: Elias Dahdouh,
| | - Emilio Cendejas-Bueno
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Ruiz-Carrascoso
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Fernando Lázaro-Perona
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | | | - Luis Escosa-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Tropical and Infectious Diseases Department, Hospital Universitario La Paz, Madrid, Spain
| | - Marina Alguacil-Guillén
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jesús Mingorance
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Intestinal Dominance by Multidrug-Resistant Bacteria in Pediatric Liver Transplant Patients. Microbiol Spectr 2022; 10:e0284222. [PMID: 36346231 PMCID: PMC9769714 DOI: 10.1128/spectrum.02842-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pediatric liver transplantation (PLTx) is commonly associated with extensive antibiotic treatments that can produce gut microbiome alterations and open the way to dominance by multidrug-resistant organisms (MDROs). In this study, the relationship between intestinal Relative Loads (RLs) of β-lactamase genes, antibiotic consumption, microbiome disruption, and the extraintestinal dissemination of MDROs among PLTx patients is investigated. 28 PLTx patients were included, from whom 169 rectal swabs were collected. Total DNA was extracted and blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were quantified via quantitative polymerase chain reaction (qPCR) and normalized to the total bacterial load (16SrRNA) through LogΔΔCt to determine the RLs. 16SrRNA sequencing was performed for 18 samples, and metagenomic sequencing was performed for 2. Patients' clinical data were retrieved from the hospital's database. At least one of the genes tested were detected in all of the patients. The RLs for blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were higher than 1% of the total bacterial population in 67 (80.73%), 56 (78.87%), 57 (77.03%) and 39 (61.9%) samples, respectively. High RLs for blaCTX-M-1-Family, blaOXA-1, and/or blaOXA-48, were positively associated with the consumption of carbapenems with trimethoprim-sulfamethoxazole and coincided with low diversity in the gut microbiome. Low RLs were associated with the consumption of noncarbapenem β-lactams with aminoglycosides (P < 0.05). Extraintestinal isolates harboring the same gene(s) as those detected intraintestinally were found in 18 samples, and the RLs of the respective swabs were high. We demonstrated a relationship between the consumption of carbapenems with trimethoprim-sulfamethoxazole, intestinal dominance by MDROs and extraintestinal spread of these organisms among PLTx patients. IMPORTANCE In this study, we track the relative intestinal loads of antibiotic resistance genes among pediatric liver transplant patients and determine the relationship between this load, antibiotic consumption, and infections caused by antibiotic-resistant organisms. We demonstrate that the consumption of broad spectrum antibiotics increase this load and decrease the gut microbial diversity among these patients. Moreover, the high loads of resistance genes were related to the extraintestinal spread of multidrug-resistant organisms. Together, our data show that the tracking of the relative intestinal loads of antibiotic resistance genes can be used as a biomarker that has the potential to stop the extraintestinal spread of antibiotic-resistant bacteria via the measurement of the intestinal dominance of these organisms, thereby allowing for the application of preventive measures.
Collapse
|
15
|
Mäklin T, Thorpe HA, Pöntinen AK, Gladstone RA, Shao Y, Pesonen M, McNally A, Johnsen PJ, Samuelsen Ø, Lawley TD, Honkela A, Corander J. Strong pathogen competition in neonatal gut colonisation. Nat Commun 2022; 13:7417. [PMID: 36456554 PMCID: PMC9715557 DOI: 10.1038/s41467-022-35178-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.
Collapse
Affiliation(s)
- Tommi Mäklin
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Anna K. Pöntinen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Rebecca A. Gladstone
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Yan Shao
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Maiju Pesonen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Alan McNally
- grid.6572.60000 0004 1936 7486Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Pål J. Johnsen
- grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trevor D. Lawley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Antti Honkela
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Zurabov FM, Chernevskaya EA, Beloborodova NV, Zurabov AY, Petrova MV, Yadgarov MY, Popova VM, Fatuev OE, Zakharchenko VE, Gurkova MM, Sorokina EA, Glazunov EA, Kochetova TA, Uskevich VV, Kuzovlev AN, Grechko AV. Bacteriophage Cocktails in the Post-COVID Rehabilitation. Viruses 2022; 14:v14122614. [PMID: 36560618 PMCID: PMC9783051 DOI: 10.3390/v14122614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body. Bacteriophages are promising candidates as potential regulators of the microbiota. In the present study, two complex phage cocktails targeting multiple bacterial species were used in the rehabilitation of thirty patients after COVID-19, and the effectiveness of the bacteriophages against the clinical strain of Klebsiella pneumoniae was evaluated for the first time using real-time visualization on a 3D Cell Explorer microscope. Application of phage cocktails for two weeks showed safety and the absence of adverse effects. An almost threefold statistically significant decrease in the anaerobic imbalance ratio, together with an erythrocyte sedimentation rate (ESR), was detected. This work will serve as a starting point for a broader and more detailed study of the use of phages and their effects on the microbiome.
Collapse
Affiliation(s)
- Fedor M. Zurabov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
- Correspondence:
| | - Ekaterina A. Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Natalia V. Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Alexander Yu. Zurabov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Marina V. Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Mikhail Ya. Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Valentina M. Popova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Oleg E. Fatuev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Vladislav E. Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Marina M. Gurkova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Ekaterina A. Sorokina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Egor A. Glazunov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Tatiana A. Kochetova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Victoria V. Uskevich
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| |
Collapse
|
17
|
Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nat Commun 2022; 13:5617. [PMID: 36153315 PMCID: PMC9509339 DOI: 10.1038/s41467-022-33313-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Infections by multidrug-resistant Enterobacteriaceae (MRE) are life-threatening to patients. The intestinal microbiome protects against MRE colonization, but antibiotics cause collateral damage to commensals and open the way to colonization and subsequent infection. Despite the significance of this problem, the specific commensals and mechanisms that restrict MRE colonization remain largely unknown. Here, by performing a multi-omic prospective study of hospitalized patients combined with mice experiments, we find that Lactobacillus is key, though not sufficient, to restrict MRE gut colonization. Lactobacillus rhamnosus and murinus increase the levels of Clostridiales bacteria, which induces a hostile environment for MRE growth through increased butyrate levels and reduced nutrient sources. This mechanism of colonization resistance, an interaction between Lactobacillus spp. and Clostridiales involving cooperation between microbiota members, is conserved in mice and patients. These results stress the importance of exploiting microbiome interactions for developing effective probiotics that prevent infections in hospitalized patients. Multidrug-resistant Enterobacteriaceae (MRE) represent a major threat for patients’ health. Here, the authors describe how cooperation between gut commensal bacteria (Lactobacillus spp. And Clostridiales) restrict MRE colonization in mice and patients
Collapse
|
18
|
Lindstedt K, Buczek D, Pedersen T, Hjerde E, Raffelsberger N, Suzuki Y, Brisse S, Holt K, Samuelsen Ø, Sundsfjord A. Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes 2022; 14:2118500. [PMID: 36045603 PMCID: PMC9450895 DOI: 10.1080/19490976.2022.2118500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic healthcare-associated pathogen and major contributor to the global spread of antimicrobial resistance. Gastrointestinal colonization with K. pneumoniae is a major predisposing risk factor for infection and forms an important hub for the dispersal of resistance. Current culture-based detection methods are time consuming, give limited intra-sample abundance and strain diversity information, and have uncertain sensitivity. Here we investigated the presence and abundance of K. pneumoniae at the species and strain level within fecal samples from 103 community-based adults by qPCR and whole metagenomic sequencing (WMS) compared to culture-based detection. qPCR demonstrated the highest sensitivity, detecting K. pneumoniae in 61.2% and 75.8% of direct-fecal and culture-enriched sweep samples, respectively, including 52/52 culture-positive samples. WMS displayed lower sensitivity, detecting K. pneumoniae in 71.2% of culture-positive fecal samples at a 0.01% abundance cutoff, and was inclined to false positives in proportion to the relative abundance of other Enterobacterales present. qPCR accurately quantified K. pneumoniae to 16 genome copies/reaction while WMS could estimate relative abundance to at least 0.01%. Quantification by both methods correlated strongly with each other (Spearman's rho = 0.91). WMS also supported accurate intra-sample K. pneumoniae sequence type (ST)-level diversity detection from fecal microbiomes to 0.1% relative abundance, agreeing with the culture-based detected ST in 16/19 samples. Our results show that qPCR and WMS are sensitive and reliable tools for detection, quantification, and strain analysis of K. pneumoniae from fecal samples with potential to support infection control and enhance insights in K. pneumoniae gastrointestinal ecology.
Collapse
Affiliation(s)
- Kenneth Lindstedt
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,CONTACT Kenneth Lindstedt
| | - Dorota Buczek
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kathryn Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Arnfinn Sundsfjord Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, 9038, Norway
| |
Collapse
|
19
|
Pérez-Nadales E, M. Natera A, Recio-Rufián M, Guzmán-Puche J, Marín-Sanz JA, Martín-Pérez C, Cano Á, Castón JJ, Elías-López C, Machuca I, Gutiérrez-Gutiérrez B, Martínez-Martínez L, Torre-Cisneros J. Prognostic Significance of the Relative Load of KPC-Producing Klebsiella pneumoniae within the Intestinal Microbiota in a Prospective Cohort of Colonized Patients. Microbiol Spectr 2022; 10:e0272821. [PMID: 35766500 PMCID: PMC9431423 DOI: 10.1128/spectrum.02728-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Increased relative bacterial load of KPC-producing Klebsiella pneumoniae (KPC-KP) within the intestinal microbiota has been associated with KPC-KP bacteremia. Prospective observational study of KPC-KP adult carriers with a hospital admission at recruitment or within the three prior months (January 2018 to February 2019). A qPCR-based assay was developed to measure the relative load of KPC-KP in rectal swabs (RLKPC, proportion of blaKPC relative to 16S rRNA gene copy number). We generated Fine-Gray competing risk and Cox regression models for survival analysis of all-site KPC-KP infection and all-cause mortality, respectively, at 90 and 30 days. The median RLKPC at baseline among 80 KPC-KP adult carriers was 0.28% (range 0.001% to 2.70%). Giannella Risk Score (GRS) was independently associated with 90-day and 30-day all-site infection (adjusted subdistribution hazard ratio [aHR] 1.23, 95% CI = 1.15 to 1.32, P < 0.001). RLKPC (adjusted hazard ratio [aHR] 1.04, 95% CI = 1.01 to 1.07, P = 0.008) and age (aHR 1.05, 95% CI = 1.01 to 1.10, P = 0.008) were independent predictors of 90-day all-cause mortality in a Cox model stratified by length of hospital stay (LOHS) ≥20 days. An adjusted Cox model for 30-day all-cause mortality, stratified by LOHS ≥14 days, included RLKPC (aHR 1.03, 95% CI = 1.00 to 1.06, P = 0.027), age (aHR 1.10, 95% CI = 1.03 to 1.18, P = 0.004), and severe KPC-KP infection (INCREMENT-CPE score >7, aHR 2.96, 95% CI = 0.97 to 9.07, P = 0.057). KPC-KP relative intestinal load was independently associated with all-cause mortality in our clinical setting, after adjusting for age and severe KPC-KP infection. Our study confirms the utility of GRS to predict infection risk in patients colonized by KPC-KP. IMPORTANCE The rapid dissemination of carbapenemase-producing Enterobacterales represents a global public health threat. Increased relative load of KPC-producing Klebsiella pneumoniae (KPC-KP) within the intestinal microbiota has been associated with an increased risk of bloodstream infection by KPC-KP. We developed a qPCR assay for quantification of the relative KPC-KP intestinal load (RLKPC) in 80 colonized patients and examined its association with subsequent all-site KPC-KP infection and all-cause mortality within 90 days. Giannella Risk Score, which predicts infection risk in colonized patients, was independently associated with the development of all-site KPC-KP infection. RLKPC was not associated with all-site KPC-KP infection, possibly reflecting the large heterogeneity in patient clinical conditions and infection types. RLKPC was an independent predictor of all-cause mortality within 90 and 30 days in our clinical setting. We hypothesize that KPC-KP load may behave as a surrogate marker for the severity of the patient's clinical condition.
Collapse
Affiliation(s)
- Elena Pérez-Nadales
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology and Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
| | - Alejandra M. Natera
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
| | - Manuel Recio-Rufián
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Julia Guzmán-Puche
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Juan Antonio Marín-Sanz
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
| | - Carlos Martín-Pérez
- Doctor in Medicine, specialist in Family and Community Medicine in the Andalusian Health Service, Granada, Spain
| | - Ángela Cano
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Juan José Castón
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology and Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Cristina Elías-López
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
| | - Isabel Machuca
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Belén Gutiérrez-Gutiérrez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen Macarena, Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | - Luis Martínez-Martínez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology and Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Julián Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía University Hospital, University of Cordoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology and Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
20
|
Vornhagen J, Roberts EK, Unverdorben L, Mason S, Patel A, Crawford R, Holmes CL, Sun Y, Teodorescu A, Snitkin ES, Zhao L, Simner PJ, Tamma PD, Rao K, Kaye KS, Bachman MA. Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection. Nat Commun 2022; 13:4459. [PMID: 35915063 PMCID: PMC9343666 DOI: 10.1038/s41467-022-31990-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily K Roberts
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lavinia Unverdorben
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alieysa Patel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn L Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuang Sun
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Teodorescu
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan S Snitkin
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keith S Kaye
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC, Gomi R, Abbott IJ, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, Hunter PC, Pilcher DV, McGloughlin SA, Spelman DW, Wyres KL, Jenney AWJ, Holt KE. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun 2022; 13:3017. [PMID: 35641522 PMCID: PMC9156735 DOI: 10.1038/s41467-022-30717-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a major cause of opportunistic healthcare-associated infections, which are increasingly complicated by the presence of extended-spectrum beta-lactamases (ESBLs) and carbapenem resistance. We conducted a year-long prospective surveillance study of K. pneumoniae clinical isolates in hospital patients. Whole-genome sequence (WGS) data reveals a diverse pathogen population, including other species within the K. pneumoniae species complex (18%). Several infections were caused by K. variicola/K. pneumoniae hybrids, one of which shows evidence of nosocomial transmission. A wide range of antimicrobial resistance (AMR) phenotypes are observed, and diverse genetic mechanisms identified (mainly plasmid-borne genes). ESBLs are correlated with presence of other acquired AMR genes (median n = 10). Bacterial genomic features associated with nosocomial onset are ESBLs (OR 2.34, p = 0.015) and rhamnose-positive capsules (OR 3.12, p < 0.001). Virulence plasmid-encoded features (aerobactin, hypermucoidy) are observed at low-prevalence (<3%), mostly in community-onset cases. WGS-confirmed nosocomial transmission is implicated in just 10% of cases, but strongly associated with ESBLs (OR 21, p < 1 × 10-11). We estimate 28% risk of onward nosocomial transmission for ESBL-positive strains vs 1.7% for ESBL-negative strains. These data indicate that K. pneumoniae infections in hospitalised patients are due largely to opportunistic infections with diverse strains, with an additional burden from nosocomially-transmitted AMR strains and community-acquired hypervirulent strains.
Collapse
Affiliation(s)
- Claire L Gorrie
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia.
| | - Mirjana Mirčeta
- Microbiology Unit, Alfred Pathology Service, The Alfred Hospital, Melbourne, Vic, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Doherty Applied Microbial Genomics (DAMG), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Ryota Gomi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Iain J Abbott
- Microbiology Unit, Alfred Pathology Service, The Alfred Hospital, Melbourne, Vic, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, Cambs, UK
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Richard A Strugnell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Nigel F Pratt
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Vic, Australia
| | - Jill S Garlick
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Vic, Australia
| | - Kerrie M Watson
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Peter C Hunter
- Aged Care, Caulfield Hospital, Alfred Health, Melbourne, Vic, Australia
| | - David V Pilcher
- Intensive Care Unit, The Alfred Hospital, Melbourne, Vic, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Vic, Australia
| | - Steve A McGloughlin
- Intensive Care Unit, The Alfred Hospital, Melbourne, Vic, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Vic, Australia
| | - Denis W Spelman
- Microbiology Unit, Alfred Pathology Service, The Alfred Hospital, Melbourne, Vic, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Adam W J Jenney
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
- Microbiology Unit, Alfred Pathology Service, The Alfred Hospital, Melbourne, Vic, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Vic, Australia.
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
22
|
Abstract
Klebsiella commonly colonizes the intestinal tract of hospitalized patients and is a leading cause of health care-associated infections. Colonization is associated with subsequent infection, but the factors determining this progression are unclear. A cohort study was performed, in which intensive care and hematology/oncology patients with Klebsiella colonization based on rectal swab culture were enrolled and monitored for infection for 90 days after a positive swab. Electronic medical records were analyzed for patient factors associated with subsequent infection, and variables of potential significance in a bivariable analysis were used to build a final multivariable model. Concordance between colonizing and infecting isolates was assessed by wzi capsular gene sequencing. Among 2,087 hospitalizations from 1,978 colonized patients, 90 cases of infection (4.3%) were identified. The mean time to infection was 20.6 ± 24.69 (range, 0 to 91; median, 11.5) days. Of 86 typed cases, 68 unique wzi types were identified, and 69 cases (80.2%) were colonized with an isolate of the same type prior to infection. Based on multivariable modeling, overall comorbidities, depression, and low albumin levels at the time of rectal swab collection were independently associated with subsequent Klebsiella infection (i.e., cases). Despite the high diversity of colonizing strains of Klebsiella, there is high concordance with subsequent infecting isolates, and progression to infection is relatively quick. Readily accessible data from the medical record could be used by clinicians to identify colonized patients at an increased risk of subsequent Klebsiella infection. IMPORTANCEKlebsiella is a leading cause of health care-associated infections. Patients who are intestinally colonized with Klebsiella are at a significantly increased risk of subsequent infection, but only a subset of colonized patients progress to disease. Colonization offers a potential window of opportunity to intervene and prevent these infections, if the patients at greatest risk could be identified. To identify patient factors associated with infection in colonized patients, we studied 1,978 colonized patients. We found that patients with a higher burden of underlying disease in general, depression in particular, and low albumin levels in a blood test were more likely to develop infection. However, these variables did not completely predict infection, suggesting that other host and microbial factors may also be important. The clinical variables associated with infection are readily available in the medical record and could serve as the foundation for developing an integrated risk assessment of Klebsiella infection in hospitalized patients.
Collapse
|