1
|
Korshunova T, Kuzina E, Mukhamatdyarova S, Iskuzhina M, Kulbaeva L, Petrova S. Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3560. [PMID: 39771258 PMCID: PMC11678539 DOI: 10.3390/plants13243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera Pseudomonas and Acinetobacter, which exhibited a high degree of oil biodegradation (72-96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid. The presence of pollutants affected the growth-stimulating properties of bacteria in different ways. The most promising strain P. citronellolis N2 was used alone and together with oat and lupine plants for soil remediation of oil, including herbicide-treated oil-contaminated soil. Combined contamination was more toxic to plants and soil microorganisms. Bacterization stimulated the formation of chlorophyll and suppressed the synthesis of abscisic acid and malonic dialdehyde in plant tissues. The combined use of bacteria and oat plants most effectively reduced the content of hydrocarbons in the soil (including in the presence of herbicides). The results obtained can be used to develop new methods for bioremediation of soils with polychemical pollution.
Collapse
Affiliation(s)
- Tatyana Korshunova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Elena Kuzina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Svetlana Mukhamatdyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Milyausha Iskuzhina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Liliya Kulbaeva
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (E.K.); (S.M.); (M.I.); (L.K.)
| | - Svetlana Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia;
| |
Collapse
|
2
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Schottlender G, Prieto JM, Clemente C, Schuster CD, Dumas V, Fernández Do Porto D, Martí MA. Bacterial cytochrome P450s: a bioinformatics odyssey of substrate discovery. Front Microbiol 2024; 15:1343029. [PMID: 38384262 PMCID: PMC10879549 DOI: 10.3389/fmicb.2024.1343029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Bacterial P450 cytochromes (BacCYPs) are versatile heme-containing proteins responsible for oxidation reactions on a wide range of substrates, contributing to the production of valuable natural products with limitless biotechnological potential. While the sequencing of microbial genomes has provided a wealth of BacCYP sequences, functional characterization lags behind, hindering our understanding of their roles. This study employs a comprehensive approach to predict BacCYP substrate specificity, bridging the gap between sequence and function. We employed an integrated approach combining sequence and functional data analysis, genomic context exploration, 3D structural modeling with molecular docking, and phylogenetic clustering. The research begins with an in-depth analysis of BacCYP sequence diversity and structural characteristics, revealing conserved motifs and recurrent residues in the active site. Phylogenetic analysis identifies distinct groups within the BacCYP family based on sequence similarity. However, our study reveals that sequence alone does not consistently predict substrate specificity, necessitating additional perspectives. The study delves into the genetic context of BacCYPs, utilizing neighboring gene information to infer potential substrates, a method proven very effective in many cases. Molecular docking is employed to assess BacCYP-substrate interactions, confirming potential substrates and providing insights into selectivity. Finally, a comprehensive strategy is proposed for predicting BacCYP substrates, involving all the evaluated approaches. The effectiveness of this strategy is demonstrated with two case studies, highlighting its potential for substrate discovery.
Collapse
Affiliation(s)
- Gustavo Schottlender
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Manuel Prieto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Camila Clemente
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Claudio David Schuster
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Victoria Dumas
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| |
Collapse
|
4
|
Liu C, Zhao C, Wang L, Du X, Zhu L, Wang J, Mo Kim Y, Wang J. Biodegradation mechanism of chlorpyrifos by Bacillus sp. H27: Degradation enzymes, products, pathways and whole genome sequencing analysis. ENVIRONMENTAL RESEARCH 2023; 239:117315. [PMID: 37805180 DOI: 10.1016/j.envres.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Chlorpyrifos (CP) is a pesticide widely used in agricultural production. However, excessive use of CP is risky for human health and the ecological environment. Microbial remediation has become a research hotspot of environmental pollution control. In this study, the effective CP-degrading strain H27 (Bacillus cereus) was screened from farmland soil, and the degradation ratio was more than 80%. Then, the degradation mechanism was discussed in terms of enzymes, pathways, products and genes, and the mechanism was improved in terms of cell motility, secretory transport system and biofilm formation. The key CP-degrading enzymes were mainly intracellular enzymes (IE), and the degradation ratio reached 49.6% within 30 min. The optimal pH for IE was 7.0, and the optimal temperature was 25 °C. Using DFT and HPLC‒MS analysis, it was found that degradation mainly involved oxidation, hydrolysis and other reactions, and 3 degradation pathways and 14 products were identified, among which TCP (3,5,6-trichloro-2-pyridinol) was the main primary degradation product in addition to small molecules such as CO2 and H2O. Finally, the whole genome of strain H27 was sequenced, and the related degrading genes and enzymes were investigated to improve the metabolic pathways. Strain H27 had perfect genes related to flagellar assembly and chemotaxis and tended to tolerate CP. Moreover, it can secrete esterase, phosphatase and other substances, which can form biofilms and degrade CP in the environment. In addition, CP enters the cell under the action of permeases or transporters, and it is metabolized by IE. The degradation mechanism of CP by strain H27 is speculated in this study, which provided a theoretical basis for enriching CP-degrading bacteria resources, improving degradation metabolic pathways and mechanisms, and applying strain H27 to environmental pollution remediation.
Collapse
Affiliation(s)
- Changrui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Changyu Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Xiaomin Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
6
|
Dornelas-Figueira LM, Ricomini Filho AP, Junges R, Åmdal HA, Cury AADB, Petersen FC. In Vitro Impact of Fluconazole on Oral Microbial Communities, Bacterial Growth, and Biofilm Formation. Antibiotics (Basel) 2023; 12:1433. [PMID: 37760729 PMCID: PMC10525723 DOI: 10.3390/antibiotics12091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Antifungal agents are widely used to specifically eliminate infections by fungal pathogens. However, the specificity of antifungal agents has been challenged by a few studies demonstrating antibacterial inhibitory effects against Mycobacteria and Streptomyces species. Here, we evaluated for the first time the potential effect of fluconazole, the most clinically used antifungal agent, on a human oral microbiota biofilm model. The results showed that biofilm viability on blood and mitis salivarius agar media was increased over time in the presence of fluconazole at clinically relevant concentrations, despite a reduction in biomass. Targeted PCR revealed a higher abundance of Veillonella atypica, Veillonella dispar, and Lactobacillus spp. in the fluconazole-treated samples compared to the control, while Fusobacterium nucleatum was reduced and Streptococcus spp were not significantly affected. Further, we tested the potential impact of fluconazole using single-species models. Our results, using Streptococcus mutans and Streptococcus mitis luciferase reporters, showed that S. mutans planktonic growth was not significantly affected by fluconazole, whereas for S. mitis, planktonic growth, but not biofilm viability, was inhibited at the highest concentration. Fluconazole's effects on S. mitis biofilm biomass were concentration and time dependent. Exposure for 48 h to the highest concentration of fluconazole was associated with S. mitis biofilms with the most increased biomass. Potential growth inhibitory effects were further tested using four non-streptococcal species. Among these, the planktonic growth of both Escherichia coli and Granulicatella adiacens was inhibited by fluconazole. The data indicate bacterial responses to fluconazole that extend to a broader range of bacterial species than previously anticipated from the literature, with the potential to disturb biofilm communities.
Collapse
Affiliation(s)
- Louise Morais Dornelas-Figueira
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Antônio Pedro Ricomini Filho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | | |
Collapse
|
7
|
Liu LH, Zhang JY, Tang GX, Huang YH, Xie XQ, Geng J, Lü HX, Li H, Li YW, Mo CH, Zhao HM, Cai QY. Endophytic Phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130993. [PMID: 36812730 DOI: 10.1016/j.jhazmat.2023.130993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Endophytic bacteria can degrade toxic phthalate (PAEs). Nevertheless, the colonization and function of endophytic PAE-degrader in soil-crop system and their association mechanism with indigenous bacteria in PAE removal remain unknown. Here, endophytic PAE-degrader Bacillus subtilis N-1 was marked with green fluorescent protein gene. Inoculated strain N-1-gfp could well colonize in soil and rice plant exposed to di-n-butyl phthalate (DBP) as directly confirmed by confocal laser scanning microscopy and realtime PCR. Illumina high-throughput sequencing demonstrated that inoculated N-1-gfp shifted indigenous bacterial community in rhizosphere and endosphere of rice plants with significant increasing relative abundance of its affiliating genus Bacillus than non-inoculation. Strain N-1-gfp exhibited efficient DBP degradation with 99.7% removal in culture solutions, and significantly promoted DBP removal in soil-plant system. Strain N-1-gfp colonization help plant enrich specific functional bacteria (e.g., pollutant-degrading bacteria) with significant higher relative abundances and stimulated bacterial activities (e.g., pollutant degradation) compared with non-inoculation. Furthermore, strain N-1-gfp displayed strong interaction with indigenous bacteria for accelerating DBP degradation in soil, decreasing DBP accumulation in plants and promoting plant growth. This is the first report on well colonization of endophytic DBP-degrader Bacillus subtilis in soil-plant system and its bioaugmentation with indigenous bacteria for promoting DBP removal.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang-Qing Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui-Xiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Baek JH, Kim KH, Lee Y, Jeong SE, Jin HM, Jia B, Jeon CO. Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118890. [PMID: 35085657 DOI: 10.1016/j.envpol.2022.118890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Hyun Mi Jin
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Liu LH, Yuan T, Zhang JY, Tang GX, Lü H, Zhao HM, Li H, Li YW, Mo CH, Tan ZY, Cai QY. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150310. [PMID: 34583082 DOI: 10.1016/j.scitotenv.2021.150310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) accumulated in agricultural soils and rice have increased human exposure risks. Microbial degradation could efficiently reduce the residue of organic pollutants in soil and crop plants. Here, we hypothesized that endophytic bacteria from wild rice have the potential for degradation of PAEs and plant growth promoting. The endophytic bacterial community and functional diversity in wild rice (Oryza meridionalis) were analyzed for the first time, and the potential for PAE degradation and plant growth promoting by endophytes were investigated. The results of Illumina high-throughput sequencing revealed that abundant endophytes inhabited in wild rice with Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria being the dominant phyla. Endophytic bacterial diversity and complexity were confirmed by isolation and clustering of isolates. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that endophytes exerted diverse functions such as plant growth promoting, xenobiotics biodegradation, pollution remediation and bacterial chemotaxis. Pure culture experiment showed that 30 isolated endophytic strains exhibited in vitro plant growth promoting activities, and rice plants inoculated with these strains confirmed their growth promoting abilities. Some endophytic strains were capable of efficiently degrading PAEs, with the highest removal percentage of di-n-butyl phthalate (DBP) up to 96.1% by Bacillus amyloliquefaciens strain L381 within 5 days. Synthetic community F and strain L381 rapidly removed DBP from soil (removing 91.0%-99.2% within 10 d and from rice plant slurry (removing 93.4%-99.2% within 5 d). These results confirmed the hypothesis and demonstrated the diversity of endophytic bacteria in wild rice with diverse functions, especially for plant growth promoting and removing PAEs. These multifunctional endophytic bacteria provided good alternatives to reduce PAE accumulation in crops and increase yield.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yuan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi-Yuan Tan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
11
|
Meng D, Zhang L, Meng J, Tian Q, Zhai L, Hao Z, Guan Z, Cai Y, Liao X. Evaluation of the Strain Bacillus amyloliquefaciens YP6 in Phoxim Degradation via Transcriptomic Data and Product Analysis. Molecules 2019; 24:molecules24213997. [PMID: 31694203 PMCID: PMC6864786 DOI: 10.3390/molecules24213997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Phoxim, a type of organophosphorus pesticide (OP), is widely used in both agriculture and fisheries. The persistence of phoxim has caused serious environmental pollution problems. In this study, Bacillus amyloliquefaciens YP6 (YP6), which is capable of promoting plant growth and degrading broad-spectrum OPs, was used to study phoxim degradation. Different culture media were applied to evaluate the growth and phoxim degradation of YP6. YP6 can grow rapidly and degrade phoxim efficiently in Luria-Bertani broth (LB broth) medium. Furthermore, it can also utilize phoxim as the sole phosphorus source in a mineral salt medium. Response surface methodology was performed to optimize the degradation conditions of phoxim by YP6 in LB broth medium. The optimum biodegradation conditions were 40 °C, pH 7.20, and an inoculum size of 4.17% (v/v). The phoxim metabolites, O,O-diethylthiophosphoric ester, phoxom, and α-cyanobenzylideneaminooxy phosphonic acid, were confirmed by liquid chromatography-mass spectrometry. Meanwhile, transcriptome analysis and qRT-PCR were performed to give insight into the phoxim-stress response at the transcriptome level. The hydrolase-, oxidase-, and NADPH-cytochrome P450 reductase-encoding genes were significantly upregulated for phoxim hydrolysis, sulfoxidation, and o-dealkylation. Furthermore, the phoxim biodegradation pathways by YP6 were proposed, for the first time, based on transcriptomic data and product analysis.
Collapse
Affiliation(s)
- Di Meng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Liyuan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Jie Meng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forest and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Zhikui Hao
- Institute of Applied Biotechnology, Taizhou Vocational & Technical College, Taizhou 318000, China;
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.M.); (L.Z.); (Q.T.); (L.Z.); (Z.G.); (Y.C.)
- Correspondence: ; Tel.: +86-13771104596; Fax: +86-0551-85327725
| |
Collapse
|
12
|
Sazykin I, Makarenko M, Khmelevtsova L, Seliverstova E, Rakin A, Sazykina M. Cyclohexane, naphthalene, and diesel fuel increase oxidative stress, CYP153, sodA, and recA gene expression in Rhodococcus erythropolis. Microbiologyopen 2019; 8:e00855. [PMID: 31119875 PMCID: PMC6816061 DOI: 10.1002/mbo3.855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022] Open
Abstract
In this study, we compared the expression of CYP153, sodA, sodC, and recA genes and ROS generation in hydrocarbon-degrading Rhodococcus erythropolis in the presence of cyclohexane, naphthalene, and diesel fuel. The expression of cytochrome P450, sodA (encoding Fe/Mn superoxide dismutase), recA, and superoxide anion radical generation rate increased after the addition of all studied hydrocarbons. The peak of CYP153, sodA, and recA gene expression was registered in the presence of naphthalene. The same substrate upregulated the Cu/Zn superoxide dismutase gene, sodC. Cyclohexane generated the highest level of superoxide anion radical production. Hydrogen peroxide accumulated in the medium enriched with diesel fuel. Taken together, hydrocarbon biotransformation leads to oxidative stress and upregulation of antioxidant enzymes and CYP153 genes, and increases DNA reparation levels in R. erythropolis cells.
Collapse
Affiliation(s)
- Ivan Sazykin
- Southern Federal University, Rostov-on-Don, Russian Federation
| | | | | | | | - Alexander Rakin
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Marina Sazykina
- Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
13
|
Oxylipins mediate cell-to-cell communication in Pseudomonas aeruginosa. Commun Biol 2019; 2:66. [PMID: 30793044 PMCID: PMC6377657 DOI: 10.1038/s42003-019-0310-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Oxygenated unsaturated fatty acids, known as oxylipins, are signaling molecules commonly used for cell-to-cell communication in eukaryotes. However, a role for oxylipins in mediating communication in prokaryotes has not previously been described. Bacteria mainly communicate via quorum sensing, which involves the production and detection of diverse small molecules termed autoinducers. Here we show that oleic acid-derived oxylipins produced by Pseudomonas aeruginosa function as autoinducers of a novel quorum sensing system. We found that this system controls the cell density-dependent expression of a gene subset independently of the quorum sensing systems thus far described in this bacterium. We identified a LysR-type transcriptional regulator as the primary receptor of the oxylipin signal. The discovery of this oxylipin-dependent quorum sensing system reveals that prokaryote-derived oxylipins also mediate cell-to-cell communication in bacteria. Eriel Martínez et al. report that the bacterial pathogen Pseudomonas aeruginosa can convert oleic acids into oxylipins for use in cell-cell communication. This quorum sensing system is regulated by the bacterial protein called oxylipin-dependent diol synthase regulator OdsR.
Collapse
|
14
|
Albertolle ME, Peter Guengerich F. The relationships between cytochromes P450 and H 2O 2: Production, reaction, and inhibition. J Inorg Biochem 2018; 186:228-234. [PMID: 29990746 PMCID: PMC6084448 DOI: 10.1016/j.jinorgbio.2018.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022]
Abstract
In this review we address the relationship between cytochromes P450 (P450) and H2O2. This association can affect biology in three distinct ways. First, P450s produce H2O2 as a byproduct either during catalysis or when no substrate is present. This reaction, known as uncoupling, releases reactive oxygen species that may have implications in disease. Second, H2O2 is used as an oxygen-donating co-substrate in peroxygenase and peroxidase reactions catalyzed by P450s. This activity has proven to be important mainly in reactions involving prokaryotic P450s, and investigators have harnessed this reaction with the aim of adaptation for industrial use. Third, H2O2-dependent inhibition of human P450s has been studied in our laboratory, demonstrating heme destruction and also the inactivating oxidation of the heme-thiolate ligand to a sulfenic acid (-SOH). This reversible oxidative modification of P450s may have implications in the prevention of uncoupling and may give new insights into the oxidative regulation of these enzymes. Research has elucidated many of the chemical mechanisms involved in the relationship between P450 and H2O2, but the application to biology is difficult to evaluate. Further studies are needed reveal both the harmful and protective natures of reactive oxygen species in an organismal context.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States.
| |
Collapse
|