1
|
Kostinov M, Svitich O, Chuchalin A, Abramova N, Osiptsov V, Khromova E, Pakhomov D, Tatevosov V, Vlasenko A, Gainitdinova V, Mashilov K, Kryukova N, Baranova I, Kostinov A. Changes in nasal, pharyngeal and salivary secretory IgA levels in patients with COVID-19 and the possibility of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Drugs Context 2023; 12:2022-10-4. [PMID: 37342460 PMCID: PMC10278444 DOI: 10.7573/dic.2022-10-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Although extensive research has been conducted on the role of local immunity in patients with SARS-CoV-2, little is known about the production and concentrations of secretory IgA (SIgA) in different mucosal compartments. This article aims to assess the secretion of SIgA in the nasal and pharyngeal compartments and saliva of patients with COVID-19 and to investigate the possibility and efficiency of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Methods This study included 78 inpatients, aged between 18 and 60 years, who had confirmed COVID-19 with moderate lung involvement. The control group (n=45) received basic therapy, and the treatment group (n=33) was additionally administered the bacteria-based pharmaceutical Immunovac VP4 from day 1 to day 10 of hospitalization. SIgA levels were measured by ELISA at baseline and on days 14 and 30. Results No systemic or local reactions associated with Immunovac VP4 were reported. We observed a statistically significant reduction in the duration of fever and hospitalization in patients who received Immunovac VP4 compared with those from the control group (p=0.03 and p=0.05, respectively). Changes over time in SIgA levels in nasal swabs were found to be significantly different in the two treatment groups (F=7.9, p[78.0]<0.001). On day 14 of observation, patients in the control group showed a statistically significant reduction in SIgA levels from baseline (p=0.02), whereas patients in the Immunovac VP4 group had stable SIgA levels (p=0.07). On day 30 after the start of treatment, there was a statistically significant increase in SIgA levels in the Immunovac VP4 group compared with baseline (from 77.7 (40.5-98.7) μg/L to 113.4 (39.8-156.7) μg/L; p=0.05) and the levels measured on day 14 (from 60.2 (23.3-102.9) μg/L to 113.4 (39.8-156.7) μg/L; p=0.03). The control group showed a statistically significant decrease in levels of nasal SIgA (to 37.3) on day 30 (p=0.007 for comparison with baseline values and p=0.04 for comparison with levels measured on day 14). Changes over time in SIgA levels measured in pharyngeal swabs were also different between the two treatment groups, and this difference reached statistical significance (F=6.5, p[73.0]=0.003). In the control group, this parameter did not change throughout the study (p=0.17 for a comparison between the levels measured on day 14 and the baseline values, and p=0.12 for a comparison between the levels measured on day 30 and the baseline values). In the Immunovac VP4 group, there was a statistically significant increase from baseline in SIgA levels on study day 30: from 1.5 (0.2-16.5) μg/L to 29.8 (3.6-106.8) μg/L (p=0.02). Changes over time in salivary SIgA did not show a significant difference between study groups (F=0.3, p[66.3]=0.75). Conclusion As part of combination therapy, the bacteria-based immunostimulant agent Immunovac VP4 increases SIgA levels in the nasal and pharyngeal compartments and induces clinical improvement. Induced mucosal immunity is central to the prevention of respiratory infections, particularly in patients with post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Mikhail Kostinov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
- Department of Epidemiology and Modern Technologies of Vaccination, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Oksana Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Alexander Chuchalin
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
- Research Institute of Pulmonology, Moscow, Russian Federation
| | - Natalya Abramova
- Laboratory of Molecular Immunology, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Valery Osiptsov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina Khromova
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Dmitry Pakhomov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Vitaly Tatevosov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Anna Vlasenko
- Medical Cybernetics and Informatics Department, Novokuznetsk State Institute of Advanced Training of Physicians – Branch of the “Russian Medical Academy of Continuous Professional Education”, Novokuznetsk, Russian Federation
| | - Vilia Gainitdinova
- Pulmonology Department of the I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Kirill Mashilov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Nadezhda Kryukova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Irina Baranova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Anton Kostinov
- Allergodiagnostics Laboratory, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| |
Collapse
|
2
|
Schnittman SR, Jung W, Fitch KV, Zanni MV, McCallum S, Lee JSL, Shin S, Davis BJ, Fulda ES, Diggs MR, Giguel F, Chinchay R, Sheth AN, Fichtenbaum CJ, Malvestutto C, Aberg JA, Currier J, Lauffenburger DA, Douglas PS, Ribaudo HJ, Alter G, Grinspoon SK. Effect of host factors and COVID-19 infection on the humoral immune repertoire in treated HIV. JCI Insight 2023; 8:e166848. [PMID: 36805331 PMCID: PMC10077482 DOI: 10.1172/jci.insight.166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
People with HIV (PWH) appear to be at higher risk for suboptimal pathogen responses and for worse COVID-19 outcomes, but the effects of host factors and COVID-19 on the humoral repertoire remain unclear. We assessed the antibody isotype/subclass and Fc-receptor binding Luminex arrays of non-SARS-CoV-2 and SARS-CoV-2 humoral responses among antiretroviral therapy-treated (ART-treated) PWH. Among the entire cohort, COVID-19 infection was associated with higher cytomegalovirus (CMV) responses (vs. the COVID- cohort ), potentially signifying increased susceptibility or a consequence of persistent inflammation. Among the COVID+ participants, (a) higher BMI was associated with a striking amplification of SARS-CoV-2 responses, suggesting exaggerated inflammatory responses, and (b) lower nadir CD4 was associated with higher SARS-CoV-2 IgM and FcγRIIB binding capacity, indicating poorly functioning extrafollicular and inhibitory responses. Among the COVID-19- participants, female sex, older age, and lower nadir CD4 were associated with unique repertoire shifts. In this first comprehensive assessment of the humoral repertoire in a global cohort of PWH, we identify distinct SARS-CoV-2-specific humoral immune profiles among PWH with obesity or lower nadir CD4+ T cell count, underlining plausible mechanisms associated with worse COVID-19-related outcomes in this setting. Host factors associated with the humoral repertoire in the COVID-19- cohort enhance our understanding of these important shifts among PWH.
Collapse
Affiliation(s)
- Samuel R. Schnittman
- Division of Infectious Diseases, Department of Medicine, and
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen V. Fitch
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Markella V. Zanni
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Brandon J. Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Evelynne S. Fulda
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marissa R. Diggs
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Francoise Giguel
- AIDS Clinical Trials Group Lab 01, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Romina Chinchay
- Houston AIDS Research Team, University of Texas Health Science Center Houston, Houston, Texas, USA
| | - Anandi N. Sheth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carl J. Fichtenbaum
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carlos Malvestutto
- Division of Infectious Diseases, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judith Currier
- Division of Infectious Diseases, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pamela S. Douglas
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
3
|
Nairz M, Todorovic T, Gehrer CM, Grubwieser P, Burkert F, Zimmermann M, Trattnig K, Klotz W, Theurl I, Bellmann-Weiler R, Weiss G. Single-Center Experience in Detecting Influenza Virus, RSV and SARS-CoV-2 at the Emergency Department. Viruses 2023; 15:470. [PMID: 36851685 PMCID: PMC9958692 DOI: 10.3390/v15020470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) on respiratory tract swabs has become the gold standard for sensitive and specific detection of influenza virus, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this retrospective analysis, we report on the successive implementation and routine use of multiplex RT-PCR testing for patients admitted to the Internal Medicine Emergency Department (ED) at a tertiary care center in Western Austria, one of the hotspots in the early coronavirus disease 2019 (COVID-19) pandemic in Europe. Our description focuses on the use of the Cepheid® Xpert® Xpress closed RT-PCR system in point-of-care testing (POCT). Our indications for RT-PCR testing changed during the observation period: From the cold season 2016/2017 until the cold season 2019/2020, we used RT-PCR to diagnose influenza or RSV infection in patients with fever and/or respiratory symptoms. Starting in March 2020, we used the RT-PCR for SARS-CoV-2 and a multiplex version for the combined detection of all these three respiratory viruses to also screen subjects who did not present with symptoms of infection but needed in-hospital medical treatment for other reasons. Expectedly, the switch to a more liberal RT-PCR test strategy resulted in a substantial increase in the number of tests. Nevertheless, we observed an immediate decline in influenza virus and RSV detections in early 2020 that coincided with public SARS-CoV-2 containment measures. In contrast, the extensive use of the combined RT-PCR test enabled us to monitor the re-emergence of influenza and RSV detections, including asymptomatic cases, at the end of 2022 when COVID-19 containment measures were no longer in place. Our analysis of PCR results for respiratory viruses from a real-life setting at an ED provides valuable information on the epidemiology of those infections over several years, their contribution to morbidity and need for hospital admission, the risk for nosocomial introduction of such infection into hospitals from asymptomatic carriers, and guidance as to how general precautions and prophylactic strategies affect the dynamics of those infections.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, Pneumology), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | - Günter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, Pneumology), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
5
|
Castrejón-Jiménez NS, García-Pérez BE, Reyes-Rodríguez NE, Vega-Sánchez V, Martínez-Juárez VM, Hernández-González JC. Challenges in the Detection of SARS-CoV-2: Evolution of the Lateral Flow Immunoassay as a Valuable Tool for Viral Diagnosis. BIOSENSORS 2022; 12:bios12090728. [PMID: 36140114 PMCID: PMC9496238 DOI: 10.3390/bios12090728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is an emerging infectious disease of zoonotic origin that caused the coronavirus disease in late 2019 and triggered a pandemic that has severely affected human health and caused millions of deaths. Early and massive diagnosis of SARS-CoV-2 infected patients is the key to preventing the spread of the virus and controlling the outbreak. Lateral flow immunoassays (LFIA) are the simplest biosensors. These devices are clinical diagnostic tools that can detect various analytes, including viruses and antibodies, with high sensitivity and specificity. This review summarizes the advantages, limitations, and evolution of LFIA during the SARS-CoV-2 pandemic and the challenges of improving these diagnostic devices.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, México City 11340, Mexico
| | - Nydia Edith Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Víctor Manuel Martínez-Juárez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
- Correspondence: ; Tel.: +52-775-756-0308
| |
Collapse
|
6
|
Stoddard CI, Sung K, Ojee E, Adhiambo J, Begnel ER, Slyker J, Gantt S, Matsen FA, Kinuthia J, Wamalwa D, Overbaugh J, Lehman DA. Distinct Antibody Responses to Endemic Coronaviruses Pre- and Post-SARS-CoV-2 Infection in Kenyan Infants and Mothers. Viruses 2022; 14:1517. [PMID: 35891497 PMCID: PMC9323260 DOI: 10.3390/v14071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Pre-existing antibodies that bind endemic human coronaviruses (eHCoVs) can cross-react with SARS-CoV-2, which is the betacoronavirus that causes COVID-19, but whether these responses influence SARS-CoV-2 infection is still under investigation and is particularly understudied in infants. In this study, we measured eHCoV and SARS-CoV-1 IgG antibody titers before and after SARS-CoV-2 seroconversion in a cohort of Kenyan women and their infants. Pre-existing eHCoV antibody binding titers were not consistently associated with SARS-CoV-2 seroconversion in infants or mothers; however, we observed a very modest association between pre-existing HCoV-229E antibody levels and a lack of SARS-CoV-2 seroconversion in the infants. After seroconversion to SARS-CoV-2, antibody binding titers to the endemic betacoronaviruses HCoV-OC43 and HCoV-HKU1, and the highly pathogenic betacoronavirus SARS-CoV-1, but not the endemic alphacoronaviruses HCoV-229E and HCoV-NL63, increased in the mothers. However, eHCoV antibody levels did not increase following SARS-CoV-2 seroconversion in the infants, suggesting the increase seen in the mothers was not simply due to cross-reactivity to naively generated SARS-CoV-2 antibodies. In contrast, the levels of antibodies that could bind SARS-CoV-1 increased after SARS-CoV-2 seroconversion in both the mothers and infants, both of whom were unlikely to have had a prior SARS-CoV-1 infection, supporting prior findings that SARS-CoV-2 responses cross-react with SARS-CoV-1. In summary, we found evidence of increased eHCoV antibody levels following SARS-CoV-2 seroconversion in the mothers but not the infants, suggesting eHCoV responses can be boosted by SARS-CoV-2 infection when a prior memory response has been established, and that pre-existing cross-reactive antibodies are not strongly associated with SARS-CoV-2 infection risk in mothers or infants.
Collapse
Affiliation(s)
- Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.S.); (F.A.M.IV)
| | - Ednah Ojee
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi 00100, Kenya; (E.O.); (J.A.); (D.W.)
| | - Judith Adhiambo
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi 00100, Kenya; (E.O.); (J.A.); (D.W.)
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; (E.R.B.); (J.S.); (J.K.)
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; (E.R.B.); (J.S.); (J.K.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.S.); (F.A.M.IV)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; (E.R.B.); (J.S.); (J.K.)
- Department of Research and Programs, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi 00100, Kenya; (E.O.); (J.A.); (D.W.)
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.S.); (F.A.M.IV)
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; (E.R.B.); (J.S.); (J.K.)
| |
Collapse
|
7
|
Stoddard CI, Sung K, Ojee E, Adhiambo J, Begnel ER, Slyker J, Gantt S, Matsen FA, Kinuthia J, Wamalwa D, Overbaugh J, Lehman DA. Distinct antibody responses to endemic coronaviruses pre- and post-SARS-CoV-2 infection in Kenyan infants and mothers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.02.493651. [PMID: 35677071 PMCID: PMC9176650 DOI: 10.1101/2022.06.02.493651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pre-existing antibodies that bind endemic human coronaviruses (eHCoVs) can cross-react with SARS-CoV-2, the betacoronavirus that causes COVID-19, but whether these responses influence SARS-CoV-2 infection is still under investigation and is particularly understudied in infants. In this study, we measured eHCoV and SARS-CoV-1 IgG antibody titers before and after SARS-CoV-2 seroconversion in a cohort of Kenyan women and their infants. Pre-existing eHCoV antibody binding titers were not consistently associated with SARS-CoV-2 seroconversion in infants or mothers, though we observed a very modest association between pre-existing HCoV-229E antibody levels and lack of SARS-CoV-2 seroconversion in infants. After seroconversion to SARS-CoV-2, antibody binding titers to endemic betacoronaviruses HCoV-OC43 and HCoV-HKU1, and the highly pathogenic betacoronavirus SARS-CoV-1, but not endemic alphacoronaviruses HCoV-229E and HCoV-NL63, increased in mothers. However, eHCoV antibody levels did not increase following SARS-CoV-2 seroconversion in infants, suggesting the increase seen in mothers was not simply due to cross-reactivity to naively generated SARS-CoV-2 antibodies. In contrast, the levels of antibodies that could bind SARS-CoV-1 increased after SARS-CoV-2 seroconversion in both mothers and infants, both of whom are unlikely to have had a prior SARS-CoV-1 infection, supporting prior findings that SARS-CoV-2 responses cross-react with SARS-CoV-1. In summary, we find evidence for increased eHCoV antibody levels following SARS-CoV-2 seroconversion in mothers but not infants, suggesting eHCoV responses can be boosted by SARS-CoV-2 infection when a prior memory response has been established, and that pre-existing cross-reactive antibodies are not strongly associated with SARS-CoV-2 infection risk in mothers or infants.
Collapse
Affiliation(s)
- Caitlin I Stoddard
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ednah Ojee
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Judith Adhiambo
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Emily R Begnel
- Department of Global Health, University of Washington, Seattle, WA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal
- Centre Hospitalier Universitaire Sainte-Justine
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Howard Hughes Medical Institute
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Dara A Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Fuentes-Villalobos F, Garrido JL, Medina MA, Zambrano N, Ross N, Bravo F, Gaete-Argel A, Oyarzún-Arrau A, Amanat F, Soto-Rifo R, Valiente-Echeverría F, Ocampo R, Esveile C, Ferreira L, Cabrera J, Torres V, Rioseco ML, Riquelme R, Barría S, Alvarez R, Pinos Y, Krammer F, Calvo M, Barria MI. Sustained Antibody-Dependent NK Cell Functions in Mild COVID-19 Outpatients During Convalescence. Front Immunol 2022; 13:796481. [PMID: 35197972 PMCID: PMC8859986 DOI: 10.3389/fimmu.2022.796481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/14/2022] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID19) pandemic has left researchers scrambling to identify the humoral immune correlates of protection from COVID-19. To date, the antibody mediated correlates of virus neutralization have been extensively studied. However, the extent that non-neutralizing functions contribute to anti-viral responses are ill defined. In this study, we profiled the anti-spike antibody subtype/subclass responses, along with neutralization and antibody-dependent natural killer cell functions in 83 blood samples collected between 4 and 201 days post-symptoms onset from a cohort of COVID-19 outpatients. We observed heterogeneous humoral responses against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Overall, anti-spike profiles were characterized by a rapid rise of IgA and sustained IgG titers. In addition, strong antibody-mediated natural killer effector responses correlated with milder disease and being female. While higher neutralization profiles were observed in males along with increased severity. These results give an insight into the underlying function of antibodies beyond neutralization and suggest that antibody-mediated natural killer cell activity is a key function of the humoral response against the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | - Jose L Garrido
- Ichor Biologics LLC, New York, NY, United States.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Matías A Medina
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Nicole Zambrano
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Natalia Ross
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Felipe Bravo
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | | | - Leonila Ferreira
- Hospital Clínico Regional Dr. Guillermo Grant Benavente, Concepción, Chile
| | | | - Vivianne Torres
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maria L Rioseco
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile.,Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Raúl Riquelme
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile.,Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Sebastián Barría
- Hospital Puerto Montt Dr. Eduardo Schütz Schroeder, Puerto Montt, Chile
| | - Raymond Alvarez
- Ichor Biologics LLC, New York, NY, United States.,Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Calvo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maria I Barria
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
9
|
Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, Castellaw AH, Wehenkel M, Crawford JC, Zarnitsyna VI, Duque D, Allison KJ, Allen EK, Brown SA, Mandarano AH, Estepp JH, Taylor C, Molina-Paris C, Schultz-Cherry S, Tang L, Thomas PG, McGargill MA. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe 2022; 30:83-96.e4. [PMID: 34965382 PMCID: PMC8648673 DOI: 10.1016/j.chom.2021.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.
Collapse
Affiliation(s)
- Chun-Yang Lin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science, Memphis, TN, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yilun Sun
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley H Castellaw
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Duque
- School of Mathematics, University of Leeds, Leeds, UK
| | - Kim J Allison
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jeremie H Estepp
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carmen Molina-Paris
- School of Mathematics, University of Leeds, Leeds, UK; T-6, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Wong LYR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses - are we our own worst enemy? Nat Rev Immunol 2022; 22:47-56. [PMID: 34837062 PMCID: PMC8617551 DOI: 10.1038/s41577-021-00656-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
Human coronaviruses cause a wide spectrum of disease, ranging from mild common colds to acute respiratory distress syndrome and death. Three highly pathogenic human coronaviruses - severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus and SARS-CoV-2 - have illustrated the epidemic and pandemic potential of human coronaviruses, and a better understanding of their disease-causing mechanisms is urgently needed for the rational design of therapeutics. Analyses of patients have revealed marked dysregulation of the immune system in severe cases of human coronavirus infection, and there is ample evidence that aberrant immune responses to human coronaviruses are typified by impaired induction of interferons, exuberant inflammatory responses and delayed adaptive immune responses. In addition, various viral proteins have been shown to impair interferon induction and signalling and to induce inflammasome activation. This suggests that severe disease associated with human coronaviruses is mediated by both dysregulated host immune responses and active viral interference. Here we discuss our current understanding of the mechanisms involved in each of these scenarios.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Paediatrics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Svobodova M, Skouridou V, Jauset-Rubio M, Viéitez I, Fernández-Villar A, Cabrera Alvargonzalez JJ, Poveda E, Bofill CB, Sans T, Bashammakh A, Alyoubi AO, O’Sullivan CK. Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen. ACS OMEGA 2021; 6:35657-35666. [PMID: 34957366 PMCID: PMC8691202 DOI: 10.1021/acsomega.1c05521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 05/10/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections. Antigen tests, targeting the spike (S) or nucleocapsid (N) viral proteins, are considered as complementary tools. Despite their shortcomings in terms of sensitivity and specificity, antigen tests could be deployed for the detection of potentially contagious individuals with high viral loads. In this work, we sought to develop a sandwich aptamer-based assay for the detection of the S protein of SARS-CoV-2. A detailed study on the binding properties of aptamers to the receptor-binding domain of the S protein in search of aptamer pairs forming a sandwich is presented. Screening of aptamer pairs and optimization of assay conditions led to the development of a laboratory-based sandwich assay able to detect 21 ng/mL (270 pM) of the protein with negligible cross-reactivity with the other known human coronaviruses. The detection of 375 pg of the protein in viral transport medium demonstrates the compatibility of the assay with clinical specimens. Finally, successful detection of the S antigen in nasopharyngeal swab samples collected from suspected patients further establishes the suitability of the assay for screening purposes as a complementary tool to assist in the control of the pandemic.
Collapse
Affiliation(s)
- Marketa Svobodova
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Vasso Skouridou
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Irene Viéitez
- Rare
Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | - Alberto Fernández-Villar
- Pneumology
Service, Galicia Sur Health Research Institute
(IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | | | - Eva Poveda
- Group
of Virology and Pathogenesis, Galicia Sur
Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario
Universitario de Vigo, SERGAS-UVigo, Vigo 36213, Spain
| | - Clara Benavent Bofill
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Teresa Sans
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Abdulaziz Bashammakh
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Abdulrahman O. Alyoubi
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Ciara K. O’Sullivan
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
12
|
Microarray-Based Detection of Antibodies against SARS-CoV-2 Proteins, Common Respiratory Viruses and Type I Interferons. Viruses 2021; 13:v13122553. [PMID: 34960822 PMCID: PMC8705234 DOI: 10.3390/v13122553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.
Collapse
|
13
|
Romero Ramírez DS, Lara Pérez MM, Carretero Pérez M, Suárez Hernández MI, Martín Pulido S, Pera Villacampa L, Fernández Vilar AM, Rivero Falero M, González Carretero P, Reyes Millán B, Roper S, García Bello MÁ. SARS-CoV-2 Antibodies in Breast Milk After Vaccination. Pediatrics 2021; 148:e2021052286. [PMID: 34408089 DOI: 10.1542/peds.2021-052286] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Passive and active immunity transfer through human milk (HM) constitutes a key element in the infant's developing immunity. Certain infectious diseases and vaccines have been described to induce changes in the immune components of HM. METHODS We conducted a prospective cohort single-institution study from February 2 to April 4, 2021. Women who reported to be breastfeeding at the time of their coronavirus disease 2019 (COVID-19) vaccination were invited to participate. Blood and milk samples were collected on day 14 after their second dose of the vaccine. Immunoglobulin G (IgG) antibodies against nucleocapsid protein as well as IgG, immunoglobulin M and immunoglobulin A (IgA) antibodies against the spike 1 protein receptor-binding domain against severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2 RBD-S1) were analyzed in both serum and HM samples. RESULTS Most of the participants (ie, 94%) received the BNT162b2 messenger RNA COVID-19 vaccine. The mean serum concentration of anti-SARS-CoV-2 RBD-S-IgG antibodies in vaccinated individuals was 3379.6 ± 1639.5 binding antibody units per mL. All vaccinated study participants had anti-SARS-CoV-2 RBD-S1-IgG, and 89% of them had anti-SARS-CoV-2 RBD-S-IgA in their milk. The antibody concentrations in the milk of mothers who were breastfeeding 24 months were significantly higher than in mothers with breastfeeding periods <24 months (P < .001). CONCLUSIONS We found a clear association between COVID-19 vaccination and specific immunoglobulin concentrations in HM. This effect was more pronounced when lactation periods exceeded 23 months. The influence of the lactation period on immunoglobulins was specific and independent of other variables.
Collapse
Affiliation(s)
- Dolores Sabina Romero Ramírez
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Contributed equally as co-first authors
| | - María Magdalena Lara Pérez
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Contributed equally as co-first authors
| | | | | | - Saúl Martín Pulido
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | - Mónica Rivero Falero
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Reyes Millán
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Sabine Roper
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
14
|
King JP, McLean HQ, Belongia EA. Risk of symptomatic severe acute respiratory syndrome coronavirus 2 infection not associated with influenza vaccination in the 2019-2020 season. Influenza Other Respir Viruses 2021; 15:697-700. [PMID: 34169670 PMCID: PMC8447211 DOI: 10.1111/irv.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 01/07/2023] Open
Abstract
The association of influenza vaccine and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was assessed by test-negative design using data collected for a study of outpatient COVID-19-like illness with onset dates from June to September 2020. Multivariable logistic regression models examined the association between receipt of 2019-2020 influenza vaccine and PCR-confirmed SARS-CoV-2 with adjustment for potential confounders. Receipt of influenza vaccine during the 2019-2020 influenza season was not associated with increased odds of SARS-CoV-2 infection in adults (aOR 0.83, 95% CI 0.63 to 1.10) or children (aOR 0.92, 95% CI 0.47 to 1.80).
Collapse
Affiliation(s)
- Jennifer P. King
- Center for Clinical Epidemiology & Population HealthMarshfield Clinic Research InstituteMarshfieldWisconsinUSA
| | - Huong Q. McLean
- Center for Clinical Epidemiology & Population HealthMarshfield Clinic Research InstituteMarshfieldWisconsinUSA
| | - Edward A. Belongia
- Center for Clinical Epidemiology & Population HealthMarshfield Clinic Research InstituteMarshfieldWisconsinUSA
| |
Collapse
|
15
|
Kaplonek P, Wang C, Bartsch Y, Fischinger S, Gorman MJ, Bowman K, Kang J, Dayal D, Martin P, Nowak RP, Villani AC, Hsieh CL, Charland NC, Gonye AL, Gushterova I, Khanna HK, LaSalle TJ, Lavin-Parsons KM, Lilley BM, Lodenstein CL, Manakongtreecheep K, Margolin JD, McKaig BN, Rojas-Lopez M, Russo BC, Sharma N, Tantivit J, Thomas MF, Sade-Feldman M, Feldman J, Julg B, Nilles EJ, Musk ER, Menon AS, Fischer ES, McLellan JS, Schmidt A, Goldberg MB, Filbin MR, Hacohen N, Lauffenburger DA, Alter G. Early cross-coronavirus reactive signatures of humoral immunity against COVID-19. Sci Immunol 2021; 6:eabj2901. [PMID: 34652962 PMCID: PMC8943686 DOI: 10.1126/sciimmunol.abj2901] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
The introduction of vaccines has inspired hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against SARS-CoV-2, thus we profiled the earliest humoral signatures in a large cohort of acutely ill (survivors and nonsurvivors) and mild or asymptomatic individuals with COVID-19. Although a SARS-CoV-2–specific immune response evolved rapidly in survivors of COVID-19, nonsurvivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibodies. Given the conservation of S2 across β-coronaviruses, we found that the early development of SARS-CoV-2–specific immunity occurred in tandem with preexisting common β-coronavirus OC43 humoral immunity in survivors, which was also selectively expanded in individuals that develop a paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.
Collapse
Affiliation(s)
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yannic Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Kathryn Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Diana Dayal
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Patrick Martin
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Radoslaw P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole C. Charland
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna L.K. Gonye
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Irena Gushterova
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hargun K. Khanna
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J. LaSalle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Brendan M. Lilley
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L. Lodenstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin D. Margolin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brenna N. McKaig
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brian C. Russo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nihaarika Sharma
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F. Thomas
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Elon R. Musk
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Anil S. Menon
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Aaron Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Marcia B. Goldberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Michael R. Filbin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Gorman MJ, Patel N, Guebre-Xabier M, Zhu AL, Atyeo C, Pullen KM, Loos C, Goez-Gazi Y, Carrion R, Tian JH, Yuan D, Bowman KA, Zhou B, Maciejewski S, McGrath ME, Logue J, Frieman MB, Montefiori D, Mann C, Schendel S, Amanat F, Krammer F, Saphire EO, Lauffenburger DA, Greene AM, Portnoff AD, Massare MJ, Ellingsworth L, Glenn G, Smith G, Alter G. Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. Cell Rep Med 2021; 2:100405. [PMID: 34485950 PMCID: PMC8405506 DOI: 10.1016/j.xcrm.2021.100405] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Recently approved vaccines have shown remarkable efficacy in limiting SARS-CoV-2-associated disease. However, with the variety of vaccines, immunization strategies, and waning antibody titers, defining the correlates of immunity across a spectrum of antibody titers is urgently required. Thus, we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike glycoprotein (NVX-CoV2373) at two doses, administered as a single- or two-dose regimen. Both antigen dose and boosting significantly altered neutralization titers and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were associated with distinct levels of protection in the upper and lower respiratory tract. Moreover, NVX-CoV2373 elicited antibodies that functionally targeted emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease via combined Fc/Fab functions but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Alex L. Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Virology and Immunology Program, University of Duisburg-Essen, Essen, Germany
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Krista M. Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX 78227, USA
| | - Jing-Hui Tian
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Bin Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Marisa E. McGrath
- University of Maryland School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - James Logue
- University of Maryland School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - Matthew B. Frieman
- University of Maryland School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Colin Mann
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M. Greene
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | - Gregory Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Sealy RE, Hurwitz JL. Cross-Reactive Immune Responses toward the Common Cold Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Murine Study. Microorganisms 2021; 9:1643. [PMID: 34442723 PMCID: PMC8398386 DOI: 10.3390/microorganisms9081643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious morbidity and mortality in humans (coronavirus disease 2019, COVID-19), there is an enormous range of disease outcomes following virus exposures. Some individuals are asymptomatic while others succumb to virus infection within days. Presently, the factors responsible for disease severity are not fully understood. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to common cold human coronaviruses (HCoVs). Here, we describe previous literature and a new, murine study designed to examine cross-reactive immune responses between SARS-CoV-2 and common cold HCoVs (represented by prototypes OC43, HKU1, 229E, and NL63). Experimental results have been mixed. In SARS-CoV-2-unexposed humans, cross-reactive serum antibodies were identified toward nucleocapsid (N) and the spike subunit S2. S2-specific antibodies were in some cases associated with neutralization. SARS-CoV-2-unexposed humans rarely exhibited antibody responses to the SARS-CoV-2 spike subunit S1, and when naïve mice were immunized with adjuvanted S1 from either SARS-CoV-2 or common cold HCoVs, S1-specific antibodies were poorly cross-reactive. When humans were naturally infected with SARS-CoV-2, cross-reactive antibodies that recognized common cold HCoV antigens increased in magnitude. Cross-reactive T cells, like antibodies, were present in humans prior to SARS-CoV-2 exposures and increased following SARS-CoV-2 infections. Some studies suggested that human infections with common cold HCoVs afforded protection against disease caused by subsequent exposures to SARS-CoV-2. Small animal models are now available for the testing of controlled SARS-CoV-2 infections. Additionally, in the United Kingdom, a program of SARS-CoV-2 human challenge experiments has received regulatory approval. Future, controlled experimental challenge studies may better define how pre-existing, cross-reactive immune responses influence SARS-CoV-2 infection outcomes.
Collapse
Affiliation(s)
- Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
18
|
Muthumani K, Xu Z, Jeong M, Maslow JN, Kalyanaraman VS, Srinivasan A. Preexisting vs. de novo antibodies against SARS-CoV-2 in individuals without or with virus infection: impact on antibody therapy, vaccine research and serological testing. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:13. [PMID: 34230895 PMCID: PMC8248284 DOI: 10.1186/s41231-021-00093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The causative agent of the ongoing pandemic in the world is SARS-CoV-2. The research on SARS-CoV-2 has progressed with lightning speed on various fronts, including clinical research and treatment, virology, epidemiology, drug development, and vaccine research. Recent studies reported that sera from healthy individuals, who were confirmed negative for SARS-CoV-2 by RT-PCR method, tested positive for antibodies against spike and nucleocapsid proteins of SARS-CoV-2. Further, such antibodies also exhibited neutralizing activity against the virus. These observations have prompted us to prepare a commentary on this topic. While the preexisting antibodies are likely to protect against SARS-CoV-2 infection, they may also complicate serological testing results. Another unknown is the influence of preexisting antibodies on immune responses in individuals receiving vaccines against SARS-CoV-2. The commentary identifies the potential limitations with the serological tests based on spike and nucleocapsid proteins as these tests may overestimate the seroprevalence due to cross-reactive antibodies. The inclusion of tests specific to SARS-CoV-2 (such as RBD of spike protein) could overcome these limitations.
Collapse
Affiliation(s)
| | - Ziyang Xu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Joel N. Maslow
- GeneOne Life Science, Inc, Seoul, 07335 South Korea
- Department of Medicine, Morristown Medical Center, Morristown, NJ 07960 USA
| | | | | |
Collapse
|
19
|
Shiakolas AR, Kramer KJ, Wrapp D, Richardson SI, Schäfer A, Wall S, Wang N, Janowska K, Pilewski KA, Venkat R, Parks R, Manamela NP, Raju N, Fechter EF, Holt CM, Suryadevara N, Chen RE, Martinez DR, Nargi RS, Sutton RE, Ledgerwood JE, Graham BS, Diamond MS, Haynes BF, Acharya P, Carnahan RH, Crowe JE, Baric RS, Morris L, McLellan JS, Georgiev IS. Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Rep Med 2021; 2:100313. [PMID: 34056628 PMCID: PMC8139315 DOI: 10.1016/j.xcrm.2021.100313] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.
Collapse
Affiliation(s)
- Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Simone I. Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katarzyna Janowska
- Division of Structural Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nelia P. Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rita E. Chen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Division of Structural Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Kaplonek P, Wang C, Bartsch Y, Fischinger S, Gorman MJ, Bowman K, Kang J, Dayal D, Martin P, Nowak R, Hsieh CL, Feldman J, Julg B, Nilles EJ, Musk ER, Menon AS, Fischer ES, McLellan JS, Schmidt A, Goldberg MB, Filbin M, Hacohen N, Lauffenburger DA, Alter G. Early cross-coronavirus reactive signatures of protective humoral immunity against COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.11.443609. [PMID: 34013263 PMCID: PMC8132219 DOI: 10.1101/2021.05.11.443609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of vaccines has inspired new hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against COVID-19, thus we profiled the earliest humoral signatures in a large cohort of severe and asymptomatic COVID-19 individuals. While a SARS-CoV-2-specific immune response evolved rapidly in survivors of COVID-19, non-survivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibody evolution. Given the conservation of S2 across β-coronaviruses, we found the early development of SARS-CoV-2-specific immunity occurred in tandem with pre-existing common β-coronavirus OC43 humoral immunity in survivors, which was selectively also expanded in individuals that develop paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.
Collapse
Affiliation(s)
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Yannic Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Kathryn Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Ching-Lin Hsieh
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Space Exploration Technologies Corp, USA
- Brigham Women's Hospital, USA
- Massachusetts General Hospital, USA
- Broad Institute, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Jason S McLellan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Space Exploration Technologies Corp, USA
- Brigham Women's Hospital, USA
- Massachusetts General Hospital, USA
- Broad Institute, USA
| | - Aaron Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Nir Hacohen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
21
|
Leach S, Harandi AM, Bergström T, Andersson LM, Nilsson S, van der Hoek L, Gisslén M. Comparable endemic coronavirus nucleoprotein-specific antibodies in mild and severe Covid-19 patients. J Med Virol 2021; 93:5614-5617. [PMID: 33913546 PMCID: PMC8242474 DOI: 10.1002/jmv.27038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/11/2022]
Abstract
The severity of disease of Covid‐19 is highly variable, ranging from asymptomatic to critical respiratory disease and death. Potential cross‐reactive immune responses between SARS‐CoV‐2 and endemic coronavirus (eCoV) may hypothetically contribute to this variability. We herein studied if eCoV nucleoprotein (N)‐specific antibodies in the sera of patients with mild or severe Covid‐19 are associated with Covid‐19 severity. There were comparable levels of eCoV N‐specific antibodies early and during the first month of infection in Covid‐19 patients with mild and severe symptoms, and healthy SARS‐CoV‐2‐negative subjects. These results warrant further studies to investigate the potential role of eCoV‐specific antibodies in immunity to SARS‐CoV‐2 infection. We found comparable levels of endemic coronavirus nucleoprotein‐specific antibodies in the sera of patients with mild or severe Covid‐19, early and during the first month of infection, and healthy subjects.
Collapse
Affiliation(s)
- Susannah Leach
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Vaccine Evaluation Center, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, Canada
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
22
|
Focosi D, Genoni A, Lucenteforte E, Tillati S, Tamborini A, Spezia PG, Azzi L, Baj A, Maggi F. Previous Humoral Immunity to the Endemic Seasonal Alphacoronaviruses NL63 and 229E Is Associated with Worse Clinical Outcome in COVID-19 and Suggests Original Antigenic Sin. Life (Basel) 2021; 11:298. [PMID: 33915711 PMCID: PMC8067214 DOI: 10.3390/life11040298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) infection has been hypothesized. However, to date, there has been no in vitro or in vivo evidence supporting this. Cross-reactivity exists between SARS CoV-2 and other Coronaviridae for both cellular and humoral immunity. We show here that IgG against nucleocapsid protein of alphacoronavirus NL63 and 229E correlate with the World Health Organization's (WHO) clinical severity score ≥ 5 (incidence rate ratios was 1.87 and 1.80, respectively, and 1.94 for the combination). These laboratory findings suggest possible ADE of SARS CoV-2 infection by previous alphacoronavirus immunity.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Angelo Genoni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.G.); (L.A.); (A.B.); (F.M.)
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (E.L.); (S.T.)
| | - Silvia Tillati
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (E.L.); (S.T.)
| | | | | | - Lorenzo Azzi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.G.); (L.A.); (A.B.); (F.M.)
- Unit of Oral Medicine and Pathology, ASST Sette Laghi, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.G.); (L.A.); (A.B.); (F.M.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy;
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.G.); (L.A.); (A.B.); (F.M.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy;
| |
Collapse
|
23
|
Arenas A, Borge C, Carbonero A, Garcia-Bocanegra I, Cano-Terriza D, Caballero J, Arenas-Montes A. Bovine Coronavirus Immune Milk Against COVID-19. Front Immunol 2021; 12:637152. [PMID: 33833758 PMCID: PMC8021920 DOI: 10.3389/fimmu.2021.637152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
After a year of evolution of the SARS-CoV-2 epidemic, there is still no specific effective treatment for the disease. Although the majority of infected people experience mild disease, some patients develop a serious disease, especially when other pathologies concur. For this reason, it would be very convenient to find pharmacological and immunological mechanisms that help control SARS-CoV-2 infection. Since the COVID-19 and BCoV viruses are very close phylogenetically, different studies demonstrate the existence of cross-immunity as they retain shared epitopes in their structure. As a possible control measure against COVID-19, we propose the use of cow's milk immune to BCoV. Thus, the antigenic recognition of some highly conserved structures of viral proteins, particularly M and S2, by anti-BCoV antibodies present in milk would cause a total or partial inactivation of SARS-COV-2 (acting as a particular vaccine) and be addressed more easily by GALT's highly specialized antigen-presenting cells, thus helping the specific immune response.
Collapse
Affiliation(s)
- Antonio Arenas
- Department of Animal Health, University of Cordoba, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In the year since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and with understanding of the etiology of the coronavirus disease 2019 (COVID-19) pandemic, it has become clear that most infected individuals achieve some form of immunity against the virus with relatively few reported reinfections. A number of vaccines have already achieved emergency use authorization based on data from large phase 3 field efficacy clinical trials. However, our knowledge about the extent and durability of this immunity, and the breadth of vaccine coverage against SARS-CoV-2 variants is still evolving. In this narrative review, we summarize the latest and rapidly developing understanding of immunity to SARS-CoV-2 infection, including what we have learned about the key antigens of SARS-CoV-2 (i.e., the spike protein and its receptor-binding domain), their importance in vaccine development, the immediate immune response to SARS-CoV-2, breadth of coverage of emerging SARS-CoV-2 variants, contributions of preexisting immunity to related coronaviruses, and duration of immunity. We also discuss lessons from newer approaches, such as systems serology, that provide insights into molecular and cellular immune responses elicited and how they relate to the trajectory of infection, and potentially inform immune correlates of protection. We also briefly examine the limited research literature on immune responses in special populations, such as pregnant women and children.
Collapse
Affiliation(s)
- Jaime Fergie
- Department of Pediatric Infectious Diseases, Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, United States
| |
Collapse
|
25
|
Bartsch YC, Fischinger S, Siddiqui SM, Chen Z, Yu J, Gebre M, Atyeo C, Gorman MJ, Zhu AL, Kang J, Burke JS, Slein M, Gluck MJ, Beger S, Hu Y, Rhee J, Petersen E, Mormann B, Aubin MDS, Hasdianda MA, Jambaulikar G, Boyer EW, Sabeti PC, Barouch DH, Julg BD, Musk ER, Menon AS, Lauffenburger DA, Nilles EJ, Alter G. Discrete SARS-CoV-2 antibody titers track with functional humoral stability. Nat Commun 2021; 12:1018. [PMID: 33589636 PMCID: PMC7884400 DOI: 10.1038/s41467-021-21336-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Antibodies serve as biomarkers of infection, but if sustained can confer long-term immunity. Yet, for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. Instead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanistically linked to protection. While evidence has begun to point to persisting antibody responses among SARS-CoV-2 infected individuals, cases of re-infection have begun to emerge, calling the protective nature of humoral immunity against this highly infectious pathogen into question. Using a community-based surveillance study, we aimed to define the relationship between titers and functional antibody activity to SARS-CoV-2 over time. Here we report significant heterogeneity, but limited decay, across antibody titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neutralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that elicited RBD-specific antibody titers above a threshold. The findings point to a switch-like relationship between observed antibody titer and function, where a distinct threshold of activity-defined by the level of antibodies-is required to elicit vigorous humoral and cellular response. This response activity level may be essential for durable protection, potentially explaining why re-infections occur with SARS-CoV-2 and other common coronaviruses.
Collapse
Affiliation(s)
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Sameed M Siddiqui
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhilin Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jingyou Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Makda Gebre
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Alex Lee Zhu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew Slein
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew J Gluck
- Space Exploration Technologies Corp, Hawthorne, CA, USA
- Icahn School of Medicine at Mount Sinai, Nw York, USA
| | - Samuel Beger
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Yiyuan Hu
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Eric Petersen
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | | | | | | | | | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA
| | - Dan H Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA
| | - Boris D Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Elon R Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA.
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA.
| |
Collapse
|
26
|
Alter G, Gorman M, Patel N, Guebre-Xabier M, Zhu A, Atyeo C, Pullen K, Loos C, Goez-Gazi Y, Carrion R, Tian JH, Yuan D, Bowman K, Zhou B, Maciejewski S, McGrath M, Logue J, Frieman M, Montefiori D, Schendel S, Saphire EO, Lauffenburger D, Greene A, Portnoff A, Massare M, Ellingsworth L, Glenn G, Smith G, Mann C, Amanat F, Krammer F. Collaboration between the Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M™ vaccination. RESEARCH SQUARE 2021:rs.3.rs-200342. [PMID: 33619473 PMCID: PMC7899467 DOI: 10.21203/rs.3.rs-200342/v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
| | | | | | | | - Alex Zhu
- Ragon Institute of MGH, MIT, and Harvard
| | | | | | | | | | | | | | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gorman MJ, Patel N, Guebre-Xabier M, Zhu A, Atyeo C, Pullen KM, Loos C, Goez-Gazi Y, Carrion R, Tian JH, Yaun D, Bowman K, Zhou B, Maciejewski S, McGrath ME, Logue J, Frieman MB, Montefiori D, Mann C, Schendel S, Amanat F, Krammer F, Saphire EO, Lauffenburger D, Greene AM, Portnoff AD, Massare MJ, Ellingsworth L, Glenn G, Smith G, Alter G. Collaboration between the Fab and Fc contribute to maximal protection against SARS-CoV-2 in nonhuman primates following NVX-CoV2373 subunit vaccine with Matrix-M™ vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.05.429759. [PMID: 33564763 PMCID: PMC7872351 DOI: 10.1101/2021.02.05.429759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants. HIGHLIGHTS NVX-CoV2373 subunit vaccine elicits receptor blocking, virus neutralizing antibodies, and Fc-effector functional antibodies.The vaccine protects against respiratory tract infection and virus shedding in non-human primates (NHPs).Both neutralizing and Fc-effector functions contribute to protection, potentially through different mechanisms in the upper and lower respiratory tract.Both macaque and human vaccine-induced antibodies exhibit altered Fc-receptor binding to emerging mutants.
Collapse
Affiliation(s)
- Matthew J Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Alex Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Krista M. Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute. 8715 West Military Drive, San Antonio, TX 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute. 8715 West Military Drive, San Antonio, TX 78227, USA
| | - Jing-Hui Tian
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Dansu Yaun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kathryn Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Bin Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Marisa E. McGrath
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - James Logue
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - Matthew B. Frieman
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Colin Mann
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M. Greene
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | - Gregory Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Butler SE, Crowley AR, Natarajan H, Xu S, Weiner JA, Bobak CA, Mattox DE, Lee J, Wieland-Alter W, Connor RI, Wright PF, Ackerman ME. Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Front Immunol 2021; 11:618685. [PMID: 33584712 PMCID: PMC7876222 DOI: 10.3389/fimmu.2020.618685] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.
Collapse
Affiliation(s)
- Savannah E. Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Shiwei Xu
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carly A. Bobak
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Daniel E. Mattox
- Department of Computer Science, Dartmouth College, Hanover, NH, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
29
|
Abstract
Data on the efficacy and safety of SARS-CoV-2 vaccines are now available, but evidence for these vaccines in those who are immunocompromised (including patients with inflammatory bowel diseases) are lacking. As vaccination begins, questions on advantages and disadvantages can be partially addressed using the experience from other vaccines or immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Ferdinando D’Amico
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,IBD Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Christian Rabaud
- Department of Infectious Disease, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,IBD Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
30
|
Simula ER, Manca MA, Jasemi S, Uzzau S, Rubino S, Manchia P, Bitti A, Palermo M, Sechi LA. HCoV-NL63 and SARS-CoV-2 Share Recognized Epitopes by the Humoral Response in Sera of People Collected Pre- and during CoV-2 Pandemic. Microorganisms 2020; 8:microorganisms8121993. [PMID: 33327507 PMCID: PMC7764996 DOI: 10.3390/microorganisms8121993] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause serious illness in older adults and people with chronic underlying medical conditions; however, children and young people are often asymptomatic or with mild symptoms. We evaluated the presence of specific antibodies (Abs) response against Human coronavirus NL63 (HCoV-NL63) S protein epitopes (NL63-RBM1, NL63-RBM2_1, NL63-RBM2_2, NL63-RBM3, NL63-SPIKE541-554, and NL63-DISC-like) and SARS-CoV-2 epitopes (COV2-SPIKE421-434 and COV2-SPIKE742-759) in plasma samples of pre-pandemic, mid-pandemic, and COVID-19 cohorts by indirect ELISA. Moreover, a competitive assay was performed to check for cross reactivity response between COV2-SPIKE421-434 and NL63-RBM3 among patients with a definitive diagnosis of SARS-CoV-2. Immune reaction against all SARS-CoV-2 and HCoV-NL63 epitopes showed a significantly higher response in pre-pandemic patients compared to mid-pandemic patients. The results indicate that probably antibodies against HCoV-NL63 may be able to cross react with SARS-CoV-2 epitopes and the higher incidence in pre-pandemic was probably due to the timing of collection when a high incidence of HCoV-NL63 is reported. In addition, the competitive assay showed cross-reactivity between antibodies directed against COV2-SPIKE421-434 and NL63-RBM3 peptides. Pre-existing HCoV-NL63 antibody response cross reacting with SARS-CoV-2 has been detected in both pre- and mid-pandemic individual, suggesting that previous exposure to HCoV-NL63 epitopes may produce antibodies which could confer a protective immunity against SARS-CoV-2 and probably reduce the severity of the disease.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Maria Antonietta Manca
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Seyedsomaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Sergio Uzzau
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Salvatore Rubino
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Pierangela Manchia
- Patologia Clinica, ATS Sardegna, ASSL, 07100 Sassari, Italy; (P.M.); (A.B.)
| | - Angela Bitti
- Patologia Clinica, ATS Sardegna, ASSL, 07100 Sassari, Italy; (P.M.); (A.B.)
| | - Mario Palermo
- Servizio di Endocrinologia, Azienda Ospedaliera Universitaria (AOU), 07100 Sassari, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
- Correspondence: ; Tel.: +39-079-228-462; Fax: +39-079-212-345
| |
Collapse
|
31
|
Seroprevalence of SARS-CoV-2 IgG Antibodies in Corsica (France), April and June 2020. J Clin Med 2020; 9:jcm9113569. [PMID: 33167563 PMCID: PMC7694549 DOI: 10.3390/jcm9113569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Our aim was to assess the seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection after the lockdown in a sample of the Corsican population. Between 16 April and 15 June 2020, 2312 residual sera were collected from patients with a blood analysis conducted in one of the participating laboratories. Residual sera obtained from persons of all ages were tested for the presence of anti-SARS-CoV-2 Immunoglobulin G (IgG) using the EUROIMMUN enzyme immunoassay kit for semiquantitative detection of IgG antibodies against the S1 domain of viral spike protein (ELISA-S). Borderline and positive samples in ELISA-S were also tested with an in-house virus neutralization test (VNT). Prevalence values were adjusted for sex and age. A total of 1973 residual sera samples were included in the study. The overall seroprevalence based on ELISA-S was 5.27% (95% confidence interval (CI), 4.33–6.35) and 5.46% (4.51–6.57) after adjustment. Sex was not associated with IgG detection. However, significant differences were observed between age groups (p-value = 1 E-5). The highest values were observed among 10–19, 30–39, and 40–49 year-old age groups, ranging around 8–10%. The prevalence of neutralizing antibody titers ≥40 was 3% (2.28–3.84). In conclusion, the present study showed a low seroprevalence for COVID-19 in Corsica, a finding that is in accordance with values reported for other French regions in which the impact of the pandemic was low.
Collapse
|