1
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
2
|
Wang L, Zhang J, Wang R, Huang Z, Cui R, Zhu H, Yang Y, Zhang D. Genome-wide identification, evolution, and expression analysis of carbonic anhydrases genes in soybean (Glycine max). Funct Integr Genomics 2023; 23:37. [PMID: 36639600 DOI: 10.1007/s10142-023-00966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Carbonic anhydrases (CAs), as zinc metalloenzymes, are ubiquitous in nature and play essential roles in diverse biological processes. Although CAs have been broadly explored and studied, comprehensive characteristics of CA gene family members in the soybean (Glycine max) are still lacking. A total of 35 CA genes (GmCAs) were identified; they distributed on sixteen chromosomes of the soybean genome and can be divided into three subfamilies (α-type, β-type, and γ-type). Bioinformatics analysis showed that the specific GmCA gene subfamily or clade exhibited similar characteristics and that segmental duplications took the major role in generating new GmCAs. Furthermore, the synteny and evolutionary constraints analyses of CAs among soybean and distinct species provided more detailed evidence for GmCA gene family evolution. Cis-element analysis of promoter indicated that GmCAs may be responsive to abiotic stress and regulate photosynthesis. Moreover, the expression patterns of GmCAs varied in different tissues at diverse developmental stages in soybean. Additionally, we found that eight representative GmCAs may be involved in the response of soybean to low phosphorus stress. The systematic investigation of the GmCA gene family in this study will provide a valuable basis for further functional research on soybean CA genes.
Collapse
Affiliation(s)
- Li Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinyu Zhang
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Langella E, Di Fiore A, Alterio V, Monti SM, De Simone G, D’Ambrosio K. α-CAs from Photosynthetic Organisms. Int J Mol Sci 2022; 23:ijms231912045. [PMID: 36233343 PMCID: PMC9570166 DOI: 10.3390/ijms231912045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze the reversible carbon dioxide hydration reaction. Among the eight different CA classes existing in nature, the α-class is the largest one being present in animals, bacteria, protozoa, fungi, and photosynthetic organisms. Although many studies have been reported on these enzymes, few functional, biochemical, and structural data are currently available on α-CAs isolated from photosynthetic organisms. Here, we give an overview of the most recent literature on the topic. In higher plants, these enzymes are engaged in both supplying CO2 at the Rubisco and determining proton concentration in PSII membranes, while in algae and cyanobacteria they are involved in carbon-concentrating mechanism (CCM), photosynthetic reactions and in detecting or signaling changes in the CO2 level in the environment. Crystal structures are only available for three algal α-CAs, thus not allowing to associate specific structural features to cellular localizations or physiological roles. Therefore, further studies on α-CAs from photosynthetic organisms are strongly needed to provide insights into their structure–function relationship.
Collapse
|
4
|
Rudenko NN, Ignatova LK, Naydov IA, Novichkova NS, Ivanov BN. Effect of CO2 Content in Air on the Activity of Carbonic Anhydrases in Cytoplasm, Chloroplasts, and Mitochondria and the Expression Level of Carbonic Anhydrase Genes of the α- and β-Families in Arabidopsis thaliana Leaves. PLANTS 2022; 11:plants11162113. [PMID: 36015416 PMCID: PMC9414674 DOI: 10.3390/plants11162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, βCA1, βCA2, βCA3, βCA4, βCA5, and βCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of βCA1, and other cytoplasmic CAs, βCA2, βCA3, and βCA4, as well as of the chloroplast CAs, βCA5, and the stromal forms of βCA1 in a short-term range 1–2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial βCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.
Collapse
|
5
|
Qi Y, Yang X, Jia S, Shen B, Zhao J, Wan Y, Zhong H. A Soft Evaporation and Ionization Technique for Mass Spectrometric Analysis and Bio-Imaging of Metal Ions in Plants Based on Metal-Iodide Cluster Ionization. Anal Chem 2021; 93:15597-15606. [PMID: 34762390 DOI: 10.1021/acs.analchem.1c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protonation/deprotonation is the well-recognized mass spectrometric mechanism in matrix-assisted laser desorption ionization of organic molecules but not for metal ions with different oxidation states. We describe herein a soft evaporation and ionization technique for metal ions based on iodination/de-iodination in metal-iodide cluster ionization (MICI). It is not only able to determine identities and oxidation states of metal ions but also reveal spatial distributions and isotope ratios in response to physiological or environmental changes. A long chain alcohol 1-tetradecanol with no functional groups that can absorb laser irradiation was used to cover and prevent samples from direct laser ablation. Upon the irradiation of the third harmonic Nd3+:YAG (355 nm, 3 ns), iohexol containing three covalently bonded iodine atoms instantly generates negative iodide ions that can quantitatively form clusters with at least 14 essential metal ions present in plants. The detection limits vary with different metal ions down to low fmol. MICI eliminates the atomization process that obscures metal charges in inductively coupled plasma mass spectrometry. Because only metal ions can be iodinated with iohexol, interferences from the abundant organic molecules of plants that are confronted by secondary ion mass spectrometry (SIMS) are also greatly decreased.
Collapse
Affiliation(s)
- Yinghua Qi
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Xiaojie Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Jiaxing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yuchen Wan
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
6
|
Rudenko NN, Ivanov BN. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1243-1255. [PMID: 34903154 DOI: 10.1134/s0006297921100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
7
|
Shukshina AK, Terentyev VV. Involvement of Carbonic Anhydrase CAH3 in the Structural and Functional Stabilization of the Water-Oxidizing Complex of Photosystem II from Chlamydomonas reinhardtii. BIOCHEMISTRY (MOSCOW) 2021; 86:867-877. [PMID: 34284710 DOI: 10.1134/s0006297921070075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The involvement of carbonic anhydrases (CA) and CA activity in the functioning of photosystem II (PSII) has been studied for a long time and has been shown in many works. However, so far only for CAH3 from Chlamydomonas reinhardtii there is evidence for its association with the donor side of PSII, where the CA activity of CAH3 can influence the functioning of the water-oxidizing complex (WOC). Our results suggest that CAH3 is also involved in the organization of the native structure of WOC independently of its CA activity. It was shown that in PSII preparations from wild type (WT) the high O2-evolving activity of WOC was observed up to 100 mM NaCl in the medium and practically did not decrease with increasing incubation time with NaCl. At the same time, the WOC function in PSII preparations from CAH3-deficient mutant cia3 is significantly inhibited already at NaCl concentrations above 35 mM, reaching 50% at 100 mM NaCl and increased incubation time. It is suggested that the absence of CAH3 in PSII from cia3 causes disruption of the native structure of WOC, allowing more pronounced conformational changes of its proteins and, consequently, suppression of the WOC active center function, when the ionic strength of the medium is increased. The results of Western blot analysis indicate a more difficult removal of PsbP protein from PSII of cia3 at higher NaCl concentrations, apparently due to the changes in the intermolecular interactions between proteins of WOC in the absence of CAH3. At the same time, the values of the maximum quantum yield of PSII did not practically differ between preparations from WT and cia3, indicating no effect of CAH3 on the photoinduced electron transfer in the reaction center of PSII. The obtained results indicate the involvement of the CAH3 protein in the native organization of the WOC and, as a consequence, in the stabilization of its functional state in PSII from C. reinhardtii.
Collapse
Affiliation(s)
- Anna K Shukshina
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vasily V Terentyev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
8
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
9
|
Rudenko NN, Ignatova LK, Nadeeva-Zhurikova EM, Fedorchuk TP, Ivanov BN, Borisova-Mubarakshina MM. Advances in understanding the physiological role and locations of carbonic anhydrases in C3 plant cells. PROTOPLASMA 2021; 258:249-262. [PMID: 33118061 DOI: 10.1007/s00709-020-01566-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 05/09/2023]
Abstract
The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| | - Lyudmila K Ignatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Elena M Nadeeva-Zhurikova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Tatiana P Fedorchuk
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria M Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
10
|
Terentyev VV, Shukshina AK, Ashikhmin AA, Tikhonov KG, Shitov AV. The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii. Life (Basel) 2020; 10:life10050063. [PMID: 32423065 PMCID: PMC7281441 DOI: 10.3390/life10050063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Photosystem II (PSII)-enriched membranes retain the original PSII architecture in contrast to PSII cores or PSII supercomplexes, which are usually isolated from Chlamydomonas reinhardtii. Here, we present data that fully characterize the structural and functional properties of PSII complexes in isolated PSII-enriched membranes from C. reinhardtii. The preparations were isolated from wild-type (WT) and CAH3-deficient mutant cia3 as the influence of CAH3 on the PSII function was previously proposed. Based on the equal chlorophyll content, the PSII-enriched membranes from WT and cia3 have the same amount of reaction centers (RCs), cytochrome b559, subunits of the water-oxidizing complex, Mn ions, and carotenes. They differ in the ratio of other carotenoids, the parts of low/intermediate redox forms of cytochrome b559, and the composition of outer light-harvesting complexes. The preparations had 40% more chlorophyll molecules per RC compared to higher plants. Functionally, PSII-enriched membranes from WT and cia3 show the same photosynthetic activity at optimal pH 6.5. However, the preparations from cia3 contained more closed RCs even at pH 6.5 and showed more pronounced suppression of PSII photosynthetic activity at shift pH up to 7.0, established in the lumen of dark-adapted cells. Nevertheless, the PSII photosynthetic capacities remained the same.
Collapse
|
11
|
Momayyezi M, McKown AD, Bell SCS, Guy RD. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:831-844. [PMID: 31816145 DOI: 10.1111/tpj.14638] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/24/2023]
Abstract
Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2↔HCO3- equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO2 -sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shannon C S Bell
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
12
|
Li P, Liu H, Yang H, Pu X, Li C, Huo H, Chu Z, Chang Y, Lin Y, Liu L. Translocation of Drought-Responsive Proteins from the Chloroplasts. Cells 2020; 9:E259. [PMID: 31968705 PMCID: PMC7017212 DOI: 10.3390/cells9010259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Some chloroplast proteins are known to serve as messengers to transmit retrograde signals from chloroplasts to the nuclei in response to environmental stresses. However, whether particular chloroplast proteins respond to drought stress and serve as messengers for retrograde signal transduction are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) to monitor the proteomic changes in tobacco (Nicotiana benthamiana) treated with drought stress/re-watering. We identified 3936 and 1087 differentially accumulated total leaf and chloroplast proteins, respectively, which were grouped into 16 categories. Among these, one particular category of proteins, that includes carbonic anhydrase 1 (CA1), exhibited a great decline in chloroplasts, but a remarkable increase in leaves under drought stress. The subcellular localizations of CA1 proteins from moss (Physcomitrella patens), Arabidopsis thaliana and rice (Oryza sativa) in P. patens protoplasts consistently showed that CA1 proteins gradually diminished within chloroplasts but increasingly accumulated in the cytosol under osmotic stress treatment, suggesting that they could be translocated from chloroplasts to the cytosol and act as a signal messenger from the chloroplast. Our results thus highlight the potential importance of chloroplast proteins in retrograde signaling pathways and provide a set of candidate proteins for further research.
Collapse
Affiliation(s)
- Ping Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Xiaojun Pu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Miami, FL 32703, USA;
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China;
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430070, China
| |
Collapse
|
13
|
Kolupaev YE, Karpets YV, Beschasniy SP, Dmitriev AP. Gasotransmitters and Their Role in Adaptive Reactions of Plant Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Terentyev VV, Shukshina AK, Shitov AV. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:582-590. [DOI: 10.1016/j.bbabio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|
15
|
de Oliveira HO, de Castro GLS, Correa LO, Silvestre WVD, do Nascimento SV, da Silva Valadares RB, de Oliveira GC, Santos RIN, Festucci-Buselli RA, Pinheiro HA. Coupling physiological analysis with proteomic profile to understand the photosynthetic responses of young Euterpe oleracea palms to drought. PHOTOSYNTHESIS RESEARCH 2019; 140:189-205. [PMID: 30357677 DOI: 10.1007/s11120-018-0597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
This study examined whether drought sensitivity in açaí (Euterpe oleracea Mart.) is associated with reductions in photosynthesis and increasing oxidative stress in response to down-regulation of proteins related to photosynthetic reactions, photorespiration, and antioxidant system. Well-watered (Control) and drought-stressed plants were compared when leaf water potential in stressed plants reached around - 1.5 and - 3.0 MPa, representing moderate and severe drought. Drought caused 84 and 96% decreases in net photosynthetic rate (Pn) and stomatal conductance. Stress-mediated changes in maximum quantum efficiency of photosystem II (PSII) photochemistry were unobserved, but drought decreased photochemical quenching, actual quantum yield of PSII electron transport, and apparent electron transport rate (ETR). Moderate and severe drought induced, respectively, decreases and increases in non-photochemical quenching (NPQ) and 74 and 273% increases in ETR/Pn. Moderate drought down-regulated PSII protein D2, chlorophyll a-b binding protein 8, photosystem I reaction center subunit N, sedoheptulose-1,7-bisphosphatase, and transketolase; while severe drought down-regulated LHC II proteins, ferredoxin-NADP reductase, ATP synthase subunits ε and ß, and carbonic anhydrase isoform X2. The glutamate-glyoxylate aminotransferase 2 and glycine dehydrogenase were down-regulated upon moderate drought, while catalase 2 and glycine cleavage system H protein 3 were up-regulated. Severe drought up-regulated glycolate oxidase, glycine cleavage system H protein 3, and aminomethyl transferase, but most of photorespiration-related proteins were only found in control plants. Down-regulation of chaperones and antioxidant enzymes and increased lipid peroxidation in stressed plants were observed upon both stress severities. Therefore, the decreases in Pn and failure in preventing oxidative damages through adjustments in NPQ and photorespiration- and antioxidant-related proteins accounted for drought sensitivity in açaí.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- Instituto Sócioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, 66077-530, Brazil
| | | | - Lorena Oliveira Correa
- Instituto Sócioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, 66077-530, Brazil
| | | | | | | | | | - Rodolfo Inacio Nunes Santos
- Instituto Sócioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, 66077-530, Brazil
| | | | - Hugo Alves Pinheiro
- Instituto Sócioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, 66077-530, Brazil.
| |
Collapse
|
16
|
Isolation and Expression Analysis of Three Types of α-Carbonic Anhydrases from the Antarctic Alga Chlamydomonas sp. ICE-L under Different Light Stress Treatments. Mol Biotechnol 2019; 61:200-208. [PMID: 30649663 DOI: 10.1007/s12033-018-00152-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Carbonic anhydrases (CAs) are a class of zinc-containing metalloenzymes that can reversibly catalyse the hydration reaction of carbon dioxide. Antarctic algae are the most critical component of the Antarctic ecosystem; algae can enter the carbon cycle food chain by fixing carbon dioxide from the air. In this study, the complete open reading frames (ORFs) of CA1 (GenBank ID KY826431), CA2 (GenBank ID KY826432), and CA3 (GenBank ID KY826433), encoding CAs in the Antarctic ice microalga Chlamydomonas. sp. ICE-L, were successfully cloned using reverse transcription-polymerase chain reaction (RT-PCR). In addition, the expression patterns of CAs under blue light, under UV light, and in the dark were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The CA1, CA2, and CA3 ORFs encode proteins of 376, 430, and 419 amino acids, respectively. Phylogenetic analysis revealed that all amino acid sequences showed high homology with those of C. sp. ICE-L. There are six types of algal CAs; we hypothesised that the CAs studied here are most likely α-CAs. Expression analysis showed that the transcription level of the CAs was influenced by both UV light and blue light. These findings provide additional insight into the molecular mechanisms of CAs and will accelerate the development of CAs for applications in agriculture and environmental governance.
Collapse
|
17
|
Nováková S, Danchenko M, Skultety L, Fialová I, Lešková A, Beke G, Flores-Ramírez G, Glasa M. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. J Proteome Res 2018; 17:3114-3127. [PMID: 30084641 DOI: 10.1021/acs.jproteome.8b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Ludovit Skultety
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
- Institute of Microbiology , The Czech Academy of Sciences , Videnska 1083 , 142 20 Prague , Czech Republic
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Alexandra Lešková
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Gábor Beke
- Institute of Molecular Biology , Slovak Academy of Sciences , Dúbravská cesta 21 , 845 51 Bratislava , Slovak Republic
| | - Gabriela Flores-Ramírez
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Miroslav Glasa
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| |
Collapse
|
18
|
Qu C, He Y, Zheng Z, An M, Li L, Wang X, He X, Wang Y, Liu F, Miao J. Cloning, Expression Analysis and Enzyme Activity Assays of the α-Carbonic Anhydrase Gene from Chlamydomonas sp. ICE-L. Mol Biotechnol 2018; 60:21-30. [PMID: 29138983 DOI: 10.1007/s12033-017-0040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α-carbonic anhydrase (α-CA) is a zinc ion-containing enzyme that catalyzes the hydration of carbon dioxide. In this paper, a full-length α-CA gene was cloned from Chlamydomonas sp. ICE-L using RT-PCR and RACE-PCR for bioinformatic analysis. The α-CA open reading frame obtained by PCR was cloned into a vector and transformed into Escherichia coli to generate α-CA-producing bacteria. The α-CA was highly expressed upon induction with isopropyl-β-d-thiogalactoside (IPTG) at a final concentration of 0.8 mM. A single band with a molecular weight of approximate 40 kDa expressed in the recombinant E. coli strain harboring the α-CA vector was observed in SDS-PAGE analysis. The carbon dioxide hydration activity and esterase activity of α-CA expressed by the recombinant strain were 0.404 U/mg and 0.319 U, respectively. In addition, three conditions, temperature, salinity and UVB radiation exposure, were selected to analyze α-CA transcription levels by qRT-PCR. The results suggested UVB exposure increased the expression of relative mRNA; meanwhile, the α-CA mRNA expression was rapidly induced by temperature and salinity stress, indicating that Chlamydomonas sp. ICE-L might modulate the α-CA mRNA expression to adapt to the extreme environments.
Collapse
Affiliation(s)
- Changfeng Qu
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingying He
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Zhou Zheng
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Meiling An
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China.,Medical College, Qingdao University, Qingdao, 266071, China
| | - Lulu Li
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Xixi Wang
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Xiaodong He
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Yibin Wang
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Fangming Liu
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
19
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
20
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Rudenko NN, Vetoshkina DV, Fedorchuk TP, Ivanov BN. Effect of light intensity under different photoperiods on expression level of carbonic anhydrase genes of the α- and β-families in Arabidopsis thaliana leaves. BIOCHEMISTRY (MOSCOW) 2017; 82:1025-1035. [DOI: 10.1134/s000629791709005x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Khomochkin AP, Onoiko OB, Semenikhin AV, Zolotareva OK. Reversible pH-dependent activation/inactivation of CF(1)-ATPase of spinach chloroplasts. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Zhurikova EM, Ignatova LK, Rudenko NN, Mudrik VA, Vetoshkina DV, Ivanov BN. Participation of two carbonic anhydrases of the alpha family in photosynthetic reactions in Arabidopsis thaliana. BIOCHEMISTRY (MOSCOW) 2016; 81:1182-1187. [DOI: 10.1134/s0006297916100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|