1
|
Synthetic Peptide ΔM4-Induced Cell Death Associated with Cytoplasmic Membrane Disruption, Mitochondrial Dysfunction and Cell Cycle Arrest in Human Melanoma Cells. Molecules 2020; 25:molecules25235684. [PMID: 33276536 PMCID: PMC7730669 DOI: 10.3390/molecules25235684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.
Collapse
|
2
|
Manrique-Moreno M, Suwalsky M, Patiño-González E, Fandiño-Devia E, Jemioła-Rzemińska M, Strzałka K. Interaction of the antimicrobial peptide ∆M3 with the Staphylococcus aureus membrane and molecular models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183498. [PMID: 33157098 DOI: 10.1016/j.bbamem.2020.183498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is one of the most pathogenic bacteria; infections with it are associated with significant morbidity and mortality in health care facilities. Antimicrobial peptides are a promising next generation antibiotic with great potential against bacterial infections. In this study, evidence is presented of the biological and biophysical properties of the novel synthetic peptide ΔM3. Its antimicrobial activity against the ATCC 25923 and methicillin-resistant S. aureus strains was evaluated. The results showed that ΔM3 has activity in the same μM range as vancomycin. Biophysical studies were performed with palmitoyloleoylphosphatidylglycerol and cardiolipin liposomes loaded with calcein and used to follow the lytic activity of the peptide by fluorescence spectroscopy. On the other hand, ΔM3 was induced to interact with molecular models of the erythrocyte membrane buil-up of dimiristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative lipids of the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ΔM3 to interact with the bacteria and erythrocyte model membranes was also evaluated by X-ray diffraction and differential scanning calorimetry. The morphological changes induced by the peptide to human erythrocytes were observed by scanning electron microscopy. Results with these techniques indicated that ΔM3 interacted with the inner monolayer of the erythrocyte membrane, which is rich in anionic lipids. Additionally, the cytotoxic effects of ΔM3 on red blood cells were evaluated by monitoring the hemoglobin release from erythrocytes. The results obtained from these different approaches showed ΔM3 to be a non-cytotoxic peptide with antibacterial activity.
Collapse
Affiliation(s)
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | | | | | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| |
Collapse
|
3
|
Falanga A, Siciliano A, Vitiello M, Franci G, Del Genio V, Galdiero S, Guida M, Carraturo F, Fahmi A, Galdiero E. Ecotoxicity Evaluation of Pristine and Indolicidin-coated Silver Nanoparticles in Aquatic and Terrestrial Ecosystem. Int J Nanomedicine 2020; 15:8097-8108. [PMID: 33116520 PMCID: PMC7585781 DOI: 10.2147/ijn.s260396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metallic nanoparticles (NPs) are highly exploited in manufacturing and medical processes in a broad spectrum of industrial applications and in the academic sectors. Several studies have suggested that many metallic nanomaterials including those derived by silver (Ag) are entering the ecosystem to cause significant toxic consequences in cell culture and animal models. However, ecotoxicity studies are still receiving limited attention when designing functionalized and non.-functionalized AgNPs. OBJECTIVE This study aimed to investigate different ecotoxicological profiles of AgNPs, which were analyzed in two different states: in pristine form uncoated AgNPs and coated AgNPs with the antimicrobial peptide indolicidin. These two types of AgNPs are exploited for a set of different tests using Daphnia magna and Raphidocelis subcapitata, which are representatives of two different levels of the aquatic trophic chain, and seeds of Lepidium sativum, Cucumis sativus and Lactuca sativa. RESULTS Ecotoxicological studies showed that the most sensitive organism to AgNPs was crustacean D. magna, followed by R. subcapitata and plant seeds, while AgNPs coated with indolicidin (IndAgNPs) showed a dose-dependent decreased toxicity for all three. CONCLUSION The obtained results demonstrate that high ecotoxicity induced by AgNPs is strongly dependent on the surface chemistry, thus the presence of the antimicrobial peptide. This finding opens new avenues to design and fabricate the next generation of metallic nanoparticles to ensure the biosafety and risk of using engineered nanoparticles in consumer products.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Portici80055, Italy
| | | | - Mariateresa Vitiello
- Department of Clinical Pathology, Virology Unit, “San Giovanni di Dio e Ruggi d’Aragona Hospital”, Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Italy
| | - Valentina Del Genio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples80134, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples80134, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| | - Amir Fahmi
- Rhein-Waal University of Applied Sciences, KleveD-47533, Germany
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Naples80100, Italy
| |
Collapse
|
4
|
Pichia pastoris — recombinant enzyme producent for environment treatment — review. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2020-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Since environmental pollution is increasing, scientists try to find a sustainable way for its clean up and for environment protection. Due to increasing knowledge of genetics and recombinant technologies, recombinant enzymes have been increasingly applied for these purposes. This article deals with the possibilities of environmental treatment with different types of enzymes produced by P. pastoris. Environment is polluted mostly with pesticides, wastewaters, phenol compounds, plastics, toxic compounds, wastes from medical treatment, etc. All these compounds have to be eliminated considering the deteriorating biodiversity, human health, and condition of plants. Enzymes are an environmentally friendly way of such treatment.
Collapse
|
5
|
Tanhaeian A, Mirzaii M, Pirkhezranian Z, Sekhavati MH. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnol 2020; 20:19. [PMID: 32228563 PMCID: PMC7106598 DOI: 10.1186/s12896-020-00612-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Foodborne pathogens and their biofilms are considered as one of the most serious problems in human health and food industry. Moreover, safety of foods is a main global concern because of the increasing use of chemical food additives. Ensuring food safety enhances interest in discovery of new alternative compounds such as antimicrobial peptides (AMPs), which can be used as bio-preservatives in the food industry. In this study, the most important antimicrobial peptides of camel milk lactoferrin (lactoferrampin and lactoferricin) were recombinantly expressed in the form of chimeric peptide (cLFchimera) in a food-grade L. lactis strain. P170 expression system was used to express secreted cLFchimera using pAMJ1653 expression vector which harbors a safe (non-antibiotic) selectable marker. RESULTS Peptide purification was carried out using Ni-NTA agarose column from culture medium with concentration of 0.13 mg/mL. The results of disk diffusion test revealed that cLFchimera had considerable antimicrobial activity against a number of major foodborne bacteria. Furthermore, this chimeric peptide showed strong and weak inhibitory effect on biofilm formation against P. aeruginosa, S. aureus E. faecalis, and E. coli, respectively. Antioxidant activity and thermal stability of the chimeric peptide was determined. The results showed that cLFchimera had antioxidant activity (IC50: 310 μ/mL) and its activity was not affected after 40 min of boiling. Finally, we evaluated the interaction of the peptide with LPS and DNA in bacteria using molecular dynamic simulation as two main intra and extra cellular targets for AMPs, respectively. Our in silico analysis showed that cLFchimera had strong affinity to both of these targets by positive charged residues after 50 ns molecular dynamic simulation. CONCLUSIONS Overall, the engineered food-grade L. lactis generated in the present study successfully expressed a secreted chimeric peptide with antimicrobial properties and could be considered as a promising bio-preservative in the food industry.
Collapse
Affiliation(s)
- Abbas Tanhaeian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zana Pirkhezranian
- Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| |
Collapse
|
6
|
Antibacterial Activity of Indolicidin-Coated Silver Nanoparticles in Oral Disease. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(1) Background: In dentistry, silver nanoparticles (AgNPs) have progressively earned great interest as antimicrobial drugs and are widely used in several biomedical fields. Recent progress in the analysis of complex bacterial communities has demonstrated the richness of the oral microbiota and the presence of numerous previously unexplained strains. Several efforts have been dedicated to the investigation of antimicrobial peptides (AMPs). Those peptides are a widespread group of small peptides against invading microbes. We report the production of a hybrid molecule composed of AgNPs and indolicidin, a well-known antibacterial peptide. (2) Methods: Spectroscopy and microscopy were used to analyze the optical features and to determine the size of the generated AgNPs. The AgNP antibacterial activity was evaluated versus oral Gram-positive and Gram-negative bacteria. (3) Results: The coated nanoparticles’ antibacterial activity strongly inhibited the growth of microorganisms, with very low minimum inhibitory concentration (MIC) values in the range of 5–12.5 μg/mL. We hypothesize that this effect depended on the specific characteristics of the metal surface coated with indolicidin. The second result was that the coated nanoparticles observed cellular toxicity, was lower with respect to the toxicity of peptide and the naked AgNPs when used individually. (4) New investigations regarding antimicrobial effect of AgNPs coated with AMPs in oral infections are an urgent task.
Collapse
|
7
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Couto J, Tonk M, Ferrolho J, Antunes S, Vilcinskas A, de la Fuente J, Domingos A, Cabezas-Cruz A. Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks Tick Borne Dis 2018; 9:844-849. [PMID: 29567145 DOI: 10.1016/j.ttbdis.2018.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/20/2018] [Accepted: 03/10/2018] [Indexed: 01/10/2023]
Abstract
Malaria is a mosquito-borne disease affecting millions of people mainly in Sub-Saharan Africa, Asia and some South American countries. Drug resistance to first-line antimalarial drugs (e.g. chloroquine, sulfadoxine-pyrimethamine and artemisinin) is a major constrain in malaria control. Antimicrobial peptides (AMPs) have shown promising results in controlling Plasmodium spp. parasitemia in in vitro and in vivo models of infection. Defensins are AMPs that act primarily by disrupting the integrity of cell membranes of invasive microbes. We previously showed that defensins from the tick Ixodes ricinus inhibited significantly the growth of P. falciparum in vitro, a property that was conserved during evolution. Here, we tested the activity of three I. ricinus defensins against P. chabaudi in mice. A single dose of defensin (120 μl of 1 mg/ml solution) was administered intravenously to P. chabaudi-infected mice, and the parasitemia was followed for 24 h post-treatment. Defensin treatment inhibited significantly the replication (measured as increases in parasitemia) of P. chabaudi after 1 h and 12 h of treatment. Furthermore, defensin injection was not associated with toxicity. These results agreed with the previous report of antiplasmodial activity of tick defensins against P. falciparum in vitro and justify further studies for the use of tick defensins to control malaria.
Collapse
Affiliation(s)
- Joana Couto
- Global Health and Tropical Medicine - Instituto de Higiene e Medicina, Universidade Nova de Lisboa (GHMT-IHMT-UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Miray Tonk
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany
| | - Joana Ferrolho
- Global Health and Tropical Medicine - Instituto de Higiene e Medicina, Universidade Nova de Lisboa (GHMT-IHMT-UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Sandra Antunes
- Global Health and Tropical Medicine - Instituto de Higiene e Medicina, Universidade Nova de Lisboa (GHMT-IHMT-UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Ana Domingos
- Global Health and Tropical Medicine - Instituto de Higiene e Medicina, Universidade Nova de Lisboa (GHMT-IHMT-UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
9
|
Vineeth Kumar TPVK, Asha R, Shyla G, George S. Identification and characterization of novel host defense peptides from the skin secretion of the fungoid frog, Hydrophylax bahuvistara (Anura: Ranidae). Chem Biol Drug Des 2017; 92:1409-1418. [PMID: 28072492 DOI: 10.1111/cbdd.12937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
Two novel peptides (brevinin1 HYba1 and brevinin1 HYba2) were identified from the skin secretion of the frog Hydrophylax bahuvistara, endemic to Western Ghats, India, and their amino acid sequences were confirmed using cDNA cloning and LC/MS/MS. Antibacterial, hemolytic, and cytotoxic activities of brevinin1 peptides and their synthetic analogs (amidated C-terminus) were investigated and compared. All the peptides except the acidic forms showed antibacterial activity against all tested Gram-positive and Gram-negative bacteria. They exhibited low hemolysis on human erythrocytes and showed potent cytotoxic activity against Hep 3B cancer cell line. Upon amidation, the peptides showed increased activity against the tested microbes without altering their hemolytic and cytotoxic properties. The study also emphasizes the need for screening endemic amphibian fauna of Western Ghats, as a potential source of host defense peptides with possible therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Radhamony Asha
- Chemical Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Gopal Shyla
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanil George
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
Gusmão KAG, Dos Santos DM, Santos VM, Cortés ME, Reis PVM, Santos VL, Piló-Veloso D, Verly RM, de Lima ME, Resende JM. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions. J Venom Anim Toxins Incl Trop Dis 2017; 23:4. [PMID: 28115922 PMCID: PMC5244724 DOI: 10.1186/s40409-017-0094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/06/2017] [Indexed: 12/04/2022] Open
Abstract
Background The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Methods Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. Results The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. Conclusions The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0094-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karla A G Gusmão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil.,Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Janaúba, MG Brazil
| | - Daniel M Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Virgílio M Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - María Esperanza Cortés
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Pablo V M Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Vera L Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| |
Collapse
|
11
|
Liu X, Cao G, Wang Q, Yao X, Fang B. The effect of Bacillus coagulans-fermented and nonfermented Ginkgo biloba on the immunity status of broiler chickens. J Anim Sci 2016; 93:3384-94. [PMID: 26440007 DOI: 10.2527/jas.2015-8902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To evaluate and compare the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and nonfermented Ginkgo biloba (NFG) on the immunity status of broiler chickens, 180 1-d-old female Arbor Acres chicks were divided into 3 groups and fed either a basal diet, a basal diet supplemented with 0.3% NFG, or a basal diet supplemented with 0.3% FG. Blood samples were taken on the seventh (before vaccination), 14th, 21st, 28th and 35th day for the assessment of serum IL-18 and interferon γ (IFN-γ) levels by ELISA. In addition, Newcastle disease antibody titer analysis was made via hemagglutination and hemagglutination inhibition test methods. On d 35, 6 chickens from each group were sacrificed and the thymus, liver, spleen, small intestine (jejunum segment), cecum, and bursa of Fabricius from each chicken were removed for analysis. RNA was isolated for defensin expression detection by real-time PCR (q-PCR). The results showed that serum IL-18 and IFN-γ levels decreased after treatment with NFG and FG compared with untreated control chickens. The ND antibody titers did not differ significantly between the 3 groups on the seventh, 14th, 21st and 28th day; however, on the 35th day, the ND antibody titers of the NFG and FG chickens were both significantly higher than those of control group chickens. Defensin RNA expression levels were inhibited by NFG; however, they were induced by FG. In conclusion, fermentation of Ginkgo biloba with Bacillus coagulans can promote the beneficial effect of Gingko biloba on the immunity status of broiler chickens.
Collapse
|
12
|
Miyoshi N, Saito T, Ohmura T, Kuroda K, Suita K, Ihara K, Isogai E. Functional structure and antimicrobial activity of persulcatusin, an antimicrobial peptide from the hard tick Ixodes persulcatus. Parasit Vectors 2016; 9:85. [PMID: 26873587 PMCID: PMC4752739 DOI: 10.1186/s13071-016-1360-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023] Open
Abstract
Background Antimicrobial peptides (AMPs) are considered promising candidates for the development of novel anti-infective agents. In arthropods such as ticks, AMPs form the first line of defense against pathogens in the innate immune response. Persulcatusin (IP) was found in the Ixodes persulcatus midgut, and its amino acid sequence was reported. However, the complete structure of IP has not been identified. We evaluated the relation between structural features and antimicrobial activity of IP, and its potential as a new anti-methicillin-resistant Staphylococcus aureus (MRSA) agent. Methods The structure of IP was predicted using homology modeling and molecular dynamics. IP and other tick AMPs were synthesized using a solid-phase method and purified by high-performance liquid chromatography. Methicillin-susceptible S. aureus (MSSA) and MRSA were used for the minimum inhibitory concentration (MIC) test and short-time killing assay of IP and other tick peptides. The influence of IP on mammalian fibroblasts and colon epithelial cells and each cell DNA and its hemolytic activity towards human erythrocytes were also examined. Results In the predicted IP structure, the structure with an S-S bond was more stable than that without an S-S bond. The MIC after 24 h of incubation with IP was 0.156–1.25 μg/mL for MSSA and 0.625–2.5 μg/mL for MRSA. Compared with the mammalian antimicrobial peptide and other tick peptides, IP was highly effective against MRSA. Moreover, IP showed a dose-dependent bactericidal effect on both MSSA and MRSA after 1 h of incubation. IP had no observable effect on mammalian cell growth or morphology, on each cell DNA and on human erythrocytes. Conclusions We predicted the three-dimensional structure of IP and found that the structural integrity was maintained by three S-S bonds, which were energetically important for the stability and for forming α helix and β sheet. IP has cationic and amphipathic properties, which might be related to its antimicrobial activity. Furthermore, the antimicrobial activity of IP against MRSA was stronger than that of other antimicrobial peptides without apparent damage to mammalian and human cells, demonstrating its possible application as a new anti-MRSA medicine.
Collapse
Affiliation(s)
- Naruhide Miyoshi
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| | - Takeshi Saito
- Dassault Systemes Biovia K.K, Shinagawa-ku, Tokyo, Japan.
| | | | - Kengo Kuroda
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| | - Kazumasa Suita
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| | - Kohei Ihara
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| |
Collapse
|
13
|
Taute H, Bester MJ, Neitz AWH, Gaspar ARM. Investigation into the mechanism of action of the antimicrobial peptides Os and Os-C derived from a tick defensin. Peptides 2015. [PMID: 26215047 DOI: 10.1016/j.peptides.2015.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Os and Os-C are two novel antimicrobial peptides, derived from a tick defensin, which have been shown to have a larger range of antimicrobial activity than the parent peptide, OsDef2. The aim of this study was to determine whether the peptides Os and Os-C are mainly membrane acting, or if these peptides have possible additional intracellular targets in Escherichia coli and Bacillus subtilis. Transmission electron microscopy revealed that both peptides adversely affected intracellular structure of both bacteria causing different degrees of granulation of the intracellular contents. At the minimum bactericidal concentrations, permeabilization as determined with the SYTOX green assay seemed not to be the principle mode of killing when compared to melittin. However, fluorescent triple staining indicated that the peptides caused permeabilization of stationary phase bacteria and TEM indicated membrane effects. Studies using fluorescently labeled peptides revealed that the membrane penetrating activity of Os and Os-C was similar to buforin II. Os-C was found to associate with the septa of B. subtilis. Plasmid binding studies showed that Os and Os-C binds E. coli plasmid DNA at a similar charge ratio as melittin. These studies suggest membrane activity for Os and Os-C with possible intracellular targets such as DNA. The differences in permeabilization at lower concentrations and binding to DNA between Os and Os-C, suggest that the two peptides have dissimilar modes of action.
Collapse
Affiliation(s)
- Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0002, South Africa.
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0002, South Africa
| | - Albert W H Neitz
- Department of Biochemistry, Faculty of Natural Sciences, University of Pretoria, 0002, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Faculty of Natural Sciences, University of Pretoria, 0002, South Africa
| |
Collapse
|
14
|
Yi T, Sun S, Huang Y, Chen Y. Prokaryotic expression and mechanism of action of α-helical antimicrobial peptide A20L using fusion tags. BMC Biotechnol 2015; 15:69. [PMID: 26238108 PMCID: PMC4523955 DOI: 10.1186/s12896-015-0189-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Antimicrobial peptides have become important candidates as new antibiotics against resistant bacterial strains. However, the major industrial manufacture of antimicrobial peptides is chemical synthesis with high costs and in relatively small scale. The Ub-tag and SUMO-tag are useful for increasing the yield of enzymes and other proteins in expression system. In this study, antimicrobial peptide A20L (KWKSFLKTFKSAKKTVLHTLLKAISS), a derivative of V13K in the previous study is used as a template to be expressed in different Ub-tag and human SUMO tag systems to compare the prokaryotic expression approaches of antimicrobial peptide. The antibacterial mechanism of action and membrane specificity of A20L was further studied. METHODS We fused the Ub and SUMO1/2/3/4 with A20L to construct expression plasmids. Ub-A20L and SUMO1/2/34 gene sequences were inserted into the pHUE plasmids and pET-28b+ plasmids, respectively, to construct pHUE-A20L plasmids and pET-28b+-SUMO1/2/3/4-A20L plasmids. These plasmids were transformed into E. coli Rosetta (DE3) and induced with IPTG to express Ub-A20L and SUMO1/2/3/4 fusion proteins. The recombinant proteins were found in the soluble fraction after being over expressed in E. coli Rosetta (DE3). Antibacterial and hemolytic activities and membrane permeabilization ability of A20L were determined. Peptide structure was also studied by circular dichroism experiments. RESULTS A20L (KWKSFLKTFKSAKKTVLHTLLKAISS) was successfully expressed by fusion with an ubiquitin tag (Ub-tag) and human SUMO tags (SUMO1/2/3/4-tags). A20L exhibited antimicrobial activity against various Gram-negative and Gram-positive bacteria. Based on the hemolytic activity against human red blood cells, A20L showed good specificity against bacteria. The circular dichroism experiments illustrated that A20L was transferred into an α-helical structure in the presence of hydrophobic environment. The antibacterial mechanism of action and membrane specificity of A20L was further studied using membrane permeabilization experiments and tryptophan fluorescence and quenching experiments in liposomes. CONCLUSIONS The Ub-tag and human SUMO-tags represent good alternatives to chemical synthesis for the industrial production of antimicrobial peptides with low costs and high yields. The antibacterial mechanism of action of A20L was proved as membrane disruption. A20L showed stronger specificity on liposomes mimicking bacterial membrane than those mimicking eukaryotic cell membrane, which is consistent with the biological activity studies.
Collapse
Affiliation(s)
- Tonghui Yi
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Shiyu Sun
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China. .,School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Galdiero E, Maselli V, Falanga A, Gesuele R, Galdiero S, Fulgione D, Guida M. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:145-152. [PMID: 25884346 DOI: 10.1016/j.envpol.2015.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy.
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| |
Collapse
|
16
|
Alliband A, Wang Z, Thacker C, English DS, Burns DH. Developing a targeting system for bacterial membranes: measuring receptor-phosphatidylglycerol interactions with1H NMR, ITC and fluorescence correlation spectroscopy. Org Biomol Chem 2015; 13:502-12. [DOI: 10.1039/c4ob01895h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the development of a potential targeting system for bacterial membranes containing phosphatidylglycerol.
Collapse
Affiliation(s)
| | - Zifan Wang
- Department of Chemistry
- Wichita State University
- Wichita
- USA
| | | | | | | |
Collapse
|
17
|
Alkotaini B, Anuar N, Kadhum AAH. Evaluation of morphological changes of Staphylococcus aureus and Escherichia coli induced with the antimicrobial peptide AN5-1. Appl Biochem Biotechnol 2014; 175:1868-78. [PMID: 25427593 DOI: 10.1007/s12010-014-1410-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
Collapse
Affiliation(s)
- Bassam Alkotaini
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia,
| | | | | |
Collapse
|
18
|
Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12:1477-86. [DOI: 10.1586/14787210.2014.976613] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:73-80. [PMID: 25374459 PMCID: PMC4213192 DOI: 10.4137/pmc.s13215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure.
Collapse
Affiliation(s)
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Lü X, Hu P, Dang Y, Liu B. Purification and partial characterization of a novel bacteriocin produced by Lactobacillus casei TN-2 isolated from fermented camel milk (Shubat) of Xinjiang Uygur Autonomous region, China. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Balhara V, Schmidt R, Gorr SU, DeWolf C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2193-203. [DOI: 10.1016/j.bbamem.2013.05.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/27/2023]
|
22
|
Kong L, Harrington L, Li Q, Cheley S, Davis BG, Bayley H. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat Chem 2013; 5:651-9. [DOI: 10.1038/nchem.1695] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 05/24/2013] [Indexed: 11/09/2022]
|
23
|
Prinsloo L, Naidoo A, Serem J, Taute H, Sayed Y, Bester M, Neitz A, Gaspar A. Structural and functional characterization of peptides derived from the carboxy-terminal region of a defensin from the tick Ornithodoros savignyi. J Pept Sci 2013; 19:325-32. [PMID: 23553969 DOI: 10.1002/psc.2505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
Abstract
Tick defensins may serve as templates for the development of multifunctional peptides. The purpose of this study was to evaluate shorter peptides derived from tick defensin isoform 2 (OsDef2) in terms of their antibacterial, antioxidant, and cytotoxic activities. We compared the structural and functional properties of a synthetic peptide derived from the carboxy-terminal of the parent peptide (Os) to that of an analogue in which the three cysteine residues were omitted (Os-C). Here, we report that both peptides were bactericidal (MBC values ranging from 0.94-15 µg/ml) to both Gram-positive and Gram-negative bacteria, whereas the parent peptide only exhibited Gram-positive antibacterial activity. The Os peptide was found to be two-fold more active than Os-C against three of the four tested bacteria but equally active against Staphylococcus aureus. Os showed rapid killing kinetics against both Escherichia coli and Bacillus subtilis, whereas Os-C took longer, suggesting different modes of action. Scanning electron microscopy showed that in contrast to melittin for which blebbing of bacterial surfaces was observed, cells exposed to either peptide appeared flattened and empty. Circular dichroism data indicated that in a membrane-mimicking environment, the cysteine-containing peptide has a higher α-helical content. Both peptides were found to be non-toxic to mammalian cells. Moreover, the peptides displayed potent antioxidant activity and were 12 times more active than melittin. Multifunctional peptides hold potential for a wide range of clinical applications and further investigation into their mode of antibacterial and antioxidant properties is therefore warranted.
Collapse
Affiliation(s)
- Lezaan Prinsloo
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Alkotaini B, Anuar N, Kadhum AAH, Sani AAA. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J Ind Microbiol Biotechnol 2013; 40:571-9. [PMID: 23508455 PMCID: PMC3656248 DOI: 10.1007/s10295-013-1259-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/04/2013] [Indexed: 11/07/2022]
Abstract
An antimicrobial substance produced by the Paenibacillus alvei strain AN5 was detected in fermentation broth. Subsequently, cell-free culture supernatant (CFCS) was obtained by medium centrifugation and filtration, and its antimicrobial activity was tested. This showed a broad inhibitory spectrum against both Gram-positive and -negative bacterial strains. The CFCS was then purified and subjected to SDS-PAGE and infrared spectroscopy, which indicated the proteinaceous nature of the antimicrobial compound. Some de novo sequencing using an automatic Q-TOF premier system determined the amino acid sequence of the purified antimicrobial peptide as Y-S-K-S-L-P-L-S-V-L-N-P (1,316 Da). The novel peptide was designated as peptide AN5-1. Its mode of action was bactericidal, inducing cell lysis in E. coli ATCC 29522 and S. aureus, and non-cell lysis in both S. marcescens and B. cereus ATCC 14579. Peptide AN5-1 displayed stability at a wide range of pH values (2–12) and remained active after exposure to high temperatures (100 °C). It also maintained its antimicrobial activity after incubation with chemicals such as SDS, urea and EDTA.
Collapse
Affiliation(s)
- Bassam Alkotaini
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
25
|
Alliband A, Meece FA, Jayasinghe C, Burns DH. Synthesis and Characterization of Picket Porphyrin Receptors That Bind Phosphatidylglycerol, an Anionic Phospholipid Found in Bacterial Membranes. J Org Chem 2013; 78:356-62. [DOI: 10.1021/jo302228w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda Alliband
- Department
of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Frederick A. Meece
- Department
of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Champika Jayasinghe
- Department
of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Dennis H. Burns
- Department
of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
26
|
Bentley-Hewitt KL, Blatchford PA, Parkar SG, Ansell J, Pernthaner A. Digested and fermented green kiwifruit increases human β-defensin 1 and 2 production in vitro. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:208-214. [PMID: 22872469 DOI: 10.1007/s11130-012-0305-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intestinal mucosa is constantly exposed to a variety of microbial species including commensals and pathogens, the latter leaving the host susceptible to infection. Antimicrobial peptides (AMP) are an important part of the first line of defense at mucosal surfaces. Human β-defensins (HBD) are AMP expressed by colonic epithelial cells, which act as broad spectrum antimicrobials. This study explored the direct and indirect effects of green kiwifruit (KF) on human β-defensin 1 and 2 (HBD-1 and 2) production by epithelial cells. In vitro digestion of KF pulp consisted of a simulated gastric and duodenal digestion, followed by colonic microbial fermentation using nine human faecal donors. Fermenta from individual donors was sterile filtered and independently added to epithelial cells prior to analysis of HBD protein production. KF products obtained from the gastric and duodenal digestion had no effect on the production of HBD-1 or 2 by epithelial cells, demonstrating that KF does not contain substances that directly modulate defensin production. However, when the digested KF products were further subjected to in vitro colonic fermentation, the fermentation products significantly up-regulated HBD-1 and 2 production by the same epithelial cells. We propose that this effect was predominantly mediated by the presence of short-chain fatty acids (SCFA) in the fermenta. Exposure of cells to purified SCFA confirmed this and HBD-1 and 2 production was up-regulated with acetate, propionate and butyrate. In conclusion, in vitro colonic fermentation of green kiwifruit digest appears to prime defense mechanisms in gut cells by enhancing the production of antimicrobial defensins.
Collapse
Affiliation(s)
- Kerry L Bentley-Hewitt
- Food and Nutrition, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
27
|
Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 2012; 8:1670-84. [PMID: 22289644 DOI: 10.1016/j.actbio.2012.01.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring.
Collapse
Affiliation(s)
- K Glinel
- Institute of Condensed Matter and Nanosciences (Bio- and Soft Matter), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|