1
|
Garmeh Motlagh F, Azimzadeh Irani M, Masoomi Nomandan SZ, Assadizadeh M. Computational design and investigation of the monomeric spike SARS-CoV-2-ferritin nanocage vaccine stability and interactions. Front Mol Biosci 2024; 11:1403635. [PMID: 38933369 PMCID: PMC11199398 DOI: 10.3389/fmolb.2024.1403635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak, several solutions have been proposed to manage the disease. The most viable option for controlling this virus is to produce effective vaccines. Most of the current SARS-CoV-2 vaccines have focused on the infusion spike protein. Spike exists as a trimer and plays a vital role in infecting host cells by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor through its Receptor Binding Domain (RBD). Ferritin protein, a naturally occurring iron-storage protein, has gained attention for vaccine production due to its self-assembling property, non-toxic nature, and biocompatibility. Ferritin nanocages have recently been employed in the development of a SARS-CoV-2 vaccination eliciting not only long-term protective memory cells but also a sustained antibody response. In this study, a combination of in silico investigations including molecular docking, molecular dynamics simulations, and immune simulations were carried out to computationally model the monomeric spike protein on the ferritin nanocage as well as to evaluate its stability and interactions for the first time. The structural dynamics of the modeled complex demonstrated noticeable stability. In particular, the Receptor Binding Domain (RBD) and ferritin within the monomeric spike-ferritin complex illustrated significant stability. The lack of alterations in the secondary structure further supported the overall steadiness of the complex. The decline in the distance between ferritin and spike suggests a strong interaction over time. The cross-correlation matrices revealed that the monomeric spike and ferritin move towards each other supporting the stable interaction between spike and ferritin. Further, the orientation of monomeric spike protein within the ferritin unit facilitated the exposure of critical epitopes, specifically upward active Receptor Binding Domain (RBD), enabling effective interactions with the ACE2 receptor. The immune simulations of the model indicated high-level stimulations of both cellular and humoral immunity in the human body. It was also found that the employed model is effective regardless of the mutated spikes in different variants. These findings shed light on the current status of the SARS-CoV-2-ferritin nanoparticle vaccines and could be used as a framework for other similar vaccine designs.
Collapse
|
2
|
Peng H, Wu L, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Lymphocyte antigen 96: A new potential biomarker and immune target in Parkinson's disease. Exp Gerontol 2024; 190:112415. [PMID: 38614225 DOI: 10.1016/j.exger.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Longyu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
3
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Tang C, Lei X, Ding Y, Yang S, Ma Y, He D. Causal relationship between immune cells and neurodegenerative diseases: a two-sample Mendelian randomisation study. Front Immunol 2024; 15:1339649. [PMID: 38348026 PMCID: PMC10859421 DOI: 10.3389/fimmu.2024.1339649] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background There is increasing evidence that the types of immune cells are associated with various neurodegenerative diseases. However, it is currently unclear whether these associations reflect causal relationships. Objective To elucidate the causal relationship between immune cells and neurodegenerative diseases, we conducted a two-sample Mendelian randomization (MR) analysis. Materials and methods The exposure and outcome GWAS data used in this study were obtained from an open-access database (https://gwas.mrcieu.ac.uk/), the study employed two-sample MR analysis to assess the causal relationship between 731 immune cell features and four neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). All immune cell data was obtained from Multiple MR methods were used to minimize bias and obtain reliable estimates of the causal relationship between the variables of interest and the outcomes. Instrumental variable selection criteria were restricted to ensure the accuracy and effectiveness of the causal relationship between species of immune cells and the risk of these neurodegenerative diseases. Results The study identified potential causal relationships between various immune cells and different neurodegenerative diseases. Specifically, we found that 8 different types of immune cells have potential causal relationships with AD, 1 type of immune cells has potential causal relationships with PD, 6 different types of immune cells have potential causal relationships with ALS, and 6 different types of immune cells have potential causal relationships with MS. Conclusion Our study, through genetic means, demonstrates close causal associations between the specific types of immune cells and AD, PD, ALS and MS, providing useful guidance for future clinical researches.
Collapse
Affiliation(s)
| | | | | | | | | | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Fisher DW, Dunn JT, Dong H. Distinguishing features of depression in dementia from primary psychiatric disease. DISCOVER MENTAL HEALTH 2024; 4:3. [PMID: 38175420 PMCID: PMC10767128 DOI: 10.1007/s44192-023-00057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Depression is a common and devastating neuropsychiatric symptom in the elderly and in patients with dementia. In particular, nearly 80% of patients with Alzheimer's Disease dementia experience depression during disease development and progression. However, it is unknown whether the depression in patients with dementia shares the same molecular mechanisms as depression presenting as primary psychiatric disease or occurs and persists through alternative mechanisms. In this review, we discuss how the clinical presentation and treatment differ between depression in dementia and as a primary psychiatric disease, with a focus on major depressive disorder. Then, we hypothesize several molecular mechanisms that may be unique to depression in dementia such as neuropathological changes, inflammation, and vascular events. Finally, we discuss existing issues and future directions for investigation and treatment of depression in dementia.
Collapse
Affiliation(s)
- Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356560, Seattle, WA, 98195, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Zhou J, Zeng Q, Liao Q, Niu Q, Gu W, Su D, Li S, Xiao B, Bi F. Biomarkers in cerebrospinal fluid for amyotrophic lateral sclerosis phenotypes. Ann Clin Transl Neurol 2023; 10:1467-1480. [PMID: 37350306 PMCID: PMC10424661 DOI: 10.1002/acn3.51836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons. The motor phenotypes of ALS are highly clinically heterogeneous, and the underlying mechanisms are poorly understood. METHODS A comparative proteomic analysis was performed in the cerebrospinal fluid (CSF) of bulbar-onset (BO) and spinal-onset (SO) ALS patients and controls (n = 14). Five biomarker candidates were selected from a differentially regulated protein pool, and further validation was performed in a larger independent cohort (n = 92) using enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 1732 CSF proteins were identified, and 78 differentially expressed proteins were found among BO-ALS patients, SO-ALS patients, and controls. Five promising biomarker candidates were selected for further validation, and lipopolysaccharide-binding protein (LBP) and HLA class II histocompatibility antigen, DR alpha chain (HLA-DRA) were validated. CSF LBP levels were increased in ALS patients compared with controls and higher in BO-ALS versus SO-ALS. The increased CSF LBP levels were correlated with the revised ALS Functional Scale (ALSFRS-R) score. CSF HLA-DRA levels were specifically elevated in BO-ALS patients, and there was no significant difference between SO-ALS patients and controls. Increased HLA-DRA expression was correlated with decreased survival. INTERPRETATION Our data shows that elevated CSF LBP is a good biomarker for ALS and correlates with clinical severity, and increased HLA-DRA is a specific biomarker for BO-ALS and may predict short survival. It also suggests that the microglial pathway and HLA-II-related adaptive immunity may be differentially involved in ALS phenotypes and may be new therapeutic targets for ALS.
Collapse
Affiliation(s)
- Jinxia Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
- Hunan Key Laboratary of Aging Biology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Qianqian Zeng
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Qiao Liao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Qi Niu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjing210029JiangsuChina
| | - Wenping Gu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Dandan Su
- Department of Neurology928 Hospital of Joint Logistics Support Force of PLAHaikou571100HainanChina
| | - Sizhuo Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Bo Xiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410008HunanChina
| | - Fangfang Bi
- Department of Neurology, The Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000GuangdongChina
| |
Collapse
|
7
|
Tsai ST, Nithiyanantham S, Satyanarayanan SK, Su KP. Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:435-458. [PMID: 36949321 DOI: 10.1007/978-981-19-7376-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In this chapter, we conducted a systemic literature review for the anti-inflammatory effects of Traditional Chinese Medicine (TCM) applying molecular mechanisms focusing on the neuroinflammation and gut-brain axis in three neuropsychiatric disorders: major depressive disorder, Alzheimer's disease, and Parkinson's disease. We demonstrated the anti-inflammation or immunomodulation effects of TCM, including acupuncture, from basic and clinical research, including cellular and molecular approaches. In conclusion, inflammation plays a critical role in the neuropsychopathological process. At the same time, anti-inflammation seems to be the common biological pathway for the effects of TCM and acupuncture in depression, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan.
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
- An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
8
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Fu R, Wang F, Zhao S, Zhang W, Zhu F. Identification of the novel allele,
HLA‐DRB1
*08:03:12, in a Chinese cord blood donor. HLA 2022; 100:94-95. [DOI: 10.1111/tan.14580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Fu
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Fang Wang
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Shuoxian Zhao
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Wei Zhang
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Faming Zhu
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| |
Collapse
|
10
|
Cisneros IE, Cunningham KA. Covid-19 interface with drug misuse and substance use disorders. Neuropharmacology 2021; 198:108766. [PMID: 34454912 PMCID: PMC8388132 DOI: 10.1016/j.neuropharm.2021.108766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- I E Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Zhang X, Liu Y, Lu Y, Li S, Liu J, Zhang Y, Wang L, Li M, Luo Y, Zhang W, Chen C, Li Y. N-3-(oxododecanoyl)-l-homoserine lactone suppresses dendritic cell maturation by upregulating the long noncoding RNA NRIR. J Biosci 2021. [DOI: 10.1007/s12038-021-00186-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Naito T, Satake W, Ogawa K, Suzuki K, Hirata J, Foo JN, Tan E, Toda T, Okada Y. Trans-Ethnic Fine-Mapping of the Major Histocompatibility Complex Region Linked to Parkinson's Disease. Mov Disord 2021; 36:1805-1814. [PMID: 33973677 PMCID: PMC8453830 DOI: 10.1002/mds.28583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite evidence for the role of human leukocyte antigen (HLA) in the genetic predisposition to Parkinson's disease (PD), the complex haplotype structure and highly polymorphic feature of the major histocompatibility complex (MHC) region has hampered a unified insight on the genetic risk of PD. In addition, a majority of the reports focused on Europeans, lacking evidence on other populations. OBJECTIVES The aim of this study is to elucidate the genetic features of the MHC region associated with PD risk in trans-ethnic cohorts. METHODS We conducted trans-ethnic fine-mapping of the MHC region for European populations (14,650 cases and 1,288,625 controls) and East Asian populations (7712 cases and 27,372 controls). We adopted a hybrid fine-mapping approach including both HLA genotype imputation of genome-wide association study (GWAS) data and direct imputation of HLA variant risk from the GWAS summary statistics. RESULTS Through trans-ethnic MHC fine-mapping, we identified the strongest associations at amino acid position 13 of HLA-DRβ1 (P = 6.0 × 10-15 ), which explains the majority of the risk in HLA-DRB1. In silico prediction revealed that HLA-DRB1 alleles with histidine at amino acid position 13 (His13) had significantly weaker binding affinity to an α-synuclein epitope than other alleles (P = 9.6 × 10-4 ). Stepwise conditional analysis suggested additional independent associations at Ala69 in HLA-B (P = 1.0 × 10-7 ). A subanalysis in Europeans suggested additional independent associations at non-HLA genes in the class III MHC region (EHMT2; P = 2.5 × 10-7 ). CONCLUSIONS Our study highlights the shared and distinct genetic features of the MHC region in patients with PD across ethnicities. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tatsuhiko Naito
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Wataru Satake
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kotaro Ogawa
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of NeurologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Suzuki
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
| | - Jun Hirata
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Pharmaceutical Discovery Research LaboratoriesTeijin Pharma LimitedHinoJapan
| | - Jia Nee Foo
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
- Human Genetics, Genome Institute of Singapore, A*STARSingaporeSingapore
| | - Eng‐King Tan
- Department of Neurology, National Neuroscience InstituteSingapore General HospitalSingaporeSingapore
- Duke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Tatsushi Toda
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yukinori Okada
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Laboratory of Statistical Immunology, Immunology Frontier Research CenterOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| |
Collapse
|
13
|
Wu XY, Liu ZQ, Wang Y, Chen WF, Gao PT, Li QL, Zhou PH. The etiology of achalasia: An immune-dominant disease. J Dig Dis 2021; 22:126-135. [PMID: 33583137 DOI: 10.1111/1751-2980.12973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
There is accumulating evidence suggesting that an autoimmune component is involved in esophageal achalasia. An increase in immune cells, cytokines, chemokines, and autoimmune antibodies in serum and infiltration of immune cells in tissues support the view that immune-mediated inflammation is a crucial pathogenesis of inhibitory neuron degeneration in the lower esophageal sphincter. Infection of viruses such as the herpes virus family has been suspected of provoking the autoimmune reaction. Meanwhile, previous reports on immunogenetics have proposed that specific risk alleles on the human leukocyte antigen complex define the susceptible population to achalasia. In this study we reviewed current knowledge regarding the immune-related factors of achalasia, including immunology, viral infection and immunogenetic variations.
Collapse
Affiliation(s)
- Xing Yue Wu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Zu Qiang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Wang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Ting Gao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Franco GDRR, Smid S, Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr Neuropharmacol 2021; 19:449-464. [PMID: 32691712 PMCID: PMC8206465 DOI: 10.2174/1570159x18666200720172624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022] Open
Abstract
In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer's (AD), Parkinson's (PD) and Huntington's disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present state of the art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.
Collapse
Affiliation(s)
| | | | - Cláudio Viegas
- Address correspondence to this author at the PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil; Tel/Fax: +55 35 3701-1880; E-mail:
| |
Collapse
|
16
|
Wang H, Zhang WJ, Gao JH, Liu JR, Liu ZY, Xia BQ, Fan XL, Li CZ, Qian AR. Global gene expression profiling of blast lung injury of goats exposed to shock wave. Chin J Traumatol 2020; 23:249-257. [PMID: 32917472 PMCID: PMC7567904 DOI: 10.1016/j.cjtee.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 07/25/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Blast lung injury (BLI) is the most common damage resulted from explosion-derived shock wave in military, terrorism and industrial accidents. However, the molecular mechanisms underlying BLI induced by shock wave are still unclear. METHODS In this study, a goat BLI model was established by a fuel air explosive power. The key genes involved in were identified. The goats of the experimental group were fixed on the edge of the explosion cloud, while the goats of the control group were 3 km far away from the explosive environment. After successful modeling for 24 h, all the goats were sacrificed and the lung tissue was harvested for histopathological observation and RNA sequencing. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to identify the main enriched biological functions of differentially expressed genes (DEGs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency of gene expression. RESULTS Of the sampled goat lungs, 895 genes were identified to be significantly differentially expressed, and they were involved in 52 significantly enriched GO categories. KEGG analysis revealed that DEGs were highly enriched in 26 pathways, such as cytokine-cytokine receptor interaction, antifolate resistance, arachidonic acid metabolism, amoebiasis and bile secretion, JAK-STAT, and IL-17 signaling pathway. Furthermore, 15 key DEGs involved in the biological processes of BLI were confirmed by qRT-PCR, and the results were consistent with RNA sequencing. CONCLUSION Gene expression profiling provide a better understanding of the molecular mechanisms of BLI, which will help to set strategy for treating lung injury and preventing secondary lung injury induced by shock wave.
Collapse
Affiliation(s)
- Hong Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China,Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Wen-Juan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun-Hong Gao
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Jin-Ren Liu
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Zhi-Yong Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China,Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Bao-Qing Xia
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Xiao-Lin Fan
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Cun-Zhi Li
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an 710065, China
| | - Ai-Rong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China,Corresponding author.
| |
Collapse
|
17
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
18
|
Jian X, Sofer T, Tarraf W, Bressler J, Faul JD, Zhao W, Ratliff SM, Lamar M, Launer LJ, Laurie CC, Schneiderman N, Weir DR, Wright CB, Yaffe K, Zeng D, DeCarli C, Mosley TH, Smith JA, González HM, Fornage M. Genome-wide association study of cognitive function in diverse Hispanics/Latinos: results from the Hispanic Community Health Study/Study of Latinos. Transl Psychiatry 2020; 10:245. [PMID: 32699239 PMCID: PMC7376098 DOI: 10.1038/s41398-020-00930-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive function such as reasoning, attention, memory, and language is strongly correlated with brain aging. Compared to non-Hispanic whites, Hispanics/Latinos have a higher risk of cognitive impairment and dementia. The genetic determinants of cognitive function have not been widely explored in this diverse and admixed population. We conducted a genome-wide association analysis of cognitive function in up to 7600 middle aged and older Hispanics/Latinos (mean = 55 years) from the Hispanic Community Health Study / Study of Latinos (HCHS/SOL). Four cognitive measures were examined: the Brief Spanish English Verbal Learning Test (B-SEVLT), the Word Fluency Test (WFT), the Digit Symbol Substitution Test (DSST), the Six-Item Screener (SIS). Four novel loci were identified: one for B-SEVLT at 4p14, two for WFT at 3p14.1 and 6p21.32, and one for DSST at 10p13. These loci implicate genes highly expressed in brain and previously connected to neurological diseases (UBE2K, FRMD4B, the HLA gene complex). By applying tissue-specific gene expression prediction models to our genotype data, additional genes highly expressed in brain showed suggestive associations with cognitive measures possibly indicating novel biological mechanisms, including IFT122 in the hippocampus for SIS, SNX31 in the basal ganglia for B-SEVLT, RPS6KB2 in the frontal cortex for WFT, and CSPG5 in the hypothalamus for DSST. These findings provide new information about the genetic determinants of cognitive function in this unique population. In addition, we derived a measure of general cognitive function based on these cognitive tests and generated genome-wide association summary results, providing a resource to the research community for comparison, replication, and meta-analysis in future genetic studies in Hispanics/Latinos.
Collapse
Affiliation(s)
- Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Sofer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wassim Tarraf
- Institute of Gerontology and Department of Health Care Sciences, Wayne State University, Detroit, MI, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences and Human Genetics Center, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Melissa Lamar
- Department of Behavioral Sciences, Rush Medical College, Chicago, IL, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Clinton B Wright
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Charles DeCarli
- Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hector M González
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Epidemiology, Human Genetics and Environmental Sciences and Human Genetics Center, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA.
| |
Collapse
|
19
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:110. [PMID: 32477095 PMCID: PMC7241259 DOI: 10.3389/fnagi.2020.00110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. The Contribution of Major Histocompatibility Complex Class II Genes to an Association with Autoimmune Diseases. Acta Naturae 2019; 11:4-12. [PMID: 31993230 PMCID: PMC6977962 DOI: 10.32607/20758251-2019-11-4-4-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic studies of patients with autoimmune diseases have shown that one of the most important roles in the developing of these diseases is played by a cluster of genes of the major histocompatibility complex (MHC), as compared with other genome areas. Information on the specific contribution of MHC alleles, mostly MHC class II ones, to the genetic predisposition to autoimmune diseases is crucial for understanding their pathogenesis. This review dwells on the most relevant aspects of this problem: namely, the correlation between carriage of certain MHC II alleles and an increased (positively associated allele) or reduced (negatively associated allele) probability of developing the most common autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, autoimmune thyroiditis, etc. The most universal haplotypes, DR3-DQ2 and DR4-DQ8, are positively associated with many of these diseases, while the universal allele HLA-DRB1*0701 is protective.
Collapse
Affiliation(s)
- M. Yu. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - T. A. Belyanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. V. Sokolov
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
22
|
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front Neurol 2019; 10:585. [PMID: 31244753 PMCID: PMC6581710 DOI: 10.3389/fneur.2019.00585] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence that ketone bodies, which are derived from fatty acid oxidation and usually produced in fasting state or on high-fat diets have broad neuroprotective effects. Although the mechanisms underlying the neuroprotective effects of ketone bodies have not yet been fully elucidated, studies in recent years provided abundant shreds of evidence that ketone bodies exert neuroprotective effects through possible mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity of deacetylation and inflammatory responses. Based on the neuroprotective effects, the ketogenic diet has been used in the treatment of several neurological diseases such as refractory epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. The ketogenic diet has great potential clinically, which should be further explored in future studies. It is necessary to specify the roles of components in ketone bodies and their therapeutic targets and related pathways to optimize the strategy and efficacy of ketogenic diet therapy in the future.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|