1
|
Secli V, Michetti E, Pacello F, Iacovelli F, Falconi M, Astolfi ML, Visaggio D, Visca P, Ammendola S, Battistoni A. Investigation of Zur-regulated metal transport systems reveals an unexpected role of pyochelin in zinc homeostasis. mBio 2024; 15:e0239524. [PMID: 39315802 PMCID: PMC11481552 DOI: 10.1128/mbio.02395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Limiting the availability of transition metals at infection sites serves as a critical defense mechanism employed by the innate immune system to combat microbial infections. Pseudomonas aeruginosa exhibits a remarkable ability to thrive in zinc-deficient environments, facilitated by intricate cellular responses governed by numerous genes regulated by the zinc-responsive transcription factor Zur. Many of these genes have unknown functions, including those within the predicted PA2911-PA2914 and PA4063-PA4066 operons. A structural bioinformatics investigation revealed that PA2911-PA2914 comprises a TonB-dependent outer membrane receptor and inner membrane ABC-permeases responsible for importing metal-chelating molecules, whereas PA4063-PA4066 contains genes encoding a MacB transporter, likely involved in the export of large molecules. Molecular genetics and biochemical experiments, feeding assays, and intracellular metal content measurements support the hypothesis that PA2911-PA2914 and PA4063-PA4066 are engaged in the import and export of the pyochelin-cobalt complex, respectively. Notably, cobalt can reduce zinc demand and promote the growth of P. aeruginosa strains unable to import zinc, highlighting pyochelin-mediated cobalt import as a novel bacterial strategy to counteract zinc deficiency. These results unveil an unexpected role for pyochelin in zinc homeostasis and challenge the traditional view of this metallophore exclusively as an iron transporter. IMPORTANCE The mechanisms underlying the remarkable ability of Pseudomonas aeruginosa to resist the zinc sequestration mechanisms implemented by the vertebrate innate immune system to control bacterial infections are still far from being fully understood. This study reveals that the Zur-regulated gene clusters PA2911-2914 and PA4063-PA4066 encode systems for the import and export of cobalt-bound pyochelin, respectively. This proves to be a useful strategy to counteract conditions of severe zinc deficiency since cobalt can replace zinc in many proteins. The discovery that pyochelin may contribute to cellular responses to zinc deficiency leads to a reevaluation of the paradigm that pyochelin is a siderophore involved exclusively in iron acquisition and suggests that this molecule has a broader role in modulating the homeostasis of multiple metals.
Collapse
Affiliation(s)
- Valerio Secli
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Emma Michetti
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mattia Falconi
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Serena Ammendola
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Yazzie MT, Reitz ZL, Schmid R, Petras D, Aron AT. Native metabolomics for mass spectrometry-based siderophore discovery. Methods Enzymol 2024; 702:317-352. [PMID: 39155117 DOI: 10.1016/bs.mie.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Microorganisms, plants, and animals alike have specialized acquisition pathways for obtaining metals, with microorganisms and plants biosynthesizing and secreting small molecule natural products called siderophores and metallophores with high affinities and specificities for iron or other non-iron metals, respectively. This chapter details a novel approach to discovering metal-binding molecules, including siderophores and metallophores, from complex samples ranging from microbial supernatants to biological tissue to environmental samples. This approach, called Native Metabolomics, is a mass spectrometry method in which pH adjustment and metal infusion post-liquid chromatography are interfaced with ion identity molecular networking (IIMN). This rule-based data analysis workflow that enables the identification of metal-binding species based on defined mass (m/z) offsets with the same chromatographic profiles and retention times. Ion identity molecular networking connects compounds that are structurally similar by their fragmentation pattern and species that are ion adducts of the same compound by chromatographic shape correlations. This approach has previously revealed new insights into metal binding metabolites, including that yersiniabactin can act as a biological zincophore (in addition to its known role as a siderophore), that the recently elucidated lepotchelin natural products are cyanobacterial metallophores, and that antioxidants in traditional medicine bind iron. Native metabolomics can be conducted on any liquid chromatography-mass spectrometry system to explore the binding of any metal or multiple metals simultaneously, underscoring the potential for this method to become an essential strategy for elucidating biological metal-binding molecules.
Collapse
Affiliation(s)
- Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States
| | - Robin Schmid
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, Riverside, CA, United States; Interfaculty of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States.
| |
Collapse
|
3
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
4
|
Haidar R, Compant S, Robert C, Antonielli L, Yacoub A, Grélard A, Loquet A, Brader G, Guyoneaud R, Attard E, Rey P. Two Paenibacillus spp. strains promote grapevine wood degradation by the fungus Fomitiporia mediterranea: from degradation experiments to genome analyses. Sci Rep 2024; 14:15779. [PMID: 38982270 PMCID: PMC11233627 DOI: 10.1038/s41598-024-66620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Ascomycetes, basidiomycetes and deuteromycetes can degrade wood, but less attention has been paid to basidiomycetes involved in Esca, a major Grapevine Trunk Disease. Using a wood sawdust microcosm system, we compared the wood degradation of three grapevine cultivars inoculated with Fomitiporia mediterranea M. Fisch, a basidiomycete responsible for white-rot development and involved in Esca disease. The grapevine cultivar Ugni blanc was more susceptible to wood degradation caused by F. mediterranea than the cultivars Cabernet Sauvignon and Merlot. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy showed that F. mediterranea preferentially degrades lignin and hemicellulose over cellulose (preferential, successive or sequential white-rot). In addition, co-inoculation of sawdust with two cellulolytic and xylanolytic bacterial strains of Paenibacillus (Nakamura) Ash (Paenibacillus sp. (S231-2) and P. amylolyticus (S293)), enhanced F. mediterranea ability to degrade Ugni blanc. The NMR data further showed that the increase in Ugni blanc sawdust degradation products was greater when bacteria and fungi were inoculated together. We also demonstrated that these two bacterial strains could degrade the wood components of Ugni blanc sawdust. Genome analysis of these bacterial strains revealed numerous genes predicted to be involved in cellulose, hemicellulose, and lignin degradation, as well as several other genes related to bacteria-fungi interactions and endophytism inside the plant. The occurrence of this type of bacteria-fungus interaction could explain, at least in part, why necrosis develops extensively in certain grapevine varieties such as Ugni blanc.
Collapse
Affiliation(s)
- Rana Haidar
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France.
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France.
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Coralie Robert
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Amira Yacoub
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France
| | - Axelle Grélard
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Antoine Loquet
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Günter Brader
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Eléonore Attard
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France
| |
Collapse
|
5
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Sarasa-Buisan C, Ochoa de Alda JAG, Velázquez-Suárez C, Rubio MÁ, Gómez-Baena G, Fillat MF, Luque I. An ancient bacterial zinc acquisition system identified from a cyanobacterial exoproteome. PLoS Biol 2024; 22:e3002546. [PMID: 38466754 PMCID: PMC10957091 DOI: 10.1371/journal.pbio.3002546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Bacteria have developed fine-tuned responses to cope with potential zinc limitation. The Zur protein is a key player in coordinating this response in most species. Comparative proteomics conducted on the cyanobacterium Anabaena highlighted the more abundant proteins in a zur mutant compared to the wild type. Experimental evidence showed that the exoprotein ZepA mediates zinc uptake. Genomic context of the zepA gene and protein structure prediction provided additional insights on the regulation and putative function of ZepA homologs. Phylogenetic analysis suggests that ZepA represents a primordial system for zinc acquisition that has been conserved for billions of years in a handful of species from distant bacterial lineages. Furthermore, these results show that Zur may have been one of the first regulators of the FUR family to evolve, consistent with the scarcity of zinc in the ecosystems of the Archean eon.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (Bifi), Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús A. G. Ochoa de Alda
- Didáctica de las Ciencias Experimentales y la Matemáticas, Universidad de Extremadura, Cáceres, Spain
| | | | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (Bifi), Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
7
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenomics, phenotypic, and functional traits of five novel (Earth-derived) bacterial species isolated from the International Space Station and their prevalence in metagenomes. Sci Rep 2023; 13:19207. [PMID: 37932283 PMCID: PMC10628120 DOI: 10.1038/s41598-023-44172-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Bellotti D, Leveraro S, Hecel A, Remelli M. Investigation of metal interactions with YrpE protein of Bacillus subtilis by a polyhistidine peptide model. Anal Biochem 2023; 680:115315. [PMID: 37689096 DOI: 10.1016/j.ab.2023.115315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The use of model peptides that can simulate the behaviour of a protein domain is a very successful analytical method to study the metal coordination sites in biological systems. Here we study zinc and copper binding ability of the sequence HTHEHSHDHSHAH, which serves as model for the metal interactions with YrpE, a putative metal-binding protein of the ZinT family identified in Bacillus subtilis. Compared to other ZinT proteins secreted by Gram-negative bacteria, the metal-coordination properties of YrpE N-terminal histidine-rich domain have not been yet characterized. Different independent analytical methods, aimed at providing information on the stability and structure of the formed species, have been employed, including potentiometric titrations, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism and electron paramagnetic resonance spectroscopy. The obtained speciation models and equilibrium constants allowed to compare the metal-binding ability of the investigated polyhistidine sequence with that of other well-known histidine-rich peptides. Our thermodynamic results revealed that the YrpE domain HTHEHSHDHSHAH forms more stable metal complexes than other His-rich domains of similar ZinT proteins. Moreover, the studied peptide, containing the alternated (-XH-)n motif, proved to be even more effective than the His6-tag (widely used in immobilized metal ion affinity chromatography) in binding zinc ions.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy; Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Silvia Leveraro
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. mBio 2023; 14:e0135023. [PMID: 37737591 PMCID: PMC10653882 DOI: 10.1128/mbio.01350-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacqueline R. Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jeff M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Skeba S, Snyder M, Maltman C. Metallophore Activity toward the Rare Earth Elements by Bacteria Isolated from Acid Mine Drainage Due to Coal Mining. Microorganisms 2023; 11:2672. [PMID: 38004684 PMCID: PMC10673398 DOI: 10.3390/microorganisms11112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The field of microbe-metal interactions has been gaining significant attention. While the direct impact of metal oxyanions on bacteria has been investigated, significantly less attention has been placed on the ability of certain microbes to 'collect' such metal ions via secreted proteins. Many bacteria possess low-weight molecules called siderophores, which collect Fe from the environment to be brought back to the cell. However, some appear to have additional roles, including binding other metals, termed 'metallophores'. Microbes can remove/sequester these from their surroundings, but the breadth of those that can be removed is still unknown. Using the Chromeazurol S assay, we identified eight isolates, most belonging to the genus Pseudomonas, possessing siderophore activity, mainly from sites impacted by coal mine drainage, also possessing a metallophore activity toward the rare earth elements that does not appear to be related to ionic radii or previously reported EC50 concentrations for E. coli. We found the strength of metallophore activity towards these elements was as follows: Pr > Sc > Eu > Tm > Tb > Er > Yb > Ce > Lu > Sm > Ho > La > Nd > Dy > Gd > Y. This is the first study to investigate such activity and indicates bacteria may provide a means of removal/recovery of these critical elements.
Collapse
Affiliation(s)
| | | | - Chris Maltman
- Department of Biology, Slippery Rock University, Slippery Rock, PA 16057, USA
| |
Collapse
|
11
|
Mishra P, Mishra J, Arora NK. Biofortification revisited: Addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol Res 2023; 275:127442. [PMID: 37437425 DOI: 10.1016/j.micres.2023.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Trace element deficiency is a pervasive issue contributing to malnutrition on a global scale. The primary cause of this hidden hunger is related to low dietary intake of essential trace elements, which is highly prevalent in numerous regions across the world. To address deficiency diseases in humans, fortification of staple crops with vital trace elements has emerged as a viable solution. Current methods for fortifying crops encompass chemical amendments, genetic breeding, and transgenic approaches, yet these approaches possess certain limitations, constraining their agricultural application. In contrast, fortifying staple crops through the utilization of soil-beneficial microbes has emerged as a promising and economically feasible approach to enhance trace element content in crops. A specific subset of these beneficial soil microbes, referred to as plant growth-promoting microbes, have demonstrated their ability to influence the interactions between plants, soil, and minerals. These microbes facilitate the transport of essential soil minerals, such as zinc, iron, and selenium, into plants, offering the potential for the development of tailored bioinoculants that can enhance the nutritional quality of cereals, pulses, and vegetable crops. Nevertheless, further research efforts are necessary to comprehensively understand the molecular mechanisms underlying the uptake, transport, and augmentation of trace element concentrations in staple crops. By delving deeper into these mechanisms, customized bioinoculants of soil-beneficial microbes can be developed to serve as highly effective strategies in combating trace element deficiency and promoting global nutritional well-being.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
12
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenetic affiliations and genomic characterization of novel bacterial species and their abundance in the International Space Station. RESEARCH SQUARE 2023:rs.3.rs-3126314. [PMID: 37461605 PMCID: PMC10350232 DOI: 10.21203/rs.3.rs-3126314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D. Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
13
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542972. [PMID: 37398167 PMCID: PMC10312489 DOI: 10.1101/2023.05.30.542972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jana N Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
15
|
Lam LN, Brunson DN, Molina JJ, Flores-Mireles AL, Lemos JA. The AdcACB/AdcAII system is essential for zinc homeostasis and an important contributor of Enterococcus faecalis virulence. Virulence 2022; 13:592-608. [PMID: 35341449 PMCID: PMC8966984 DOI: 10.1080/21505594.2022.2056965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens require a variety of micronutrients for growth, including trace metals such as iron, manganese, and zinc (Zn). Despite their relative abundance in host environments, access to these metals is severely restricted during infection due to host-mediated defense mechanisms collectively known as nutritional immunity. Despite a growing appreciation of the importance of Zn in host-pathogen interactions, the mechanisms of Zn homeostasis and the significance of Zn to the pathophysiology of E. faecalis, a major pathogen of nosocomial and community-associated infections, have not been thoroughly investigated. Here, we show that E. faecalis encoded ABC-type transporter AdcACB and an orphan substrate-binding lipoprotein AdcAII that work cooperatively to maintain Zn homeostasis. Simultaneous inactivation of adcA and adcAII or the entire adcACB operon led to a significant reduction in intracellular Zn under Zn-restricted conditions and heightened sensitivity to Zn-chelating agents including human calprotectin, aberrant cell morphology, and impaired fitness in serum ex vivo. Additionally, inactivation of adcACB and adcAII significantly reduced bacterial tolerance toward cell envelope-targeting antibiotics. Finally, we showed that the AdcACB/AdcAII system contributes to E. faecalis virulence in a Galleria mellonella invertebrate infection model and in two catheter-associated mouse infection models that recapitulate many of the host conditions associated with enterococcal human infections. Collectively, this report reveals that high-affinity Zn import is important for the pathogenesis of E. faecalis establishing the surface-associated AdcA and AdcAII lipoproteins as potential therapeutic targets.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Debra N. Brunson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Jonathan J. Molina
- Department of Biological Sciences, University of Norte Dame, Notre Dame, IN, USA
| | | | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
16
|
Reitz ZL, Medema MH. Genome mining strategies for metallophore discovery. Curr Opin Biotechnol 2022; 77:102757. [PMID: 35914390 DOI: 10.1016/j.copbio.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Many bacteria use small-molecule chelators called metallophores to acquire trace metals from their environment. These molecules play a central role in interactions between bacteria, plants, and animals. Hence, knowing their full diversity is key to combatting infectious diseases as well as harnessing beneficial microbial communities. Metallophore discovery has been streamlined by advances in genome mining, where genomes are scanned for genes involved in metallophore biosynthesis. This review highlights recent trends and advances in predicting the presence and structure of metallophores based solely on genomic information. Recent work suggests new families of metallophores remain hidden from current homology-based approaches. Their discovery will require new genome mining approaches that move beyond biosynthesis to consider metallophore transporters, regulation, and evolution.
Collapse
Affiliation(s)
- Zachary L Reitz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
17
|
Stephens AC, Richardson AR. Recent developments in our understanding of the physiology and nitric oxide-resistance of Staphylococcus aureus. Adv Microb Physiol 2022; 81:111-135. [PMID: 36167441 DOI: 10.1016/bs.ampbs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus is an important human pathogen causing a wide range of disease presentations. It harbors a vast array of virulence factors and drug-resistance determinants. All of these factors are coordinately regulated by a hand full of key transcriptional regulators. The regulation and expression of these factors are tightly intertwined with the metabolic state of the cell. Furthermore, alterations in central metabolism are also key to the ability of S. aureus to resist clearance by the host innate immune response, including nitric oxide (NO·) production. Given the fact that central metabolism directly influences virulence, drug resistance and immune tolerance in S. aureus, a better understanding of the metabolic capabilities of this pathogen is critical. This work highlights some of the major findings within the last five years surrounding S. aureus central metabolism, both organic and inorganic. These are also put in the context of the unique NO·-resistance associated with this pathogen as well as their contributions to virulence. The more we understand the intersection between central metabolism and virulence capabilities in S. aureus, the better the chances of developing novel therapeutics so desperately needed to treat this pathogen.
Collapse
Affiliation(s)
- Amelia C Stephens
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony R Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
18
|
Yu Y, Su J, Xu J, Li YP, Alwathnani HA, Wu Z, Ji C, Feng R, Rensing C, Herzberg M. As(III) Exposure Induces a Zinc Scarcity Response and Restricts Iron Uptake in High-Level Arsenic-Resistant Paenibacillus taichungensis Strain NC1. Appl Environ Microbiol 2022; 88:e0031222. [PMID: 35435714 PMCID: PMC9088362 DOI: 10.1128/aem.00312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.
Collapse
Affiliation(s)
- Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hend A. Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Zengling Wu
- Zijin Mining Group Co., Ltd., Shanghang, Fujian, China
| | - Changqing Ji
- Zijin Mining Group Co., Ltd., Shanghang, Fujian, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Martin Herzberg
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
19
|
Maret W, Blower P. Teaching the chemical elements in biochemistry: Elemental biology and metallomics. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:283-289. [PMID: 35218613 PMCID: PMC9303777 DOI: 10.1002/bmb.21614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Biochemistry primarily focuses on the non-metal chemical elements carbon, oxygen, nitrogen, hydrogen, sulfur, and phosphorus in the four groups of building blocks (sugars, lipids, amino acids, and nucleotides) and the corresponding macromolecules. However, at least 10 essential chemical elements of life are metals. This article discusses the consequences of such a bias, presents current knowledge that over 20 chemical elements are required for life, and makes a case for-and suggests benefits of-teaching elemental biology alongside molecular biology and biochemistry, and inorganic chemistry in addition to organic chemistry. A relatively new interdisciplinary field, metallomics, has the potential to be a platform for integration when added to glycomics, lipidomics, proteomics, and genomics. It would fill a major gap in contemporary education, be relevant for many areas of science, and facilitate the teaching of important principles of chemistry in the biological sciences, thus helping students to gain a broader understanding of life processes from the molecular to the systemic biology level.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Biochemistry, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Philip Blower
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
20
|
Menghani SV, Cutcliffe MP, Sanchez-Rosario Y, Pok C, Watson A, Neubert MJ, Ochoa K, Wu HJJ, Johnson MDL. N, N-Dimethyldithiocarbamate Elicits Pneumococcal Hypersensitivity to Copper and Macrophage-Mediated Clearance. Infect Immun 2022; 90:e0059721. [PMID: 35311543 PMCID: PMC9022595 DOI: 10.1128/iai.00597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/12/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive, encapsulated bacterium that is a significant cause of disease burden in pediatric and elderly populations. The rise in unencapsulated disease-causing strains and antimicrobial resistance in S. pneumoniae has increased the need for developing new antimicrobial strategies. Recent work by our laboratory has identified N,N-dimethyldithiocarbamate (DMDC) as a copper-dependent antimicrobial against bacterial, fungal, and parasitic pathogens. As a bactericidal antibiotic against S. pneumoniae, DMDC's ability to work as a copper-dependent antibiotic and its ability to work in vivo warranted further investigation. Here, our group studied the mechanisms of action of DMDC under various medium and excess-metal conditions and investigated DMDC's interactions with the innate immune system in vitro and in vivo. Of note, we found that DMDC plus copper significantly increased the internal copper concentration, hydrogen peroxide stress, nitric oxide stress, and the in vitro macrophage killing efficiency and decreased capsule. Furthermore, we found that in vivo DMDC treatment increased the quantity of innate immune cells in the lung during infection. Taken together, this study provides mechanistic insights regarding DMDC's activity as an antibiotic at the host-pathogen interface.
Collapse
Affiliation(s)
- Sanjay V. Menghani
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Madeline P. Cutcliffe
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Chansorena Pok
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Alison Watson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Miranda J. Neubert
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Klariza Ochoa
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Arizona Arthritis Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| |
Collapse
|
21
|
Guo Z, Lv L, Liu D, He X, Wang W, Feng Y, Islam MS, Wang Q, Chen W, Liu Z, Wu S, Abied A. A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments. PLoS One 2022; 17:e0262139. [PMID: 35061792 PMCID: PMC8782357 DOI: 10.1371/journal.pone.0262139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
The processes involved in soil domestication have altered the soil microbial ecology. We examined the question of whether animal manure application affects the soil microbial ecology of farmlands. The effects of global animal manure application on soil microorganisms were subjected to a meta-analysis based on randomized controlled treatments. A total of 2303 studies conducted in the last 30 years were incorporated into the analysis, and an additional 45 soil samples were collected and sequenced to obtain 16S rRNA and 18S rRNA data. The results revealed that manure application increased soil microbial biomass. Manure application alone increased bacterial diversity (M-Z: 7.546 and M-I: 8.68) and inhibited and reduced fungal diversity (M-Z: -1.15 and M-I: -1.03). Inorganic fertilizer replaced cattle and swine manure and provided nutrients to soil microorganisms. The soil samples of the experimental base were analyzed, and the relative abundances of bacteria and fungi were altered compared with no manure application. Manure increased bacterial diversity and reduced fungal diversity. Mrakia frigida and Betaproteobacteriales, which inhibit other microorganisms, increased significantly in the domesticated soil. Moreover, farm sewage treatments resulted in a bottleneck in the manure recovery rate that should be the focus of future research. Our results suggest that the potential risks of restructuring the microbial ecology of cultivated land must be considered.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- * E-mail: , (ZG); (DL)
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R. China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- * E-mail: , (ZG); (DL)
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Yanzhong Feng
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Md. Saiful Islam
- Department of Animal Production & Management, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Qiuju Wang
- Key laboratory of Heilongjiang Soil Environment and Plant Nutrient, Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, P. R. China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R. China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Saihui Wu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Adam Abied
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- Dry Land Research Center (DLRC) and Animal Production, Agricultural Research Corporation (ARC), Khartoum, Sudan
- Projects and Programs Secretary of the Sudan Youth Organization on Climate Change, Khartoum, Sudan
| |
Collapse
|
22
|
Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2022; 119:2110293119. [PMID: 35193957 PMCID: PMC8872721 DOI: 10.1073/pnas.2110293119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of human tuberculosis (TB). Mtb can persist inside host macrophages by successfully adapting to intracellular conditions. Acquisition of balanced amounts of essential micronutrients is one such important process. Our studies have identified a metallophore produced on demand to restore Mtb zinc metabolic imbalance. These diacyl-diisonitrile lipopeptides, named kupyaphores, are specifically induced during infection and move in and out of cells to protect bacteria from host-mediated nutritional deprivation and intoxication. Furthermore, we identify an Mtb isonitrile hydratase homolog, expressed in low-zinc conditions, which probably facilitates zinc release from kupyaphores. Identification of this zinc acquisition strategy could provide opportunities in future to understand systemic zinc dysbiosis and associated manifestations in TB patients. Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host–pathogen interactions and disease outcome.
Collapse
|
23
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
24
|
Župan ML, Luo Z, Ganio K, Pederick VG, Neville SL, Deplazes E, Kobe B, McDevitt CA. Conformation of the Solute-Binding Protein AdcAII Influences Zinc Uptake in Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:729981. [PMID: 34490149 PMCID: PMC8416893 DOI: 10.3389/fcimb.2021.729981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumoniae scavenges essential zinc ions from the host during colonization and infection. This is achieved by the ATP-binding cassette transporter, AdcCB, and two solute-binding proteins (SBPs), AdcA and AdcAII. It has been established that AdcAII serves a greater role during initial infection, but the molecular details of how the protein selectively acquires Zn(II) remain poorly understood. This can be attributed to the refractory nature of metal-free AdcAII to high-resolution structural determination techniques. Here, we overcome this issue by separately mutating the Zn(II)-coordinating residues and performing a combination of structural and biochemical analyses on the variant proteins. Structural analyses of Zn(II)-bound AdcAII variants revealed that specific regions within the protein underwent conformational changes via direct coupling to each of the metal-binding residues. Quantitative in vitro metal-binding assays combined with affinity determination and phenotypic growth assays revealed that each of the four Zn(II)-coordinating residues contributes to metal binding by AdcAII. Intriguingly, the phenotypic growth impact of the mutant adcAII alleles was, in general, independent of affinity, suggesting that the Zn(II)-bound conformation of the SBP is crucial for efficacious metal uptake. Collectively, these data highlight the intimate coupling of ligand affinity with protein conformational change in ligand-receptor proteins and provide a putative mechanism for AdcAII. These findings provide further mechanistic insight into the structural and functional diversity of SBPs that is broadly applicable to other prokaryotes.
Collapse
Affiliation(s)
- Marina L Župan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Victoria G Pederick
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Ganguly T, Peterson AM, Kajfasz JK, Abranches J, Lemos JA. Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by Streptococcus mutans in an animal model. Mol Oral Microbiol 2021; 36:214-224. [PMID: 33819383 PMCID: PMC9178666 DOI: 10.1111/omi.12337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trace metals are essential to all domains of life but toxic when found at high concentrations. Although the importance of iron in host-pathogen interactions is firmly established, contemporary studies indicate that other trace metals, including manganese and zinc, are also critical to the infectious process. In this study, we sought to identify and characterize the zinc uptake system(s) of Streptococcus mutans, a keystone pathogen in dental caries and a causative agent of bacterial endocarditis. Different than other pathogenic bacteria, including several streptococci, that encode multiple zinc import systems, bioinformatic analysis indicated that the S. mutans core genome encodes a single, highly conserved, zinc importer commonly known as AdcABC. Inactivation of the genes coding for the metal-binding AdcA (ΔadcA) or both AdcC ATPase and AdcB permease (ΔadcCB) severely impaired the ability of S. mutans to grow under zinc-depleted conditions. Intracellular metal quantifications revealed that both mutants accumulated less zinc when grown in the presence of a subinhibitory concentration of a zinc-specific chelator. Notably, the ΔadcCB strain displayed a severe colonization defect in a rat oral infection model. Both Δadc strains were hypersensitive to high concentrations of manganese, showed reduced peroxide tolerance, and formed less biofilm in sucrose-containing media when cultivated in the presence of the lowest amount of zinc that support their growth, but not when zinc was supplied in excess. Collectively, this study identifies AdcABC as the major high affinity zinc importer of S. mutans and provides preliminary evidence that zinc is a growth-limiting factor within the dental biofilm.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Kuzyk SB, Hughes E, Yurkov V. Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms 2021; 9:microorganisms9050959. [PMID: 33946921 PMCID: PMC8146977 DOI: 10.3390/microorganisms9050959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments.
Collapse
|