1
|
Guo D, Li Z, Zhang Y, Zhang W, Wang C, Zhang DX, Liu F, Gao Z, Xu B, Wang N. The effect of lambda-cyhalothrin nanocapsules on the gut microbial communities and immune response of the bee elucidates the potential environmental impact of emerging nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135650. [PMID: 39216249 DOI: 10.1016/j.jhazmat.2024.135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Emerging nanopesticides are gradually gaining widespread application in agriculture due to their excellent properties, but their potential risks to pollinating insects are not fully understood. In this study, lambda-cyhalothrin nanocapsules (LC-NCs) were constructed by electrostatic self-assembly method with iron mineralization optimization, and their effects on bee gut microbial communities and host immune-related factors were investigated. Microbiome sequencing revealed that LC-NCs increase the diversity of gut microbial communities and reduce the complexity of network features, disrupting the overall structure of the microbial communities. In addition, LC-NCs also had systemic effects on the immune response of bees, including increased activity of SOD and CAT enzymes and expression of their genes, as well as downregulation of Defensin1. Furthermore, we noticed that the immune system of the host was activated simultaneously with a rise in the abundance of beneficial bacteria in the gut. Our research emphasizes the importance of both the host and gut microbiota of holobiont in revealing the potential risks of LC-NCs to environmental indicators of honey bees, and provides references for exploring the interactions between host-microbiota systems under exogenous stress. At the same time, we hope that more research can focus on the potential impacts of nanopesticides on the ecological environment.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wei Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
2
|
El Khoury S, Gauthier J, Mercier PL, Moïse S, Giovenazzo P, Derome N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol Spectr 2024; 12:e0057824. [PMID: 39189755 PMCID: PMC11448422 DOI: 10.1128/spectrum.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
Pesticides are causing honeybee mortality worldwide. Research carried out on honeybees indicates that application of pesticides has a significant impact on the core gut community, which ultimately leads to an increase in the growth of harmful pathogens. Disturbances caused by pesticides also affect the way bacterial members interact, which results in gut microbial dysbiosis. Administration of beneficial microbes has been previously demonstrated to be effective in treating or preventing disease in honeybees. The objective of this study was to measure under in vivo conditions the ability of two bacterial strains (the Enterobacter sp. and Pantoea sp.) isolated from honeybee gut to improve survival and mitigate gut microbiota dysbiosis in honeybees exposed to a sublethal clothianidin dose (0.1 ppb). Both gut bacterial strains were selected for their ability to degrade clothianidin in vitro regardless of their host-microbe interaction characteristics (e.g., beneficial, neutral, or harmful). To this end, we conducted cage trials on 4- to 6-day-old newly emerging honeybees. During microbial administration, we jointly monitored the taxonomic distribution and activity level of bacterial symbionts quantifying 16S rRNA transcripts. First, curative administration of the Pantoea sp. strain significantly improved the survival of clothianidin-exposed honeybees compared to sugar control bees (i.e., supplemented with sugar [1:1]). Second, curative administration of the Enterobacter sp. strain significantly mitigated the clothianidin-induced dysbiosis observed in the midgut structural network, but without improving survival. IMPORTANCE The present work suggests that administration of bacterial strains isolated from honeybee gut may promote recovery of gut microbiota homeostasis after prolonged clothianidin exposure, while improving survival. This study highlights that gut bacterial strains hold promise for developing efficient microbial formulations to mitigate environmental pesticide exposure in honeybee colonies.
Collapse
Affiliation(s)
- Sarah El Khoury
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Jeff Gauthier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Pierre Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Stéphane Moïse
- INRS, Institut National de la Recherche Scientifique, Québec, Canada
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Liberti J, Engel P, Cabirol A. Interplay between gut symbionts and behavioral variation in social insects. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101233. [PMID: 39019113 DOI: 10.1016/j.cois.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Social insects exhibit a high degree of intraspecific behavioral variation. Moreover, they often harbor specialized microbial communities in their gut. Recent studies suggest that these two characteristics of social insects are interlinked: insect behavioral phenotypes affect their gut microbiota composition, partly through exposure to different environments and diet, and in return, the gut microbiota has been shown to influence insect behavior. Here, we discuss the bidirectional relationship existing between intraspecific variation in gut microbiota composition and behavioral phenotypes in social insects.
Collapse
Affiliation(s)
- Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, Switzerland; Department of Ecology and Evolution, University of Lausanne, Switzerland.
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Switzerland.
| |
Collapse
|
4
|
Mitton GA, Corona M, Alburaki M, Iglesias AE, Ramos F, Fuentes G, Vázquez MM, Mitton FM, Chan P, Ruffinengo SR, Maggi MD. Synergistic effects between microplastics and glyphosate on honey bee larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104550. [PMID: 39245242 DOI: 10.1016/j.etap.2024.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Microplastic (MPs) pollution has emerged as a global ecological concern, however, the impact of MPs exposure, particularly in conjunction with other pollutants such as glyphosate (GLY) on honey bee remains unknown. This study investigated the effects of exposure to different concentrations of MPs and their combination with GLY on honey bee larvae development, or during the larvae period, regulation of major detoxification, antioxidant and immune genes, and oxidative stress biomarkers. Results revealed that combined exposure to MPs and GLY decreased larvae survivorship and weight, while exposure to MPs alone showed no significant differences. Both MPs and GLY alone downregulated the defensin-1 gene, but only combined exposure with GLY downregulated the hymenoptaecin gene and increased catalase enzyme activity. The data suggest a synergistic effect of MPs and GLY, leading to immunosuppression and reduced larvae survival and weight. These findings highlight potential risks of two prevalent environmental pollutants on honey bee health.
Collapse
Affiliation(s)
- G A Mitton
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina.
| | - M Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - M Alburaki
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - A E Iglesias
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - F Ramos
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - G Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - M M Vázquez
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - F M Mitton
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N°1 Escollera Norte, Mar del Plata B7602HSA, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET,, Funes 3350, Mar del Plata B7602AYL, Argentina
| | - P Chan
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - S R Ruffinengo
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Grupo Apicultura, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Balcarce, 7620, Argentina
| | - M D Maggi
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Funes 3350, Mar del Plata 7600, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| |
Collapse
|
5
|
Zerrouki H, Hamieh A, Hadjadj L, Rolain JM, Baron SA. The effect of combinations of a glyphosate-based herbicide with various clinically used antibiotics on phenotypic traits of Gram-negative species from the ESKAPEE group. Sci Rep 2024; 14:21006. [PMID: 39251613 PMCID: PMC11383965 DOI: 10.1038/s41598-024-68968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-β-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.
Collapse
Affiliation(s)
- Hanane Zerrouki
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aïcha Hamieh
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Linda Hadjadj
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| | - Sophie Alexandra Baron
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
6
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Changes in bumblebee queen gut microbiotas during and after overwintering diapause. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39175129 DOI: 10.1111/imb.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.
Collapse
|
7
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Ignácio ADC, Guerra AMDR, de Souza-Silva TG, Carmo MAVD, Paula HADA. Effects of glyphosate exposure on intestinal microbiota, metabolism and microstructure: a systematic review. Food Funct 2024; 15:7757-7781. [PMID: 38994673 DOI: 10.1039/d4fo00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Hudsara Aparecida de Almeida Paula
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Pasquier L, Lécureuil C, Meunier J. Limited effects of a glyphosate-based herbicide on the behaviour and immunity of males from six populations of the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44205-44217. [PMID: 38926311 DOI: 10.1007/s11356-024-34063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
The use of herbicides on crops often results in unintentional, low-dose exposure of non-target organisms, such as insects. While these exposures are increasingly known to alter the survival and physiology of insects, it remains unclear whether these effects can vary between populations and modify other fitness-related traits, such as behaviour and immunity. Here, we addressed these questions by testing the effects of sublethal exposure to a glyphosate-based herbicide (GBH) on the behaviour and immunity of European earwig males from six natural populations. We exposed each male to a dose of a common GBH (Roundup©) that was either recommended for crops, five times lower than that recommended for crops, or to a control solution. Twenty-four hours later, we measured the activity, boldness, and aggregation of each male. We then exposed them to an entomopathogenic fungus, monitored their survival for 6 weeks, and measured the immune response of the survivors. We found a condition-dependent effect of GBH exposure on male activity. Exposure to low doses induced a positive association between activity and weight, which was not observed in the high-dose and control groups. However, GBH had no effect on any of the other measured traits. All these results were consistent across the six populations tested, although we did find population-specific differences in almost all measurements on males. Further research is now needed to better understand the dose-response to GBH on male activity and its biological impact, as well as to evaluate the effectiveness of detoxification processes in this species. Overall, these results emphasise the importance of investigating the effects of herbicides on insects to expand our general understanding of the use and potential risks of plant protection products in integrated pest management programs.
Collapse
Affiliation(s)
- Laura Pasquier
- Institut de Recherche Sur La Biologie de L'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| | - Charlotte Lécureuil
- Institut de Recherche Sur La Biologie de L'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche Sur La Biologie de L'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| |
Collapse
|
10
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
11
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|
12
|
Al Naggar Y, Wubet T. Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the cross-kingdom network characteristics of honey bee gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167530. [PMID: 37832690 DOI: 10.1016/j.scitotenv.2023.167530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Gut microbiome communities have a significant impact on bee health and disease and have been shown to be shaped by a variety of factors, including exposure to pesticides and inhive chemicals. However, it is unknown whether pesticide exposure affects the coexistence and cross-kingdom network parameters of bee gut microbiome communities because microbes may compete in the gut environment under different stressors. Therefore, we conducted additional analysis of the microbiome data from our previous study in which we discovered that exposure to two novel insecticides flupyradifurone (FPF) and sulfoxaflor (Sulf) or/and a fungicide, azoxystrobin (Azoxy) caused dysbiosis of bee gut microbiota that was associated with an increase in the relative abundance of opportunistic pathogens such as Serratia marcescens. We investigated for the first time the potential cross-kingdom fungal-bacterial interactions using co-occurrence pattern correlation and network analysis. We discovered that exposure to FPF or Sulf alone or in combination with Azoxy fungicide influenced the co-existence patterns of fungal and bacterial communities. Significant differences in degree centrality, closeness centrality, and eigenvector centrality distribution indices were also found in single and double-treatment groups compared to controls. The effects of FPF and Sulf alone on cross-kingdom parameters (bacterial to fungal node ratio, degree of centrality, closeness centrality, and eigenvector centrality) were distinct, but this was reversed when they were combined with Azoxy fungicide. The fungal and bacterial hub taxa identified differed, with only a few shared hubs across treatments, suggesting microbial cross-kingdom networks may be disrupted differently under different stressors. Our findings add to our understanding of pesticide effects on the bee gut microbiome and bee health in general, while also emphasizing the importance of cross-kingdom network analysis in future microbiome research.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Damico ME, Beasley B, Greenstein D, Raymann K. Testing the Effectiveness of a Commercially Sold Probiotic on Restoring the Gut Microbiota of Honey Bees: a Field Study. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10203-1. [PMID: 38112994 DOI: 10.1007/s12602-023-10203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Antibiotic use in apiculture is often necessary to ensure the survival of honey bee colonies. However, beekeepers are faced with the dilemma of needing to combat bacterial brood infections while also knowing that antibiotics kill beneficial bacteria important for bee health. In recent years, bee probiotics have become increasingly purchased by beekeepers because of product claims like being able to "replenish the microbes lost due to agricultural modifications of honey bees' environment" or "promote optimal gut health." Unfortunately, these products have little scientific evidence to support their efficacy, and previous lab experiments have refuted some of their claims. Here, we performed hive-level field experiments to test the effectiveness of SuperDFM-HoneyBee™ - the most commonly purchased honey bee probiotic in the United States - on restoring the honey bee gut microbiota after antibiotic treatment. We found slight but significant changes in the microbiota composition of bees following oxytetracycline (TerraPro) treatment and no difference between the microbiota of antibiotic treated bees with or without subsequent probiotic supplementation. Moreover, the microorganisms in the probiotic supplement were never found in the guts of the worker bee samples. These results highlight that more research is needed to test the efficacy and outcomes of currently available commercial honey bee probiotic supplements.
Collapse
Affiliation(s)
- Megan E Damico
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Burton Beasley
- North Carolina State Beekeepers Association, Hurdle Mills, NC, 27541, USA
| | - Drew Greenstein
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Kasie Raymann
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Fischer LR, Ramesh D, Weidenmüller A. Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166097. [PMID: 37562619 DOI: 10.1016/j.scitotenv.2023.166097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The worldwide decline in pollinating insects is alarming. One of the main anthropogenic drivers is the massive use of pesticides in agriculture. Risk assessment procedures test pesticides for mortality rates of well-fed, parasite free individuals of a few non-target species. Sublethal and synergistic effects of co-occurring stressors are usually not addressed. Here, we present a simple, wildly applicable bio-essay to assess such effects. Using brood thermoregulation in bumblebee microcolonies as readout, we investigate how this collective ability is affected by long-term feeding exposure to the herbicide glyphosate (5 mg/l), the insecticide flupyradifurone (0.4 mg/l) and the combination of both, when co-occurring with the natural stressor of resource limitation. Documenting brood temperature and development in 53 microcolonies we find no significant effect of glyphosate, while flupyradifurone significantly impaired the collective ability to maintain the necessary brood temperatures, resulting in prolonged developmental times and a decrease in colony growth by over 50 %. This reduction in colony growth has the potential to significantly curtail the reproductive chances of colonies in the field. Our findings highlight the potentially devastating consequences of flupyradifurone use in agriculture even at sub-lethal doses and underline the urgent need for improved risk assessment procedures.
Collapse
Affiliation(s)
- Liliana R Fischer
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; School of Biological Sciences, University of East Anglia, UK.
| | - Divya Ramesh
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Vázquez DE, Villegas Martínez LE, Medina V, Latorre-Estivalis JM, Zavala JA, Farina WM. Glyphosate affects larval gut microbiota and metamorphosis of honey bees with differences between rearing procedures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122200. [PMID: 37460013 DOI: 10.1016/j.envpol.2023.122200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The honey bee Apis mellifera is a sentinel species of the pollinator community which is exposed to a wide variety of pesticides. In the last half-century, the pesticide most applied worldwide has been the herbicide glyphosate (GLY) used for weed control and with microbiocide effects. After its application in crops, the GLY residues have been detected in flowers visited by honey bees as well as in the stored food of their hives. Therefore, the honey bee brood can ingest the herbicide during larval development. Recent studies proved that GLY has detrimental effects on adult honey bees and other insects associated with the disturbance of their gut microbiota. GLY induces changes in the growth, metabolism and survival of honey bees and stingless bees reared in vitro. However, the effect of GLY on larval microbiota is unknown so far and there are few studies with an in-hive exposure to GLY. For these reasons, this study aims to determine whether GLY induces dysbiosis in honey bee larvae and affects their metamorphosis during the exposure period (pre-defecation) and the post-exposure period. Furthermore, we assessed this herbicide in vitro and in the hive to compare its effects on different rearing procedures. Finally, we tested the pigment BLUE1 as an indirect exposure marker to detect and estimate the in-hive intake concentration of GLY. Our results indicate that the intake of field-relevant concentrations of GLY induced a slowdown in growth with dysbiosis in the larval gut microbiota followed by late effects on their metamorphosis such as teratogenesis and mortality of newly emerged bees. Nevertheless, brood from the same colonies expressed different signs of toxicity depending on the rearing procedure and in a dose-dependent manner.
Collapse
Affiliation(s)
- Diego E Vázquez
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Virginia Medina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J, Cryan JF. Pesticide exposure and the microbiota-gut-brain axis. THE ISME JOURNAL 2023:10.1038/s41396-023-01450-9. [PMID: 37328570 DOI: 10.1038/s41396-023-01450-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed, exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota, physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following pesticide exposure.
Collapse
Affiliation(s)
- Rie Matsuzaki
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
| | - Violette Geissen
- Department of Environmental Sciences, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, T12 YT20, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- School of Pharmacy and Department of Pharmacology & Therapeutics, University College Cork, T12 YT20, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland.
| |
Collapse
|
17
|
Straw EA, Mesnage R, Brown MJF, Antoniou MN. No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Sci Rep 2023; 13:8949. [PMID: 37268667 PMCID: PMC10238469 DOI: 10.1038/s41598-023-35304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Pesticides are recognised as a key threat to pollinators, impacting their health in many ways. One route through which pesticides can affect pollinators like bumblebees is through the gut microbiome, with knock-on effects on their immune system and parasite resistance. We tested the impacts of a high acute oral dose of glyphosate on the gut microbiome of the buff tailed bumblebee (Bombus terrestris), and glyphosate's interaction with the gut parasite (Crithidia bombi). We used a fully crossed design measuring bee mortality, parasite intensity and the bacterial composition in the gut microbiome estimated from the relative abundance of 16S rRNA amplicons. We found no impact of either glyphosate, C. bombi, or their combination on any metric, including bacterial composition. This result differs from studies on honeybees, which have consistently found an impact of glyphosate on gut bacterial composition. This is potentially explained by the use of an acute exposure, rather than a chronic exposure, and the difference in test species. Since A. mellifera is used as a model species to represent pollinators more broadly in risk assessment, our results highlight that caution is needed in extrapolating gut microbiome results from A. mellifera to other bee species.
Collapse
Affiliation(s)
- Edward A Straw
- Department of Botany, Trinity College Dublin, Dublin, Ireland.
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK.
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662, Überlingen, Germany.
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
18
|
Motta EVS, Moran NA. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162102. [PMID: 36764553 PMCID: PMC11050743 DOI: 10.1016/j.scitotenv.2023.162102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of glyphosate-based formulations to eliminate unwanted vegetation has increased concerns regarding their effects on non-target organisms, such as honey bees and their gut microbial communities. These effects have been associated with both glyphosate and co-formulants, but it is still unknown whether they translate to other bee species. In this study, we tested whether glyphosate, pure or in herbicide formulation, can affect the gut microbiota and survival rates of the eastern bumble bee, Bombus impatiens. We performed mark-recapture experiments with bumble bee workers from four different commercial colonies, which were exposed to field relevant concentrations of glyphosate or a glyphosate-based formulation (0.01 mM to 1 mM). After a 5-day period of exposure, we returned the bees to their original colonies, and they were sampled at days 0, 3 and 7 post-exposure to investigate changes in microbial community and microbiota resilience by 16S rRNA amplicon sequencing and quantitative PCR. We found that exposure to glyphosate, pure or in herbicide formulation, reduced the relative abundance of a beneficial bee gut bacterium, Snodgrassella, in bees from two of four colonies when compared to control bees at day 0 post-exposure, but this reduction became non-significant at days 3 and 7 post-exposure, suggesting microbiota resilience. We did not find significant changes in total bacteria between control and exposed bees. Moreover, we observed an overall trend in decreased survival rates in bumble bees exposed to 1 mM herbicide formulation during the 7-day post-exposure period, suggesting a potential negative effect of this formulation on bumble bees.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| |
Collapse
|
19
|
Steinigeweg C, Alkassab AT, Erler S, Beims H, Wirtz IP, Richter D, Pistorius J. Impact of a Microbial Pest Control Product Containing Bacillus thuringiensis on Brood Development and Gut Microbiota of Apis mellifera Worker Honey Bees. MICROBIAL ECOLOGY 2023; 85:1300-1307. [PMID: 35389085 PMCID: PMC10167108 DOI: 10.1007/s00248-022-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
To avoid potential adverse side effects of chemical plant protection products, microbial pest control products (MPCP) are commonly applied as biological alternatives. This study aimed to evaluate the biosafety of a MPCP with the active organism Bacillus thuringiensis ssp. aizawai (strain: ABTS-1857). An in-hive feeding experiment was performed under field-realistic conditions to examine the effect of B. thuringiensis (B. t.) on brood development and the bacterial abundance of the core gut microbiome (Bifidobacterium asteroids, Gilliamella apicola, the group of Lactobacillus and Snodgrasella alvi) in Apis mellifera worker bees. We detected a higher brood termination rate and a non-successful development into worker bees of treated colonies compared to those of the controls. For the gut microbiome, all tested core members showed a significantly lower normalized abundance in bees of the treated colonies than in those of the controls; thus, a general response of the gut microbiome may be assumed. Consequently, colony exposure to B. t. strain ABTS-1857 had a negative effect on brood development under field-realistic conditions and caused dysbiosis of the gut microbiome. Further studies with B. t.-based products, after field-realistic application in bee attractive crops, are needed to evaluate the potential risk of these MPCPs on honey bees.
Collapse
Affiliation(s)
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany.
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Hannes Beims
- Institute for Apiculture, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Celle, Germany
| | - Ina P Wirtz
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Dania Richter
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
20
|
Farlow AJ, Rupasinghe DB, Naji KM, Capon RJ, Spiteller D. Rosenbergiella meliponini D21B Isolated from Pollen Pots of the Australian Stingless Bee Tetragonula carbonaria. Microorganisms 2023; 11:microorganisms11041005. [PMID: 37110428 PMCID: PMC10142583 DOI: 10.3390/microorganisms11041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rosenbergiella bacteria have been previously isolated predominantly from floral nectar and identified in metagenomic screenings as associated with bees. Here, we isolated three Rosenbergiella strains from the robust Australian stingless bee Tetragonula carbonaria sharing over 99.4% sequence similarity with Rosenbergiella strains isolated from floral nectar. The three Rosenbergiella strains (D21B, D08K, D15G) from T. carbonaria exhibited near-identical 16S rDNA. The genome of strain D21B was sequenced; its draft genome contains 3,294,717 bp, with a GC content of 47.38%. Genome annotation revealed 3236 protein-coding genes. The genome of D21B differs sufficiently from the closest related strain, Rosenbergiella epipactidis 2.1A, to constitute a new species. In contrast to R. epipactidis 2.1A, strain D21B produces the volatile 2-phenylethanol. The D21B genome contains a polyketide/non-ribosomal peptide gene cluster not present in any other Rosenbergiella draft genomes. Moreover, the Rosenbergiella strains isolated from T. carbonaria grew in a minimal medium without thiamine, but R. epipactidis 2.1A was thiamine-dependent. Strain D21B was named R. meliponini D21B, reflecting its origin from stingless bees. Rosenbergiella strains may contribute to the fitness of T. carbonaria.
Collapse
Affiliation(s)
- Anthony J Farlow
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Darshani B Rupasinghe
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Khalid M Naji
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Robert J Capon
- Centre for Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Dieter Spiteller
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
21
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
22
|
Bai J, Guo D, Li J, Wang H, Wang C, Liu Z, Guo X, Wang Y, Xu B. The role of AccCDK20 and AccCDKN1 from Apis cerana cerana in development and response to pesticide and heavy metal toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105333. [PMID: 36740341 DOI: 10.1016/j.pestbp.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Apis cerana cerana is a native bee species in China and plays a key role in agricultural production and ecological balance. However, the growth and development of Apis cerana cerana has not been smooth, and pesticide and heavy metal stress are key factors that have forced a dramatic decline in population size. This study was performed with the objective of investigating the role of AccCDK20 and AccCDKN1 in honey bee resistance to pesticide and heavy metal stress. RT-qPCR analysis revealed that AccCDK20 transcript levels were highest in brown-eyed pupae and AccCDKN1 transcript levels were highest in 1-day-old worker bees. In different tissues and body parts of adult bees, AccCDK20 transcript levels were highest in the head, and AccCDKN1 transcript levels were highest in the thorax. It was further observed that environmental stress can affect the transcript levels of the AccCDK20 and AccCDKN1 genes. Silencing of the AccCDK20 and AccCDKN1 genes resulted in altered activities of antioxidant-related genes and antioxidant-related enzymes. AccCDK20 and AccCDKN1 transcript levels were upregulated under glyphosate stress, and silencing of the genes resulted in reduced resistance to glyphosate and greatly increased mortality in Apis cerana cerana. In addition, gene function was verified by in vitro repression assays. Overexpression of the AccCDK20 and AccCDKN1 proteins in E. coli cells increased the resistance to ROS damage induced by CHP. In conclusion, AccCDK20 and AccCDKN1 play an indispensable role in honey bee resistance to pesticide and heavy metal stress.
Collapse
Affiliation(s)
- Jinhao Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
23
|
Ruuskanen S, Fuchs B, Nissinen R, Puigbò P, Rainio M, Saikkonen K, Helander M. Ecosystem consequences of herbicides: the role of microbiome. Trends Ecol Evol 2023; 38:35-43. [PMID: 36243622 DOI: 10.1016/j.tree.2022.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Non-target organisms are globally exposed to herbicides. While many herbicides - for example, glyphosate - were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant-soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland; Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Pere Puigbò
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, Reus, Catalonia, Spain; Department of Biochemistry and Biotechnology, Rovira I Virgili University, Tarragona, Catalonia, Spain
| | - Miia Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
24
|
Motta EVS, Gage A, Smith TE, Blake KJ, Kwong WK, Riddington IM, Moran N. Host-microbiome metabolism of a plant toxin in bees. eLife 2022; 11:82595. [PMID: 36472498 PMCID: PMC9897726 DOI: 10.7554/elife.82595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
While foraging for nectar and pollen, bees are exposed to a myriad of xenobiotics, including plant metabolites, which may exert a wide range of effects on their health. Although the bee genome encodes enzymes that help in the metabolism of xenobiotics, it has lower detoxification gene diversity than the genomes of other insects. Therefore, bees may rely on other components that shape their physiology, such as the microbiota, to degrade potentially toxic molecules. In this study, we show that amygdalin, a cyanogenic glycoside found in honey bee-pollinated almond trees, can be metabolized by both bees and members of the gut microbiota. In microbiota-deprived bees, amygdalin is degraded into prunasin, leading to prunasin accumulation in the midgut and hindgut. In microbiota-colonized bees, on the other hand, amygdalin is degraded even further, and prunasin does not accumulate in the gut, suggesting that the microbiota contribute to the full degradation of amygdalin into hydrogen cyanide. In vitro experiments demonstrated that amygdalin degradation by bee gut bacteria is strain-specific and not characteristic of a particular genus or species. We found strains of Bifidobacterium, Bombilactobacillus, and Gilliamella that can degrade amygdalin. The degradation mechanism appears to vary since only some strains produce prunasin as an intermediate. Finally, we investigated the basis of degradation in Bifidobacterium wkB204, a strain that fully degrades amygdalin. We found overexpression and secretion of several carbohydrate-degrading enzymes, including one in glycoside hydrolase family 3 (GH3). We expressed this GH3 in Escherichia coli and detected prunasin as a byproduct when cell lysates were cultured with amygdalin, supporting its contribution to amygdalin degradation. These findings demonstrate that both host and microbiota can act together to metabolize dietary plant metabolites.
Collapse
Affiliation(s)
- Erick VS Motta
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Thomas E Smith
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | | | - Ian M Riddington
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | - Nancy Moran
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| |
Collapse
|
25
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
26
|
da Silva PC, Gonçalves B, Franceschinelli E, Brito P. Glyphosate-Based Herbicide Causes Cellular Alterations to Gut Epithelium of the Neotropical Stingless Bee Melipona quadrifasciata quadrifasciata (Hymenoptera: Meliponini). NEOTROPICAL ENTOMOLOGY 2022; 51:860-868. [PMID: 36378479 DOI: 10.1007/s13744-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBH) are the best-selling pesticides in Brazil, with hundreds of thousands of tons sold per year. There is no study investigating morphological alterations caused by GBH on the epithelium of the gut in bees. Here, we aimed to demonstrate effects of chronic ingestion of GBH in the midgut digestive cells of the Brazilian stingless bee Melipona quadrifasciata quadrifasciata Lepeletier 1836. We kept forager workers of M. quadrifasciata in laboratory conditions and fed on food contaminated with three different concentrations of GBH for 10 days, after which the midgut digestive cell structure and ultrastructure were analyzed. The presence of GBH in food did not affect food consumption, indicating that M. quadrifasciata bees do not reject food contaminated with GBH. As digestive cells of the midgut release apocrine secretion as a detoxication mechanism, we expected that the ingestion of food contaminated with GBH in the present study affect the height of midgut digestive cells. However, such reduction did not occur, probably because of the low-test concentrations. Although there were differences in digestive cell ultrastructure, ingestion of GBH impaired midgut digestive cell cohesion by disorganizing the smooth septate junctions between cells, which may probably be caused by the adjuvant "polyethoxylated tallow amine" present in the GBH. Previous studies demonstrated that GBH increase bees' sensibility to intestine infections, based on the present results we hypothesized that the loss of cell cohesion in the midgut epithelium favors pathogenic microbial infections and harms food absorption, increasing bees' mortality.
Collapse
Affiliation(s)
- Paulo César da Silva
- Programa de Pós-Graduação Em Biodiversidade Animal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratório de Biotecnologia Ambiental e Ecotoxicologia, Instituto Tropical de Patologia e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Edivani Franceschinelli
- Laboratório de Biologia Reprodutiva de Plantas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Brito
- Laboratório de Estudos Morfológicos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
27
|
Dong ZX, Tang QH, Li WL, Wang ZW, Li XJ, Fu CM, Li D, Qian K, Tian WL, Guo J. Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120340. [PMID: 36208825 DOI: 10.1016/j.envpol.2022.120340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of the First People's Hospital of Yunnan Province, Kunming, China; Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Li Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
28
|
Al Naggar Y, Singavarapu B, Paxton RJ, Wubet T. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157941. [PMID: 35952893 DOI: 10.1016/j.scitotenv.2022.157941] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 05/21/2023]
Abstract
The gut microbiome plays an important role in bee health and disease. But it can be disrupted by pesticides and in-hive chemicals, putting honey bee health in danger. We used a controlled and fully crossed laboratory experimental design to test the effects of a 10-day period of chronic exposure to field-realistic sublethal concentrations of two nicotinic acetylcholine receptor agonist insecticides (nACHRs), namely flupyradifurone (FPF) and sulfoxaflor (Sulf), and a fungicide, azoxystrobin (Azoxy), individually and in combination, on the survival of individual honey bee workers and the composition of their gut microbiota (fungal and bacterial diversity). Metabarcoding was used to examine the gut microbiota on days 0, 5, and 10 of pesticide exposure to determine how the microbial response varies over time; to do so, the fungal ITS2 fragment and the V4 region of the bacterial 16S rRNA were targeted. We found that FPF has a negative impact on honey bee survival, but interactive (additive or synergistic) effects between either insecticide and the fungicide on honey bee survival were not statistically significant. Pesticide treatments significantly impacted the microbial community composition. The fungicide Azoxy substantially reduced the Shannon diversity of fungi after chronic exposure for 10 days. The relative abundance of the top 10 genera of the bee gut microbiota was also differentially affected by the fungicide, insecticides, and fungicide-insecticide combinations. Gut microbiota dysbiosis was associated with an increase in the relative abundance of opportunistic pathogens such as Serratia spp. (e.g. S. marcescens), which can have devastating consequences for host health such as increased susceptibility to infection and reduced lifespan. Our findings raise concerns about the long-term impact of novel nACHR insecticides, particularly FPF, on pollinator health and recommend a novel methodology for a refined risk assessment that includes the potential effects of agrochemicals on the gut microbiome of bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Stahlschmidt ZR, Whitlock J, Vo C, Evalen P, D B. Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119508. [PMID: 35605834 DOI: 10.1016/j.envpol.2022.119508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages-nymphal development and adulthood-and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Collapse
Affiliation(s)
| | - J Whitlock
- University of the Pacific, Stockton, CA, 95211, USA
| | - C Vo
- University of the Pacific, Stockton, CA, 95211, USA
| | - P Evalen
- University of the Pacific, Stockton, CA, 95211, USA
| | - Bui D
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
30
|
Tlais AZA, Polo A, Filannino P, Cantatore V, Gobbetti M, Di Cagno R. Biofilm formation as an extra gear for Apilactobacillus kunkeei to counter the threat of agrochemicals in honeybee crop. Microb Biotechnol 2022; 15:2160-2175. [PMID: 35417624 PMCID: PMC9328740 DOI: 10.1111/1751-7915.14051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
The alteration of a eubiosis status in honeybees' gut microbiota is directly linked to the occurrence of diseases, and likely to the honeybees decline. Since fructophilic lactobacilli were suggested as symbionts for honeybees, we mechanistically investigated their behaviour under the exposure to agrochemicals (Roundup, Mediator and Reldan containing glyphosate, imidacloprid and chlorpyrifos-methyl as active ingredients respectively) and plant secondary metabolites (nicotine and p-coumaric acid) ingested by honeybees as part of their diet. The effects of exposure to agrochemicals and plant secondary metabolites were assessed both on planktonic cells and sessile communities of three biofilm-forming strains of Apilactobacillus kunkeei. We identified the high sensitivity of A. kunkeei planktonic cells to Roundup and Reldan, while cells embedded in mature biofilms had increased resistance to the same agrochemicals. However, agrochemicals still exerted a substantial inhibitory/control effect if the exposure was during the preliminary steps of biofilm formation. The level of susceptibility resulted to be strain-specific. Exopolysaccharides resulted in the main component of extracellular polymeric matrix (ECM) in biofilm, but the exposure to Roundup caused a change in ECM production and composition. Nicotine and p-coumaric acid had a growth-promoting effect in sessile communities, although no effect was found on planktonic growth.
Collapse
Affiliation(s)
| | - Andrea Polo
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Pasquale Filannino
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Marco Gobbetti
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Raffaella Di Cagno
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| |
Collapse
|
31
|
Zhang ZJ, Zheng H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. INSECT SCIENCE 2022; 29:958-976. [PMID: 35567381 DOI: 10.1111/1744-7917.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eusocial bumble and honey bees are important pollinators for global ecology and the agricultural economy. Although both the bumble and honey bees possess similar and host-restricted gut microbiota, they differ in aspects of morphology, autonomy, physiology, behavior, and life cycle. The social bee gut bacteria exhibit host specificity that is likely a result of long-term co-evolution. The unique life cycle of bumblebees is key for the acquisition and development of their gut microbiota, and affects the strain-level diversity of the core bacterial species. Studies on bumblebee gut bacteria show that they retain less functional capacity for carbohydrate metabolism compared with that of the honeybee. We discuss the potential roles of the bumblebee gut microbiota against pathogenic threats and the application of host-specific probiotics for bumblebees. Given the advantages of the bumblebee microbiome, including the simple structure and host specificity, and the ease of manipulating bumblebee colonies, we propose that bumblebees may provide a valuable system for understanding the general principles of host-microbe interactions, gut-brain axis, and vertical transmission.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Motta EVS, Powell JE, Leonard SP, Moran NA. Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210156. [PMID: 35491599 PMCID: PMC9058534 DOI: 10.1098/rstb.2021.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social corbiculate bees are major pollinators. They have characteristic bacterial microbiomes associated with their hives and their guts. In honeybees and bumblebees, worker guts contain a microbiome composed of distinctive bacterial taxa shown to benefit hosts. These benefits include stimulating immune and metabolic pathways, digesting or detoxifying food, and defending against pathogens and parasites. Stressors including toxins and poor nutrition disrupt the microbiome and increase susceptibility to opportunistic pathogens. Administering probiotic bacterial strains may improve the health of individual bees and of hives, and several commercial probiotics are available for bees. However, evidence for probiotic benefits is lacking or mixed. Most bacterial species used in commercial probiotics are not native to bee guts. We present new experimental results showing that cultured strains of native bee gut bacteria colonize robustly while bacteria in a commercial probiotic do not establish in bee guts. A defined community of native bee gut bacteria resembles unperturbed native gut communities in its activation of genes for immunity and metabolism in worker bees. Although many questions remain unanswered, the development of natural probiotics for honeybees, or for commercially managed bumblebees, is a promising direction for protecting the health of managed bee colonies. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Weidenmüller A, Meltzer A, Neupert S, Schwarz A, Kleineidam C. Glyphosate impairs collective thermoregulation in bumblebees. Science 2022; 376:1122-1126. [PMID: 35653462 DOI: 10.1126/science.abf7482] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insects are facing a multitude of anthropogenic stressors, and the recent decline in their biodiversity is threatening ecosystems and economies across the globe. We investigated the impact of glyphosate, the most commonly used herbicide worldwide, on bumblebees. Bumblebee colonies maintain their brood at high temperatures via active thermogenesis, a prerequisite for colony growth and reproduction. Using a within-colony comparative approach to examine the effects of long-term glyphosate exposure on both individual and collective thermoregulation, we found that whereas effects are weak at the level of the individual, the collective ability to maintain the necessary high brood temperatures is decreased by more than 25% during periods of resource limitation. For pollinators in our heavily stressed ecosystems, glyphosate exposure carries hidden costs that have so far been largely overlooked.
Collapse
Affiliation(s)
- Anja Weidenmüller
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| | - Andrea Meltzer
- University of Konstanz, Konstanz, Germany
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Stefanie Neupert
- University of Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alica Schwarz
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| | - Christoph Kleineidam
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| |
Collapse
|
34
|
Matilla MA, Roca A. Multi-host lifestyle in plant-beneficial bacteria: an evolutionary advantage for survival and dispersal? Environ Microbiol 2022; 24:3307-3309. [PMID: 35411622 PMCID: PMC9541277 DOI: 10.1111/1462-2920.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Amalia Roca
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, Granada, 18071, Spain
| |
Collapse
|
35
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
36
|
Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci Rep 2022; 12:4281. [PMID: 35277551 PMCID: PMC8917129 DOI: 10.1038/s41598-022-08009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Recent studies highlighted that exposure to glyphosate can affect specific members of the core gut microbiota of honey bee workers. However, in this study, bees were exposed to relatively high glyphosate concentrations. Here, we chronically exposed newly emerged honey bees to imidacloprid, glyphosate and difenoconazole, individually and in a ternary mixture, at an environmental concentration of 0.1 µg/L. We studied the effects of these exposures on the establishment of the gut microbiota, the physiological status, the longevity, and food consumption of the host. The core bacterial species were not affected by the exposure to the three pesticides. Negative effects were observed but they were restricted to few transient non-core bacterial species. However, in the absence of the core microbiota, the pesticides induced physiological disruption by directly altering the detoxification system, the antioxidant defenses, and the metabolism of the host. Our study indicates that even mild exposure to pesticides can directly alter the physiological homeostasis of newly emerged honey bees and particularly if the individuals exhibit a dysbiosis (i.e. mostly lack the core microbiota). This highlights the importance of an early establishment of a healthy gut bacterial community to strengthen the natural defenses of the honey bee against xenobiotic stressors.
Collapse
|
37
|
Gregory CL, Fell RD, Belden LK, Walke JB. Classic Hoarding Cages Increase Gut Bacterial Abundance and Reduce the Individual Immune Response of Honey Bee (Apis mellifera) Workers. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6. [PMID: 35303101 PMCID: PMC8932410 DOI: 10.1093/jisesa/ieac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
Laboratory experiments have advanced our understanding of honey bee (Apis mellifera) responses to environmental factors, but removal from the hive environment may also impact physiology. To examine whether the laboratory environment alters the honey bee gut bacterial community and immune responses, we compared bacterial community structure (based on amplicon sequence variant relative abundance), total bacterial abundance, and immune enzyme (phenoloxidase and glucose oxidase) activity of cohort honey bee workers kept under laboratory and hive conditions. Workers housed in the laboratory showed differences in the relative abundance of their core gut taxa, an increase in total gut bacterial abundance, and reduced phenoloxidase activity, compared to bees housed in hives.
Collapse
Affiliation(s)
- Casey L Gregory
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA,USA
| | - Richard D Fell
- Department of Entomology, Virginia Tech, Blacksburg, VA,USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA,USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| |
Collapse
|
38
|
Motta EVS, Powell JE, Moran NA. Glyphosate induces immune dysregulation in honey bees. Anim Microbiome 2022; 4:16. [PMID: 35193702 PMCID: PMC8862317 DOI: 10.1186/s42523-022-00165-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Similar to many other animals, the honey bee Apis mellifera relies on a beneficial gut microbiota for regulation of immune homeostasis. Honey bees exposed to agrochemicals, such as the herbicide glyphosate or antibiotics, usually exhibit dysbiosis and increased susceptibility to bacterial infection. Considering the relevance of the microbiota-immunity axis for host health, we hypothesized that glyphosate exposure could potentially affect other components of the honey bee physiology, such as the immune system. RESULTS In this study, we investigated whether glyphosate, besides affecting the gut microbiota, could compromise two components of honey bee innate immunity: the expression of genes encoding antimicrobial peptides (humoral immunity) and the melanization pathway (cellular immunity). We also compared the effects of glyphosate on the bee immune system with those of tylosin, an antibiotic commonly used in beekeeping. We found that both glyphosate and tylosin decreased the expression of some antimicrobial peptides, such as apidaecin, defensin and hymenoptaecin, in exposed honey bees, but only glyphosate was able to inhibit melanization in the bee hemolymph. CONCLUSIONS Exposure of honey bees to glyphosate or tylosin can reduce the abundance of beneficial gut bacteria and lead to immune dysregulation.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA.
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA.
| |
Collapse
|
39
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev 2022; 46:6517452. [PMID: 35107129 DOI: 10.1093/femsre/fuab056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.
Collapse
|
40
|
Tan S, Li G, Liu Z, Wang H, Guo X, Xu B. Effects of glyphosate exposure on honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103792. [PMID: 34971799 DOI: 10.1016/j.etap.2021.103792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Honeybees show an important pollination ability and play vital roles in improving crop yields and increasing plant genetic diversity, thereby generating tremendous economic benefits for humans. However, honeybee survival is affected by a number of biological and abiotic stresses, including the effects of fungi, bacteria, viruses, parasites, and especially agrochemicals. Glyphosate, a broad-spectrum herbicide that is primarily used for weed control in agriculture, has been reported to have lethal and sublethal effects on honeybees. Here, we summarize recent advances in research on the effects of glyphosate on honeybees, including effects on their behaviors, growth and development, metabolic processes, and immune defense, providing a detailed reference for studying the mechanism of action of pesticides. Furthermore, we provide possible directions for future research on glyphosate toxicity to honeybees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
41
|
Yu L, Yang H, Cheng F, Wu Z, Huang Q, He X, Yan W, Zhang L, Wu X. Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118107. [PMID: 34500395 DOI: 10.1016/j.envpol.2021.118107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Collapse
Affiliation(s)
- Longtao Yu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Fuping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Zhihao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Lizhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China.
| |
Collapse
|
42
|
Straw EA, Brown MJ. No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees. PeerJ 2021; 9:e12486. [PMID: 34820203 PMCID: PMC8605762 DOI: 10.7717/peerj.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Glyphosate is the world's most used pesticide and it is used without the mitigation measures that could reduce the exposure of pollinators to it. However, studies are starting to suggest negative impacts of this pesticide on bees, an essential group of pollinators. Accordingly, whether glyphosate, alone or alongside other stressors, is detrimental to bee health is a vital question. Bees are suffering declines across the globe, and pesticides, including glyphosate, have been suggested as being factors in these declines. METHODS Here we test, across a range of experimental paradigms, whether glyphosate impacts a wild bumble bee species, Bombus terrestris. In addition, we build upon existing work with honey bees testing glyphosate-parasite interactions by conducting fully crossed experiments with glyphosate and a common bumble bee trypanosome gut parasite, Crithidia bombi. We utilised regulatory acute toxicity testing protocols, modified to allow for exposure to multiple stressors. These protocols are expanded upon to test for effects on long term survival (20 days). Microcolony testing, using unmated workers, was employed to measure the impacts of either stressor on a proxy of reproductive success. This microcolony testing was conducted with both acute and chronic exposure to cover a range of exposure scenarios. RESULTS We found no effects of acute or chronic exposure to glyphosate, over a range of timespans post-exposure, on mortality or a range of sublethal metrics. We also found no interaction between glyphosate and Crithidia bombi in any metric, although there was conflicting evidence of increased parasite intensity after an acute exposure to glyphosate. In contrast to published literature, we found no direct impacts of this parasite on bee health. Our testing focussed on mortality and worker reproduction, so impacts of either or both of these stressors on other sublethal metrics could still exist. CONCLUSIONS Our results expand the current knowledge on glyphosate by testing a previously untested species, Bombus terrestris, using acute exposure, and by incorporating a parasite never before tested alongside glyphosate. In conclusion our results find that glyphosate, as an active ingredient, is unlikely to be harmful to bumble bees either alone, or alongside Crithidia bombi.
Collapse
Affiliation(s)
- Edward A. Straw
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Mark J.F. Brown
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
43
|
Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol 2021; 23:2891-2905. [PMID: 33876549 DOI: 10.1111/1462-2920.15534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations.
Collapse
Affiliation(s)
- Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Marion Martienssen
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Ramona Kuhn
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
44
|
Host Species and Geography Differentiate Honeybee Gut Bacterial Communities by Changing the Relative Contribution of Community Assembly Processes. mBio 2021; 12:e0075121. [PMID: 34061602 PMCID: PMC8262996 DOI: 10.1128/mbio.00751-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Honeybee gut microbiota modulates the health and fitness of honeybees, the ecologically and economically important pollinators and honey producers. However, which processes drive the assembly and shift of honeybee gut microbiota remains unknown. To explore the patterns of honeybee gut bacterial communities across host species and geographical sites and the relative contribution of different processes (i.e., homogeneous selection, variable selection, homogeneous dispersal, dispersal limitation, and an undominated process) in driving the patterns, two honeybee species (Apis cerana and Apis mellifera) were sampled from five geographically distant sites along a latitudinal gradient, followed by gut bacterial 16S rRNA gene sequencing. The gut bacterial communities differed significantly between A. cerana and A. mellifera, which was driven by the interhost dispersal limitation associated with the long-term coevolution between hosts and their prokaryotic symbionts. A. mellifera harbored more diverse but less varied gut bacterial communities than A. cerana due to the dominant role of homogeneous selection in converging A. mellifera intestinal communities. For each honeybee species, the gut bacterial communities differed across geographical sites, with individuals from lower latitudes harboring higher diversity; also, there was significant decay of gut community similarity against geographic distance. The geographical variation of honeybee gut bacterial communities was mainly driven by an undominated process (e.g., stochastic drift) rather than variable selection or dispersal limitation. This study elucidates that variations in host and geography alter the relative contribution of different processes in assembling honeybee gut microbiota and, thus, provides insights into the mechanisms underlying honeybee gut microbial shifts across evolutionary time.
Collapse
|
45
|
Kiefer JST, Batsukh S, Bauer E, Hirota B, Weiss B, Wierz JC, Fukatsu T, Kaltenpoth M, Engl T. Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis. Commun Biol 2021; 4:554. [PMID: 33976379 PMCID: PMC8113238 DOI: 10.1038/s42003-021-02057-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Suvdanselengee Batsukh
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Bin Hirota
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Benjamin Weiss
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C Wierz
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
46
|
Alberoni D, Baffoni L, Braglia C, Gaggìa F, Di Gioia D. Honeybees Exposure to Natural Feed Additives: How Is the Gut Microbiota Affected? Microorganisms 2021; 9:microorganisms9051009. [PMID: 34067140 PMCID: PMC8151652 DOI: 10.3390/microorganisms9051009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/28/2023] Open
Abstract
The role of a balanced gut microbiota to maintain health and prevent diseases is largely established in humans and livestock. Conversely, in honeybees, studies on gut microbiota perturbations by external factors have started only recently. Natural methods alternative to chemical products to preserve honeybee health have been proposed, but their effect on the gut microbiota has not been examined in detail. This study aims to investigate the effect of the administration of a bacterial mixture of bifidobacteria and Lactobacillaceae and a commercial product HiveAliveTM on honeybee gut microbiota. The study was developed in 18 hives of about 2500 bees, with six replicates for each experimental condition for a total of three experimental groups. The absolute abundance of main microbial taxa was studied using qPCR and NGS. The results showed that the majority of the administered strains were detected in the gut. On the whole, great perturbations upon the administration of the bacterial mixture and the plant-based commercial product were not observed in the gut microbiota. Significant variations with respect to the untreated control were only observed for Snodgrassella sp. for the bacterial mixture, Bartonella sp. in HiveAliveTM and Bombilactobacillus sp. for both. Therefore, the studied approaches are respectful of the honeybee microbiota composition, conceivably without compromising the bee nutritional, social and ecological functions.
Collapse
|
47
|
Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K. Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota and Infection by Pathogens. Microorganisms 2021; 9:microorganisms9040845. [PMID: 33920750 PMCID: PMC8071123 DOI: 10.3390/microorganisms9040845] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Sofía Balbuena
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Belén Branchiccela
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Colonia 70002, Uruguay;
| | - Pablo Zunino
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
- Correspondence: ; Tel.: +598-2-4871616
| |
Collapse
|
48
|
Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne) 2021; 12:627167. [PMID: 33815286 PMCID: PMC8018287 DOI: 10.3389/fendo.2021.627167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
49
|
French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. Emerging strategies for precision microbiome management in diverse agroecosystems. NATURE PLANTS 2021; 7:256-267. [PMID: 33686226 DOI: 10.1038/s41477-020-00830-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2020] [Indexed: 05/18/2023]
Abstract
Substantial efforts to characterize the structural and functional diversity of soil, plant and insect-associated microbial communities have illuminated the complex interacting domains of crop-associated microbiomes that contribute to agroecosystem health. As a result, plant-associated microorganisms have emerged as an untapped resource for combating challenges to agricultural sustainability. However, despite growing interest in maximizing microbial functions for crop production, resource efficiency and stress resistance, research has struggled to harness the beneficial properties of agricultural microbiomes to improve crop performance. Here, we introduce the historical arc of agricultural microbiome research, highlighting current progress and emerging strategies for intentional microbiome manipulation to enhance crop performance and sustainability. We synthesize current practices and limitations to managing agricultural microbiomes and identify key knowledge gaps in our understanding of microbe-assisted crop production. Finally, we propose research priorities that embrace a holistic view of crop microbiomes for achieving precision microbiome management that is tailored, predictive and integrative in diverse agricultural systems.
Collapse
Affiliation(s)
- Elizabeth French
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Anjali Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Laramy Enders
- Department of Entomology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
50
|
Ye MH, Fan SH, Li XY, Tarequl IM, Yan CX, Wei WH, Yang SM, Zhou B. Microbiota dysbiosis in honeybee ( Apis mellifera L .) larvae infected with brood diseases and foraging bees exposed to agrochemicals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201805. [PMID: 33614099 PMCID: PMC7890499 DOI: 10.1098/rsos.201805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 06/01/2023]
Abstract
American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus. The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.
Collapse
Affiliation(s)
- Man-Hong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Shu-Hang Fan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Xiao-Yuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Islam Mohd Tarequl
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Chun-Xiang Yan
- Chunxiang Professional Beekeeping Cooperatives, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Wan-Hong Wei
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Sheng-Mei Yang
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| |
Collapse
|