1
|
Du M, Liu X, Ji X, Wang Y, Liu X, Zhao C, Jin E, Gu Y, Wang H, Zhang F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front Nutr 2025; 11:1494348. [PMID: 39877539 PMCID: PMC11772193 DOI: 10.3389/fnut.2024.1494348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Enterotoxic Escherichia coli (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance. Berberine, categorized as a substance with similarities in "medicine and food," has been used in China for hundreds of years to treat gastrointestinal disorders and bacteria-induced diarrhea. This study investigated the preventive effect of dietary berberine on the intestinal mucosal barrier induced by ETEC and the microbial community within the intestines of weaned piglets. Methods Twenty-four piglets were randomly divided into four groups. Piglets were administered either a standard diet or a standard diet supplemented with berberine at concentrations of 0.05 and 0.1%. and orally administered ETEC or saline. Results Dietary supplementation with berberine reduced diamine oxidase, d-lactate, and endotoxin levels in piglets infected with ETEC (P < 0.05). Berberine increased jejunal villus height, villus/crypt ratio, mucosal thickness (P < 0.05), and goblet cell numbers in the villi and crypts (P < 0.05). Furthermore, berberine increased the optical density of mucin 2 and the mucin 2, P-glycoprotein, and CYP3A4 mRNA expression levels (P < 0.05). Berberine increased the expressions of zonula occludins-1 (ZO-1), zonula occludins-2 (ZO-2), Claudin-1, Occludin, and E-cadherin in the ileum (P < 0.05). Moreover, berberine increased the expression of BCL2, reduced intestinal epithelial cell apoptosis (P < 0.05) and decreased the expression of BAX and BAK in the duodenum and jejunum, as well as that of CASP3 and CASP9 in the duodenum and ileum (P < 0.05). Berberine decreased the expression of IL-1β, IL-6, IL-8, TNF-α, and IFN-γ (P < 0.05) and elevated total volatile fatty acids, acetic acid, propionic acid, valeric acid, and isovaleric acid concentrations (P < 0.05). Notably, berberine enhanced the abundance of beneficial bacteria including Enterococcus, Holdemanella, Weissella, Pediococcus, Muribaculum, Colidextribacter, Agathobacter, Roseburia, Clostridium, Fusicatenibacter, and Bifidobacterium. Simultaneously, the relative abundance of harmful and pathogenic bacteria, such as Prevotella, Paraprevotella, Corynebacterium, Catenisphaera, Streptococcus, Enterobacter, and Collinsella, decreased (P < 0.05). Discussion Berberine alleviated ETEC-induced intestinal mucosal barrier damage in weaned piglets models. This is associated with enhancement of the physical, chemical, and immune barrier functions of piglets by enhancing intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xinran Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Hongyu Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
2
|
Ma H, Li Y, Shi H, Wang B, Tian H, Mei X, Wu C. Berberine‑calcium alginate-coated macrophage membrane-derived nanovesicles for the oral treatment of ulcerative colitis. Int J Biol Macromol 2025; 294:139114. [PMID: 39755317 DOI: 10.1016/j.ijbiomac.2024.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
In this study, we developed calcium alginate-coated nanovesicles derived from macrophage membranes loaded with berberine (Ber@MVs-CA) for the oral treatment of ulcerative colitis (UC). Ber@MVs-CA demonstrates resistance to gastric acid and controlled drug release in the colonic pH environment, while actively targeting sites of ulcerative colitis injury. pH-responsive release of Ber in Ber@MVs-CA was confirmed through in vitro release experiments. The results indicated a total of 19.35 ± 1.61 % of Ber was cumulatively released from Ber@MVs-CA in SGF and SIF at 4 h, and approximately 87.14 ± 2.33 % release in simulated colonic fluid (pH 7.4) after 24 h. The targeting ability of Ber@MVs-CA was confirmed using laser confocal microscopy (CLSM), Transwell™ system, and in vivo imaging. Results demonstrated effective targeting of inflammatory macrophages and sustained retention in the colon. In vitro and in vivo (mice) assessments via immunofluorescence, ELISA kit, and reactive oxygen species (ROS) assays demonstrated that Ber@MVs-CA effectively attenuated inflammatory responses, modulated macrophage polarization, and inhibited oxidative stress. Additionally, we evaluated the therapeutic efficacy of Ber@MVs-CA in a Clostridium perfringens-induced enteritis model in chickens, demonstrating its effectiveness in alleviating enteritis. Consequently, Ber@MVs-CA exhibits great potential as an oral nano-formulation for the treatment of enteritis. Thus, Ber@MVs-CA shows great potential as an oral nano-formulation for the treatment of enteritis.
Collapse
Affiliation(s)
- Huilin Ma
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China
| | - Yunmei Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China
| | - Huan Shi
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, China.
| | - Xifan Mei
- Liaoning Vocational College of Medicine, Shenyang, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
3
|
Khan S, Shi X, Cai R, Shuai Z, Mao W, Khan IM, Swelum AA, Guo J. Effect of black soldier fly (Hermetia illucens) larvae meal and oil on the performance, biochemical profile, intestinal health and gut microbial dynamics in laying hens. Poult Sci 2024; 103:104460. [PMID: 39510004 PMCID: PMC11577212 DOI: 10.1016/j.psj.2024.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
This study investigated the effect of incorporating black soldier fly (BSF) larvae meal and oil on laying hens' performance, egg quality, serum profile, intestinal structure, and gut health. A total of 378 Lohmann laying hens (age 48 wk) were randomly assigned to 6 treatments with 3 replicates of 21 hens each. Following 7 d acclimation, the trail was conducted for 8 weeks. The dietary groups include: basal corn-soybean meal diet (S) without BSF (BSO) oil (S+BSO 0), S with BSF oil (S+BSO 100), BSF meal (9 %) without BSF oil (BSF 9+BSO 0), BSF meal (9 %) with BSF oil (BSF 9+BSO 100), BSF meal (18 %) without BSF oil (BSF 18+BSO 0), and BSF meal (18 %) with BSF oil (BSF 18+BSO 100). The results showed that the BSF 18 + BSO 100 diet significantly reduced egg weight (P < 0.001) compared to other dietary treatments. The addition of BSF meal reduced feed intake (P < 0.001) and the Haugh units (P < 0.05) in hens fed 18 % BSF meal with and without BSO. The jejunum villus area, crypt depth, and intestinal wall thickness increased with the increase in the inclusion of BSF larvae meal (P < 0.001). The ileum villus height, crypt depth and intestinal wall thickness increased (P < 0.001) at 9 % BSF meal and then decreased at 18 % BSF meal with and without BSF oil. The bacteria genera Ruminococcus, Clostridiales, Bacteroidales, Ruminococcus torques, and Intestinimonas were positively associated with the dietary treatments, while Prevotellaceae UCG-001, Clostridium, and Faecalibacterium were negatively associated with the dietary treatments. The inclusion of BSF meal and oil enriched the functional network of several pathways, including ascorbate and aldarate metabolism, D-arginine and D-ornithine metabolism, and fatty acid metabolism, highlighting the positive effects of BSF larvae meal and oil on the chicken gut microbiota. In conclusion, BSF meal at 9 % with BSF oil and BSF meal at 18 % without BSF oil can be incorporated into the diet without impairing the performance and gut health of laying hens.
Collapse
Affiliation(s)
- Samiullah Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Xiaoli Shi
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Renlian Cai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Zhao Shuai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Wei Mao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Ibrar Muhammad Khan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Konopka A, Gawin K, Barszcz M. Hedgehog Signalling Pathway and Its Role in Shaping the Architecture of Intestinal Epithelium. Int J Mol Sci 2024; 25:12007. [PMID: 39596072 PMCID: PMC11593361 DOI: 10.3390/ijms252212007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The hedgehog (Hh) signalling pathway plays a key role in both embryonic and postnatal development of the intestine and is responsible for gut homeostasis. It regulates stem cell renewal, formation of the villous-crypt axis, differentiation of goblet and Paneth cells, the cell cycle, apoptosis, development of gut innervation, and lipid metabolism. Ligands of the Hh pathway, i.e., Indian hedgehog (Ihh) and Sonic hedgehog (Shh), are expressed by superficial enterocytes but act in the mesenchyme, where they are bound by a Patched receptor localised on myofibroblasts and smooth muscle cells. This activates a cascade leading to the transcription of target genes, including those encoding G1/S-specific cyclin-D2 and -E1, B-cell lymphoma 2, fibroblast growth factor 4, and bone morphogenetic protein 4. The Hh pathway is tightly connected to Wnt signalling. Ihh is the major ligand in the Hh pathway. Its activation inhibits proliferation, while its blocking induces hyperproliferation and triggers a wound-healing response. Thus, Ihh is a negative feedback regulator of cell proliferation. There are data indicating that diet composition may affect the expression of the Hh pathway genes and proteins, which in turn, induces changes in mucosal architecture. This was shown for fat, vitamin A, haem, berberine, and ovotransferrin. The Hh signalling is also affected by the intestinal microbiota, which affects the intestinal barrier integrity. This review highlights the critical importance of the Hh pathway in shaping the intestinal mucosa and summarises the results obtained so far in research on the effect of dietary constituents on the activity of this pathway.
Collapse
Affiliation(s)
- Adrianna Konopka
- Laboratory of Analysis of Gastrointestinal Tract Protective Barrier, Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Kamil Gawin
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Marcin Barszcz
- Laboratory of Analysis of Gastrointestinal Tract Protective Barrier, Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
5
|
Zou C, Xing X, Li S, Zheng X, Zhao J, Liu H. Effects of a Combined Chinese Herbal Medicine on Growth Performance, Intestinal Barrier Function, Immune Response, and Cecal Microflora in Broilers Infected with Salmonella enteritidis. Animals (Basel) 2024; 14:2670. [PMID: 39335258 PMCID: PMC11429040 DOI: 10.3390/ani14182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of CCHM in drinking water on broilers infected with Salmonella enteritidis. One-day-old male Cobb 500 broilers (n = 300) were randomly assigned to five groups: a control (NC) group, a Salmonella enteritidis challenge (SE) group, an antibiotic (AB) group, a low dose of CCHM (CL) group, and a high dose of CCHM (CH) group. Each group had six replicate cages with ten broilers per cage. The broilers in the NC and SE groups were given normal drinking water. From days 12 to 18, the AB group received water treated with ciprofloxacin lactate injection (1 mL/L), while the CL and CH groups received water containing CCHM at doses of 5 mL/L and 10 mL/L, respectively. Broilers in all groups except the NC group were orally given Salmonella enteritidis daily from days 9 to 11. The experimental period was 28 days. The results showed that, compared with the SE group, the CL and CH groups showed improved growth performance; increased immune organ indices, expressions of ileal occludin and ZO-1 proteins, jejunal and ileal villus heights (except at day 19), and cecal Lactobacillus counts on days 19 and 28 (p < 0.05); and decreased jejunal and ileal lesion scores, ileal interleukin 1β (IL-1β) (except at day 19), interferon-γ (IFN-γ), interleukin 6 (IL-6) (except at day 19), secretory immunoglobulin A (slgA) and tumor necrosis factor α (TNF-α) (except at day 19) levels, serum D-lactic acid and diamine oxidase (DAO) (except at day 19) contents, jejunal and ileal crypt depths (except at day 19), and cecal Salmonella and Escherichia coli counts on days 19 and 28 (p < 0.05). On day 28, except for the levels of ileal interleukin 10 (IL-10), TNF-α, slgA, and serum D-lactic acid content, there were no differences among the NC, AB, and CL groups (p > 0.05). In conclusion, drinking water supplemented with CCHM alleviated the intestinal damage caused by Salmonella enteritidis infection and improved growth performance and cecal microbiota in broilers. The optimal addition rate of CCHM was 5 mL/L.
Collapse
Affiliation(s)
- Changzhi Zou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Xin Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Shunxi Li
- Guangrao County Livestock Development Service Center, Dongying 257000, China;
| | - Xuelong Zheng
- Pingdu Yunshan Animal Health and Product Quality Supervision Station, Qingdao 266700, China;
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| |
Collapse
|
6
|
Nie X, Lu Q, Yin Y, He Z, Bai Y, Zhu C. Microbiome and metabolome analyses reveal significant alterations of gut microbiota and bile acid metabolism in ETEC-challenged weaned piglets by dietary berberine supplementation. Front Microbiol 2024; 15:1428287. [PMID: 38983627 PMCID: PMC11231202 DOI: 10.3389/fmicb.2024.1428287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
This study mainly investigated the effects of berberine (BBR) on the bile acid metabolism in gut-liver axis and the microbial community in large intestine of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) by microbiome and metabolome analyses. Sixty-four piglets were randomly assigned to four groups including Control group, BBR group, ETEC group, and BBR + ETEC group. Dietary BBR supplementation upregulated the colonic mRNA expression of Occludin, Claudin-5, trefoil factor 3 (TFF3), and interleukin (IL)-10, and downregulated colonic IL-1β and IL-8 mRNA expression in piglets challenged with ETEC K88 (p < 0.05). The hepatic non-targeted metabolome results showed that dietary BBR supplementation enriched the metabolic pathways of primary bile acid biosynthesis, tricarboxylic acid cycle, and taurine metabolism. The hepatic targeted metabolome analyses showed that BBR treatment increased the hepatic concentrations of taurocholic acid (TCA) and taurochenodeoxycholic acid (TDCA), but decreased the hepatic cholic acid (CA) concentration (p < 0.05). Further intestinal targeted metabolome analyses indicated that the deoxycholic acid (DCA), hyocholic acid (HCA), 7-ketodeoxycholic acid (7-KDCA), and the unconjugated bile acid concentrations in ileal mucosa was decreased by dietary BBR treatment (p < 0.05). Additionally, BBR treatment significantly upregulated the hepatic holesterol 7 α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) mRNA expression, and upregulated the ileal mRNA expression of farnesoid X receptor (FXR) and apical sodium-dependent bile acid transporter (ASBT) as well as the colonic mRNA expression of FXR, fibroblast growth factor19 (FGF19), takeda G protein-coupled receptor 5 (TGR5) and organic solute transporters beta (OST-β) in piglets (p < 0.05). Moreover, the microbiome analysis showed that BBR significantly altered the composition and diversity of colonic and cecal microbiota community, with the abundances of Firmicutes (phylum), and Lactobacillus and Megasphaera (genus) significantly increased in the large intestine of piglets (p < 0.05). Spearman correlation analysis showed that the relative abundances of Megasphaera (genus) were positively correlated with Claudin-5, Occludin, TFF3, and hepatic TCDCA concentration, but negatively correlated with hepatic CA and glycocholic acid (GCA) concentration (p < 0.05). Moreover, the relative abundances of Firmicute (phylum) and Lactobacillus (genus) were positively correlated with hepatic TCDCA concentration (p < 0.05). Collectively, dietary BBR supplementation could regulate the gut microbiota and bile acid metabolism through modulation of gut-liver axis, and attenuate the decreased intestinal tight junction expression caused by ETEC, which might help maintain intestinal homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yucheng Yin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhentao He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Province Doctoral Workstation, Shanwei Xinsheng Leisure Agriculture Co., Ltd, Shanwei, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Huang C, Hernandez CE, Wall H, Tahamtani FM, Ivarsson E, Sun L. Live black soldier fly (Hermetia illucens) larvae in feed for laying hens: effects on hen gut microbiota and behavior. Poult Sci 2024; 103:103429. [PMID: 38244264 PMCID: PMC10831256 DOI: 10.1016/j.psj.2024.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
This study examined the effects of including live black soldier fly (BSF, Hermetia illucens) larvae in the diet of laying hens on gut microbiota, and the association between microbiota and fearfulness. A total of 40 Bovans White laying hens were individually housed and fed 1 of 4 dietary treatments that provided 0, 10, 20%, or ad libitum daily dietary portions of live BSF larvae for 12 wk. Cecum microbiota was collected at the end of the experiment and sequenced. Behavioral fear responses to novel objects and open field tests on the same hens were compared against results from gut microbiota analyses. The results showed that the bacteria genera Enterococcus, Parabacteroides, and Ruminococcus torques group were positively associated with increased dietary portion of live larvae, while Lactobacillus, Faecalibacterium, Bifidobacterium, Subdoligranulum, and Butyricicoccus were negatively associated with larvae in the diet. Inclusion of larvae did not affect fear behavior, but the relative abundance of Lachnospiraceae CHKCI001 and Erysipelatoclostridium was associated with fear-related behaviors. Further studies are needed to determine whether the change in gut microbiota affects fearfulness in the long-term.
Collapse
Affiliation(s)
- Chenxuan Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden; College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Carlos E Hernandez
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | | | - Emma Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden.
| |
Collapse
|
9
|
Xiao C, Li K, Teng C, Wei Z, Li J, Zhang S, Liu L, Lv H, Zhong R. Dietary Qi-Weng-Huangbo powder enhances growth performance, diarrhoea and immune function of weaned piglets by modulating gut health and microbial profiles. Front Immunol 2023; 14:1342852. [PMID: 38187371 PMCID: PMC10770244 DOI: 10.3389/fimmu.2023.1342852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The evolution of nutritional strategies to improve the gut health and microbiota profiles of early-weaned piglets is essential to reduce diarrhoea caused by weaning stress. Therefore, the aim of this study was to determine the effects of dietary supplementation of Qi-Weng-Huangbo powder, a traditional herbal medicine consisting of a mixture of Pulsatilla chinensis, Chinese Schneid and Astragalus extracts (PCE), on the growth performance, diarrhoea rate, immune function and intestinal health of weaned piglets. Methods 162 piglets were randomly assigned to the CON group (no PCE added), the PCEL group (300 mg/kg PCE) and the PCEH group (500 mg/kg PCE) at the end of the third week post farrowing. There were 9 replicates of each group with 6 pigs per replicate. The experiment lasted for 28 days and sampling was performed on the final day. Results The results showed that the PCE diet increased the average daily gain (ADG) and final body weight (BW) compared to the CON group. Both supplemented doses of PCE reduced the faecal scores of piglets, and the diarrhoea rate in the PCEL group was significantly lower than that in the CON group. The application of PCE diets promoted the development of the spleen in piglets and up-regulated serum immunoglobulin concentrations to enhance immune function, which was also reflected in the down-regulated gene expression of the colonic TLR/MyD88/NF-κB pathway. Supplementation with PCE improved intestinal morphology, and all doses of PCE significantly increased villus height (VH) in the ileum, whereas colonic crypt depth (CD) was significantly lower in the PCEH group than in the CON group. The PCEH diet significantly increased the levels of valeric and isovaleric acid in the colon content. Dietary PCEH also improved the colonic microbial community profile, reflected by a significant increase in Shannon's index compared with CON group. The abundance of Veillonellaceae and Rhodospirillales was significantly increased in the PCEH group at the family level. Discussion In conclusion, dietary PCE reduced diarrhoea rates, improved growth performance and enhanced immune function in weaned piglets. These improvements were potentially supported by altered ileum and colonic morphology, elevated colonic VFA levels, and modulation of colonic microbial profiles.
Collapse
Affiliation(s)
- Chuanpi Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunran Teng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shunfeng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiyuan Lv
- Peking Centre Technology Co., LTD, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Wang C, Yang Y, Chen J, Dai X, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Berberine Protects against High-Energy and Low-Protein Diet-Induced Hepatic Steatosis: Modulation of Gut Microbiota and Bile Acid Metabolism in Laying Hens. Int J Mol Sci 2023; 24:17304. [PMID: 38139133 PMCID: PMC10744296 DOI: 10.3390/ijms242417304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| |
Collapse
|
11
|
Dehau T, Cherlet M, Croubels S, Van De Vliet M, Goossens E, Van Immerseel F. Berberine-microbiota interplay: orchestrating gut health through modulation of the gut microbiota and metabolic transformation into bioactive metabolites. Front Pharmacol 2023; 14:1281090. [PMID: 38130410 PMCID: PMC10733463 DOI: 10.3389/fphar.2023.1281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Marc Cherlet
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michiel Van De Vliet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
12
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
13
|
Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid GE. Prophylactic influences of prebiotics on gut microbiome and immune response of heat-stressed broiler chickens. Sci Rep 2023; 13:13991. [PMID: 37634024 PMCID: PMC10460421 DOI: 10.1038/s41598-023-40997-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Climatic changes and elevated ambient temperature are significant environmental stressors with a negative impact on birds' physiological, immunological, and behavioral status, increasing their susceptibility to stressors and immunosuppression and consequently increasing intestinal permeability (leaky gut). Prebiotics have been utilized to stop or diminish the harmful effects of stress in chickens. We aimed to evaluate the role of mannan-oligosaccharides, and beta-D-glucan prebiotics supplements in drinking water against experimentally induced heat stress (HS) on broiler chickens and study their impact on birds' performance, gut microbiome, and immune response. A total of 120 1-day-old Ross broiler chicks were allocated into four groups (30 birds/group), and each group was subdivided into triplicates (10 birds each). The experimental groups were classified as follows; the 1st (G1) control birds, the 2nd (G2) birds exposed experimentally to HS, the 3rd (G3) birds administered prebiotics in drinking water without exposure to HS, and the 4th (G4) birds exposed to HS and administered prebiotics in drinking water. After each vaccination, blood samples and serum samples were collected to evaluate the birds' immune status. Fecal samples were also collected for the molecular evaluation of the gut microbiome based on the genetic analyses and sequencing of 16S rRNA gene. The results showed that HS has reduced the birds' performance and badly affected the birds' immune response and gut microbiome. However, the addition of prebiotics to drinking water, with or without stress, enhanced the growth rate, maintained a normal gut microbiome, and improved immune parameters. Moreover, the usage of prebiotics improved the chicken gut microbiome and alleviated the negative effect of heat stress. Administering prebiotics significantly (p < 0.05) increased the relative abundance of beneficial bacteria and eradicated pathogenic ones in the birds' gut microbiome. Prebiotics showed a positive effect on the gut microbiome and the immune status of chickens under HS in addition to their efficacy as a growth promoter.
Collapse
Affiliation(s)
- Yara Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gamal E Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
14
|
Yin H, Liu W, Ji X, Yan G, Zeng X, Zhao W, Wang Y. Study on the mechanism of Wumei San in treating piglet diarrhea using network pharmacology and molecular docking. Front Vet Sci 2023; 10:1138684. [PMID: 36925608 PMCID: PMC10011153 DOI: 10.3389/fvets.2023.1138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Wumei San (WMS) is a traditional Chinese medicine that has been widely applied in the treatment of piglet diarrhea (PD). However, the mechanism of WMS in PD has not been investigated. In this study, the main active compounds of WMS and the target proteins were obtained from the Traditional Chinese Medicine Systematic Pharmacology, PubChem, and SwissTargetPrediction databases. The molecular targets of PD were identified using GeneCards, OMIM, and NCBI databases. The common targets of WMS and PD were screened out and converted into UniProt gene symbols. PD-related target genes were constructed into a protein-protein interaction network, which was further analyzed by the STRING online database. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to construct the component-target gene-disease network. Molecular docking was then used to examine the relationship between the core compounds and proteins. As a result, a total of 32 active compounds and 638 target genes of WMS were identified, and a WMS-compound-target network was successfully constructed. Through network pharmacology analysis, 14 core compounds in WMS that showed an effect on PD were identified. The targets revealed by GO and KEGG enrichment analysis were associated with the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, IL-17 signaling pathway, and other pathways and physiological processes. Molecular docking analysis revealed that the active compounds in WMS spontaneously bind to their targets. The results indicated that WMS may regulate the local immune response and inflammatory factors mainly through the TNF signaling pathway, IL-17 signaling pathway, and other pathways. WMS is a promising treatment strategy for PD. This study provides new insights into the potential mechanism of WMS in PD.
Collapse
Affiliation(s)
- Huihui Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wei Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
- *Correspondence: Wei Liu ✉
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoqing Yan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Xueyan Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanhua Wang
- Guangxi Mountain Comprehensive Technology Development Center, Nanning, China
| |
Collapse
|