1
|
Lehmann JA, Lindner D, Sung HM, Stoecklin G. E3 ubiquitin ligase RNF10 promotes dissociation of stalled ribosomes and responds to ribosomal subunit imbalance. Nat Commun 2024; 15:10350. [PMID: 39609413 PMCID: PMC11604940 DOI: 10.1038/s41467-024-54411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Aberrant translation causes ribosome stalling, which leads to the ubiquitination of ribosomal proteins and induces ribosome-associated quality control. As part of this quality control process, the E3 ubiquitin ligase RNF10 monoubiquitinates ribosomal protein RPS3. Here, we demonstrate that RNF10-mediated RPS3 monoubiquitination antagonizes ribosomal half-mer formation by promoting dissociation of 40S subunits from ribosomes stalled during translation elongation. Interestingly, RNF10 also promotes dissociation of 40S subunits stalled during aberrant translation initiation. Moreover, RNF10 levels are tightly coupled to the amount of 40S subunits. Knockdown of RPS proteins, which abrogates 40S ribosome biogenesis, results in proteasomal degradation of RNF10. Vice versa, knockdown of RPL proteins, which abrogates 60S biogenesis, leads to the accumulation of stalled initiating 40S subunits, increased RNF10 levels, and RPS3 monoubiquitination. As a factor required for the resolution of stalled translation events, RNF10 is part of a fundamental mechanism by which cells respond to imbalances in ribosomal subunit stoichiometry.
Collapse
Affiliation(s)
- Janina A Lehmann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Hsu-Min Sung
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Rosa-Mercado NA, Buskirk AR, Green R. Translation elongation inhibitors stabilize select short-lived transcripts. RNA (NEW YORK, N.Y.) 2024; 30:1572-1585. [PMID: 39293933 PMCID: PMC11571809 DOI: 10.1261/rna.080138.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here, we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state, and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Allen R Buskirk
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Simoncik O, Tichy V, Durech M, Hernychova L, Trcka F, Uhrik L, Bardelcik M, Coates PJ, Vojtesek B, Muller P. Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PLoS One 2024; 19:e0312524. [PMID: 39495731 PMCID: PMC11534217 DOI: 10.1371/journal.pone.0312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Stress responses play a vital role in cellular survival against environmental challenges, often exploited by cancer cells to proliferate, counteract genomic instability, and resist therapeutic stress. Heat shock factor protein 1 (HSF1), a central transcription factor in stress response pathways, exhibits markedly elevated activity in cancer. Despite extensive research into the transcriptional role of HSF1, the mechanisms underlying its activation remain elusive. Upon exposure to conditions that induce protein damage, monomeric HSF1 undergoes rapid conformational changes and assembles into trimers, a key step for DNA binding and transactivation of target genes. This study investigates the role of HSF1 as a sensor of proteotoxic stress conditions. Our findings reveal that purified HSF1 maintains a stable monomeric conformation independent of molecular chaperones in vitro. Moreover, while it is known that heat stress triggers HSF1 trimerization, a notable increase in trimerization and DNA binding was observed in the presence of protein-based crowders. Conditions inducing protein misfolding and increased protein crowding in cells directly trigger HSF1 trimerization. In contrast, proteosynthesis inhibition, by reducing denatured proteins in the cell, prevents HSF1 activation. Surprisingly, HSF1 remains activated under proteotoxic stress conditions even when bound to Hsp70 and Hsp90. This finding suggests that the negative feedback regulation between HSF1 and chaperones is not directly driven by their interaction but is realized indirectly through chaperone-mediated restoration of cytoplasmic proteostasis. In summary, our study suggests that HSF1 serves as a molecular crowding sensor, trimerizing to initiate protective responses that enhance chaperone activities to restore homeostasis.
Collapse
Affiliation(s)
- Oliver Simoncik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vlastimil Tichy
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michal Durech
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Filip Trcka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Miroslav Bardelcik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Philip J. Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
4
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
5
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Hersey P, Tseng HY, Alavi S, Tiffen J. X and Y Differences in Melanoma Survival Between the Sexes. Pigment Cell Melanoma Res 2024. [PMID: 39180225 DOI: 10.1111/pcmr.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Marked differences in survival from melanoma are noted between men and women that cannot be accounted for by behavioral differences. We and others have provided evidence that this difference may be due to increased expression of immune-related genes from the second X chromosome because of failure of X inactivation. In the present review, we have examined evidence for the contrary view that survival differences are due to weaker immune responses in males. One reason for this may be the loss of Y chromosomes (LOY), particularly in older males. The genes involved may have direct roles in immune responses or be noncoding RNAs that regulate both sex and autosomal genes involved in immune responses or tumor growth. Loss of the KDM6C and KDM5D demethylases appeared to common genes involved. The second factor appears to be the activation of androgen receptors (AR) on melanoma cells that increase their invasiveness and growth. Induction of T-cell exhaustion by AR that limits immune responses against melanoma appeared a common finding. The development of treatments to overcome effects related to gene loss on Y poses challenges, but several avenues related to AR signaling appear worthy of further study in the treatment of metastatic disease.
Collapse
Affiliation(s)
- Peter Hersey
- Melanoma Immunology and Oncology Program, the Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Hsin-Yi Tseng
- Melanoma Epigenetics Lab, the Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Sara Alavi
- Melanoma Epigenetics Lab, the Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Jessamy Tiffen
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Melanoma Epigenetics Lab, the Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Takasu R, Izu T, Nakabachi A. A limited concentration range of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, promotes the in vitro gene expression with bacterial ribosomes. Microbiol Spectr 2024; 12:e0017024. [PMID: 38832800 PMCID: PMC11218438 DOI: 10.1128/spectrum.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
9
|
Sidorenko VS, Cohen I, Dorjee K, Minetti CA, Remeta DP, Gao J, Potapova I, Wang HZ, Hearing J, Yen WY, Kim HK, Hashimoto K, Moriya M, Dickman KG, Yin X, Garcia-Diaz M, Chennamshetti R, Bonala R, Johnson F, Waldeck AL, Gupta R, Li C, Breslauer KJ, Grollman AP, Rosenquist TA. Mechanisms of antiviral action and toxicities of ipecac alkaloids: Emetine and dehydroemetine exhibit anti-coronaviral activities at non-cardiotoxic concentrations. Virus Res 2024; 341:199322. [PMID: 38228190 PMCID: PMC10831786 DOI: 10.1016/j.virusres.2024.199322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ira Cohen
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kunchok Dorjee
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Junyuan Gao
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Irina Potapova
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hong Zhan Wang
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Janet Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Wan-Yi Yen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Keiji Hashimoto
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Masaaki Moriya
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xingyu Yin
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rajesh Chennamshetti
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha Bonala
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Amanda L Waldeck
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacy, Stony Brook University Hospital, Stony Brook, New York 11794, USA
| | - Ramesh Gupta
- ChemMaster International Inc., Happauge, New York 11788, USA
| | - Chaoping Li
- Chemistry Service Unit of Shanghai Haoyuan Chemexpress Co., Ltd., Shanghai, PR China 201203
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. mSphere 2023; 8:e0054423. [PMID: 37909773 PMCID: PMC10732057 DOI: 10.1128/msphere.00544-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Plasmodium parasites cause malaria in humans. New multistage active antimalarial drugs are needed, and a promising class of drugs targets the core cellular process of translation, which has many potential molecular targets. During the obligate liver stage, Plasmodium parasites grow in metabolically active hepatocytes, making it challenging to study core cellular processes common to both host cells and parasites, as the signal from the host typically overwhelms that of the parasite. Here, we present and validate a flexible assay to quantify Plasmodium liver stage translation using a technique to fluorescently label the newly synthesized proteins of both host and parasite followed by computational separation of their respective nascent proteomes in confocal image sets. We use the assay to determine whether a test set of known compounds are direct or indirect liver stage translation inhibitors and show that the assay can also predict the mode of action for novel antimalarial compounds.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
12
|
Fedorovskiy AG, Burakov AV, Terenin IM, Bykov DA, Lashkevich KA, Popenko VI, Makarova NE, Sorokin II, Sukhinina AP, Prassolov VS, Ivanov PV, Dmitriev SE. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1786-1799. [PMID: 38105199 DOI: 10.1134/s000629792311010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.
Collapse
Affiliation(s)
- Artem G Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anton V Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Sirius University of Science and Technology, Sirius, Krasnodar Region, 354340, Russia
| | - Dmitry A Bykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Nadezhda E Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia P Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Ivanov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
13
|
Musalgaonkar S, Yelland J, Chitale R, Rao S, Ozadam H, Cenik C, Taylor D, Johnson A. The Ribosome Assembly Factor Reh1 is Released from the Polypeptide Exit Tunnel in the Pioneer Round of Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563604. [PMID: 37961559 PMCID: PMC10634756 DOI: 10.1101/2023.10.23.563604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel (PET) of the pre-60S subunit. Unlike canonical assembly factors, which associate exclusively with pre-60S subunits, we observed that Reh1 sediments with polysomes in addition to free 60S subunits. We therefore investigated the intriguing possibility that Reh1 remains associated with 60S subunits after the release of the anti-association factor Tif6 and after subunit joining. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation events. Using single particle cryo-electron microscopy to image cycloheximide-arrested Reh1-bound 80S ribosomes, we found that Reh1-bound 80S contain A site peptidyl tRNA, P site tRNA and eIF5A indicating that Reh1 does not dissociate from 60S until early stages of translation elongation. We propose that Reh1 is displaced by the elongating peptide chain. These results identify Reh1 as the last assembly factor released from the nascent 60S subunit during its pioneer round of translation.
Collapse
|
14
|
Clay KJ, Yang Y, Clark C, Petrascheck M. Proteostasis is differentially modulated by inhibition of translation initiation or elongation. eLife 2023; 12:e76465. [PMID: 37795690 PMCID: PMC10581687 DOI: 10.7554/elife.76465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Recent work has revealed an increasingly important role for mRNA translation in maintaining proteostasis. Here, we use chemical inhibitors targeting discrete steps of translation to compare how lowering the concentration of all or only translation initiation-dependent proteins rescues Caenorhabditis elegans from proteotoxic stress. We systematically challenge proteostasis and show that pharmacologically inhibiting translation initiation or elongation elicits a distinct protective profile. Inhibiting elongation protects from heat and proteasome dysfunction independently from HSF-1 but does not protect from age-associated protein aggregation. Conversely, inhibition of initiation protects from heat and age-associated protein aggregation and increases lifespan, dependent on hsf-1, but does not protect from proteotoxicity caused by proteasome dysfunction. Surprisingly, we find that the ability of the translation initiation machinery to control the concentration of newly synthesized proteins depends on HSF-1. Inhibition of translation initiation in wild-type animals reduces the concentration of newly synthesized proteins but increases it in hsf-1 mutants. Our findings suggest that the HSF-1 pathway is not only a downstream target of translation but also directly cooperates with the translation initiation machinery to control the concentration of newly synthesized proteins to restore proteostasis.
Collapse
Affiliation(s)
- Khalyd J Clay
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Yongzhi Yang
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Christina Clark
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Michael Petrascheck
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
15
|
Robinson KS, Toh GA, Firdaus MJ, Tham KC, Rozario P, Lim CK, Toh YX, Lau ZH, Binder SC, Mayer J, Bonnard C, Schmidt FI, Common JE, Zhong FL. Diphtheria toxin activates ribotoxic stress and NLRP1 inflammasome-driven pyroptosis. J Exp Med 2023; 220:e20230105. [PMID: 37642997 PMCID: PMC10465786 DOI: 10.1084/jem.20230105] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
The ZAKα-driven ribotoxic stress response (RSR) is activated by ribosome stalling and/or collisions. Recent work demonstrates that RSR also plays a role in innate immunity by activating the human NLRP1 inflammasome. Here, we report that ZAKα and NLRP1 sense bacterial exotoxins that target ribosome elongation factors. One such toxin, diphtheria toxin (DT), the causative agent for human diphtheria, triggers RSR-dependent inflammasome activation in primary human keratinocytes. This process requires iron-mediated DT production in the bacteria, as well as diphthamide synthesis and ZAKα/p38-driven NLRP1 phosphorylation in host cells. NLRP1 deletion abrogates IL-1β and IL-18 secretion by DT-intoxicated keratinocytes, while ZAKα deletion or inhibition additionally limits both pyroptotic and inflammasome-independent non-pyroptotic cell death. Consequently, pharmacologic inhibition of ZAKα is more effective than caspase-1 inhibition at protecting the epidermal barrier in a 3D skin model of cutaneous diphtheria. In summary, these findings implicate ZAKα-driven RSR and the NLRP1 inflammasome in antibacterial immunity and might explain certain aspects of diphtheria pathogenesis.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- The A*STAR Skin Research Labs, Singapore, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | | | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chrissie K. Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Xiu Toh
- The A*STAR Skin Research Labs, Singapore, Singapore
| | - Zhi Heng Lau
- The A*STAR Skin Research Labs, Singapore, Singapore
| | | | - Jacob Mayer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Florian I. Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Franklin L. Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Gsottberger F, Meier C, Ammon A, Parker S, Wendland K, George R, Petkovic S, Mellenthin L, Emmerich C, Lutzny-Geier G, Metzler M, Mackensen A, Chandramohan V, Müller F. Targeted inhibition of protein synthesis renders cancer cells vulnerable to apoptosis by unfolded protein response. Cell Death Dis 2023; 14:561. [PMID: 37626037 PMCID: PMC10457359 DOI: 10.1038/s41419-023-06055-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Franziska Gsottberger
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Christina Meier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kerstin Wendland
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rebekka George
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Srdjan Petkovic
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Charlotte Emmerich
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Markus Metzler
- Deptartment of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | | | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
17
|
Nasim F, Qureshi IA. Aminoacyl tRNA Synthetases: Implications of Structural Biology in Drug Development against Trypanosomatid Parasites. ACS OMEGA 2023; 8:14884-14899. [PMID: 37151504 PMCID: PMC10157851 DOI: 10.1021/acsomega.3c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
The ensemble of aminoacyl tRNA synthetases is regarded as a key component of the protein translation machinery. With the progressive increase in structure-based studies on tRNA synthetase-ligand complexes, the detailed picture of these enzymes is becoming clear. Having known their critical role in deciphering the genetic code in a living system, they have always been chosen as one of the important targets for development of antimicrobial drugs. Later on, the role of aminoacyl tRNA synthetases (aaRSs) on the survivability of trypanosomatids has also been validated. It became evident through several gene knockout studies that targeting even one of these enzymes affected parasitic growth drastically. Such successful studies have inspired researchers to search for inhibitors that could specifically target trypanosomal aaRSs, and their never-ending efforts have provided fruitful results. Taking all such studies into consideration, these macromolecules of prime importance deserve further investigation for the development of drugs that cure spectrum of infections caused by trypanosomatids. In this review, we have compiled advancements of over a decade that have taken place in the pursuit of devising drugs by using trypanosomatid aaRSs as a major target of interest. Several of these inhibitors work on an exemplary low concentration range without posing any threat to the mammalian cells which is a very critical aspect of the drug discovery process. Advancements have been made in terms of using structural biology as an important tool to analyze the architecture of the trypanosomatids aaRSs and concoction of inhibitors with augmented specificities toward their targets. Some of the inhibitors that have been tested on other parasites successfully but their efficacy has so far not been validated against these trypanosomatids have also been appended.
Collapse
|
18
|
Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, Xing C, Buszczak M, Schoggins JW. Genome-Scale CRISPR Screening Reveals Host Factors Required for Ribosome Formation and Viral Replication. mBio 2023; 14:e0012723. [PMID: 36809113 PMCID: PMC10128003 DOI: 10.1128/mbio.00127-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.
Collapse
Affiliation(s)
- Maikke B. Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandra I. Wells
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
20
|
Chabronova A, van den Akker GGH, Housmans BAC, Caron MMJ, Cremers A, Surtel DAM, Wichapong K, Peffers MMJ, van Rhijn LW, Marchand V, Motorin Y, Welting TJM. Ribosomal RNA-based epitranscriptomic regulation of chondrocyte translation and proteome in osteoarthritis. Osteoarthritis Cartilage 2023; 31:374-385. [PMID: 36621590 DOI: 10.1016/j.joca.2022.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Osteoarthritis-related cartilage extracellular matrix remodeling is dependent on changes in chondrocyte protein expression. Yet, the role of ribosomes in chondrocyte translation regulation is unknown. In this exploratory study, we investigated ribosomal RNA (rRNA) epitranscriptomic-based ribosome heterogeneity in human articular chondrocytes and its relevance for osteoarthritis. METHODS Sequencing-based rRNA 2'-O-methylation profiling analysis (RiboMethSeq) was performed on non-OA primary human articular chondrocytes (n = 5) exposed for 14 days to osteoarthritic synovial fluid (14 donors, pooled, 20% v/v). The SW1353 SNORD71 KO cell pool was generated using LentiCRISPRv2/Cas9. The mode of translation initiation and fidelity were determined by dual-luciferase reporters. The cellular proteome was analyzed by LC-MS/MS and collagen type I protein expression was evaluated by immunoblotting. Loading of COL1A1 mRNA into polysomes was determined by sucrose gradient ultracentrifugation and fractionation. RESULTS We discovered that osteoarthritic synovial fluid instigates site-specific changes in the rRNA 2'-O-me profile of primary human articular chondrocytes. We identified five sites with differential 2'-O-me levels. The 2'-O-me status of 5.8S-U14 (one of identified differential 2'-O-me sites; decreased by 7.7%, 95% CI [0.9-14.5%]) was targeted by depleting the level of its guide snoRNA SNORD71 (50% decrease, 95% CI [33-64%]). This resulted in an altered ribosome translation modus (e.g., CrPV IRES, FC 3, 95% CI [2.2-4.1]) and promoted translation of COL1A1 mRNA which led to increased levels of COL1A1 protein (FC 1.7, 95% CI [1.3-2.0]). CONCLUSIONS Our data identify a novel concept suggesting that articular chondrocytes employ rRNA epitranscriptomic mechanisms in osteoarthritis development.
Collapse
Affiliation(s)
- A Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - M M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - K Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - M M J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - V Marchand
- Université de Lorraine, UAR2008 IBSLor CNRS-INSERM, BioPole, Nancy, France
| | - Y Motorin
- Université de Lorraine, UAR2008 IBSLor CNRS-INSERM, BioPole, Nancy, France; Université de Lorraine, UMR7365 IMoPA, CNRS, BioPole, Nancy, France
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
22
|
Bagheri A, Astafev A, Al-Hashimy T, Jiang P. Tracing Translational Footprint by Ribo-Seq: Principle, Workflow, and Applications to Understand the Mechanism of Human Diseases. Cells 2022; 11:cells11192966. [PMID: 36230928 PMCID: PMC9562884 DOI: 10.3390/cells11192966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
RNA-seq has been widely used as a high-throughput method to characterize transcript dynamic changes in a broad context, such as development and diseases. However, whether RNA-seq-estimated transcriptional dynamics can be translated into protein level changes is largely unknown. Ribo-seq (Ribosome profiling) is an emerging technology that allows for the investigation of the translational footprint via profiling ribosome-bounded mRNA fragments. Ribo-seq coupled with RNA-seq will allow us to understand the transcriptional and translational control of the fundamental biological process and human diseases. This review focuses on discussing the principle, workflow, and applications of Ribo-seq to study human diseases.
Collapse
Affiliation(s)
- Atefeh Bagheri
- Department of Biological, Geological and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
| | - Artem Astafev
- Department of Biological, Geological and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
| | - Tara Al-Hashimy
- Department of Biological, Geological and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Center for Applied Data Analysis and Modeling (ADAM), Cleveland State University, Cleveland, OH 44115, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-(216)-687-3917
| |
Collapse
|
23
|
Christie M, Friesen Westley J, Suresh B, Baiazitov Ramil Y, Wu D, Karloff Diane B, Chang-Sun L, Young-Choon M, Hongyu R, Jairo S, Yuki T, Priya V, Welch Ellen M, Xiaojiao X, Jin Z. Guanidino Quinazolines and Pyrimidines Promote Readthrough of Premature Termination Codons in Cells with Native Nonsense Mutations. Bioorg Med Chem Lett 2022; 76:128989. [PMID: 36150638 DOI: 10.1016/j.bmcl.2022.128989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
Using small molecules to induce readthrough of premature termination codons is a promising therapeutic approach to treating genetic diseases and cancers caused by nonsense mutations, as evidenced by the widespread use of ataluren to treat nonsense mutation Duchene muscular dystrophy. Herein we describe a series of novel guanidino quinazoline and pyrimidine scaffolds that induce readthrough in both HDQ-P1 mammary carcinoma cells and mdx myotubes. Linkage of basic, tertiary amines with aliphatic, hydrophobic substituents to the terminal guanidine nitrogen of these scaffolds led to significant potency increases. Further potency gains were achieved by flanking the pyrimidine ring with hydrophobic substituents, inducing readthrough at concentrations as low as 120 nM and demonstrating the potential of these compounds to be used either in combination with ataluren or as stand-alone therapeutics.
Collapse
Affiliation(s)
- Morrill Christie
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - J Friesen Westley
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Babu Suresh
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Y Baiazitov Ramil
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Du Wu
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - B Karloff Diane
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Lee Chang-Sun
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Moon Young-Choon
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Ren Hongyu
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Sierra Jairo
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Tomizawa Yuki
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Vazirani Priya
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - M Welch Ellen
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Xue Xiaojiao
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Zhuo Jin
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080, USA
| |
Collapse
|
24
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
25
|
Translation Inhibitors Activate Autophagy Master Regulators TFEB and TFE3. Int J Mol Sci 2021; 22:ijms222112083. [PMID: 34769510 PMCID: PMC8584619 DOI: 10.3390/ijms222112083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosome pathway is a major protein degradation pathway stimulated by multiple cellular stresses, including nutrient or growth factor deprivation, hypoxia, misfolded proteins, damaged organelles, and intracellular pathogens. Recent studies have revealed that transcription factor EB (TFEB) and transcription factor E3 (TFE3) play a pivotal role in the biogenesis and functions of autophagosome and lysosome. Here we report that three translation inhibitors (cycloheximide, lactimidomycin, and rocaglamide A) can facilitate the nuclear translocation of TFEB/TFE3 via dephosphorylation and 14-3-3 dissociation. In addition, the inhibitor-mediated TFEB/TFE3 nuclear translocation significantly increases the transcriptional expression of their downstream genes involved in the biogenesis and function of autophagosome and lysosome. Furthermore, we demonstrated that translation inhibition increased autophagosome biogenesis but impaired the degradative autolysosome formation because of lysosomal dysfunction. These results highlight the previously unrecognized function of the translation inhibitors as activators of TFEB/TFE3, suggesting a novel biological role of translation inhibition in autophagy regulation.
Collapse
|
26
|
Sicking M, Jung M, Lang S. Lights, Camera, Interaction: Studying Protein-Protein Interactions of the ER Protein Translocase in Living Cells. Int J Mol Sci 2021; 22:10358. [PMID: 34638699 PMCID: PMC8508666 DOI: 10.3390/ijms221910358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Various landmark studies have revealed structures and functions of the Sec61/SecY complex in all domains of live demonstrating the conserved nature of this ancestral protein translocase. While the bacterial homolog of the Sec61 complex resides in the plasma membrane, the eukaryotic counterpart manages the transfer of precursor proteins into or across the membrane of the endoplasmic reticulum (ER). Sec61 complexes are accompanied by a set of dynamically recruited auxiliary proteins assisting the transport of certain precursor polypeptides. TRAP and Sec62/Sec63 are two auxiliary protein complexes in mammalian cells that have been characterized by structural and biochemical methods. Using these ER membrane protein complexes for our proof-of-concept study, we aimed to detect interactions of membrane proteins in living mammalian cells under physiological conditions. Bimolecular luminescence complementation and competition was used to demonstrate multiple protein-protein interactions of different topological layouts. In addition to the interaction of the soluble catalytic and regulatory subunits of the cytosolic protein kinase A, we detected interactions of ER membrane proteins that either belong to the same multimeric protein complex (intra-complex interactions: Sec61α-Sec61β, TRAPα-TRAPβ) or protein complexes in juxtaposition (inter-complex interactions: Sec61α-TRAPα, Sec61α-Sec63, and Sec61β-Sec63). In the process, we established further control elements like synthetic peptide complementation for expression profiling of fusion constructs and protease-mediated reporter degradation demonstrating the cytosolic localization of a reporter complementation. Ease of use and flexibility of the approach presented here will spur further research regarding the dynamics of protein-protein interactions in response to changing cellular conditions in living cells.
Collapse
Affiliation(s)
| | | | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (M.S.); (M.J.)
| |
Collapse
|
27
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
28
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
29
|
Raj K, Kaur K, Gupta GD, Singh S. Current understanding on molecular drug targets and emerging treatment strategy for novel coronavirus-19. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1383-1402. [PMID: 33961065 PMCID: PMC8102151 DOI: 10.1007/s00210-021-02091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 is an enveloped positive-sense RNA virus, contain crown-like spikes on its surface, exceptional of large RNA genome, and a special replication machinery. Common symptoms of SARS-CoV-2 include cough, common cold, fever, sore throat, and a variety of severe acute respiratory disease (SARD) such as pneumonia. SARS-CoV-2 infects epithelial cells, T-cells, macrophages, and dendritic cells and also influences the production and implantation of pro-inflammatory cytokines and chemokines. Repurposing of various drugs during this emergency condition can reduce the rate of mortality as well as time and cost. Two druggable protein and enzyme targets have been selected in this review article due to their crucial role in the viral life cycle. The eukaryotic translation initiation factor (eIF4A), cyclophilin, nucleocapsid protein, spike protein, Angiotensin-converting enzyme 2 (ACE2), 3-chymotrypsin-like cysteine protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) play significant role in early and late phase of SARS-CoV-2 replication and translation. This review paper is based on the rationale of inhibiting of various SARS-CoV-2 proteins and enzymes as novel therapeutic approaches for the management and treatment of patients with SARS-CoV-2 infection. We also discussed the structural and functional relationship of different proteins and enzymes to develop therapeutic approaches for novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Khadga Raj
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Karamjeet Kaur
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
30
|
Jürgens L, Manske F, Hubert E, Kischka T, Flötotto L, Klaas O, Shabardina V, Schliemann C, Makalowski W, Wethmar K. Somatic Functional Deletions of Upstream Open Reading Frame-Associated Initiation and Termination Codons in Human Cancer. Biomedicines 2021; 9:biomedicines9060618. [PMID: 34072580 PMCID: PMC8227997 DOI: 10.3390/biomedicines9060618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Upstream open reading frame (uORF)-mediated translational control has emerged as an important regulatory mechanism in human health and disease. However, a systematic search for cancer-associated somatic uORF mutations has not been performed. Here, we analyzed the genetic variability at canonical (uAUG) and alternative translational initiation sites (aTISs), as well as the associated upstream termination codons (uStops) in 3394 whole-exome-sequencing datasets from patient samples of breast, colon, lung, prostate, and skin cancer and of acute myeloid leukemia, provided by The Cancer Genome Atlas research network. We found that 66.5% of patient samples were affected by at least one of 5277 recurrent uORF-associated somatic single nucleotide variants altering 446 uAUG, 347 uStop, and 4733 aTIS codons. While twelve uORF variants were detected in all entities, 17 variants occurred in all five types of solid cancer analyzed here. Highest frequencies of individual somatic variants in the TLSs of NBPF20 and CHCHD2 reached 10.1% among LAML and 8.1% among skin cancer patients, respectively. Functional evaluation by dual luciferase reporter assays identified 19 uORF variants causing significant translational deregulation of the associated main coding sequence, ranging from 1.73-fold induction for an AUG.1 > UUG variant in SETD4 to 0.006-fold repression for a CUG.6 > GUG variant in HLA-DRB1. These data suggest that somatic uORF mutations are highly prevalent in human malignancies and that defective translational regulation of protein expression may contribute to the onset or progression of cancer.
Collapse
Affiliation(s)
- Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Felix Manske
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Elvira Hubert
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Tabea Kischka
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Lea Flötotto
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Oliver Klaas
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Victoria Shabardina
- Institute of Evolutionary Biology, CSIC-Unversitat Pompeu Frabra, 08002 Barcelona, Spain;
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Wojciech Makalowski
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Klaus Wethmar
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
- Correspondence: ; Tel.: +49-251-8347587; Fax: +49-251-8347588
| |
Collapse
|
31
|
Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma. Cells 2021; 10:cells10020301. [PMID: 33540613 PMCID: PMC7912938 DOI: 10.3390/cells10020301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of eukaryotic initiation factors (eIFs) at the translation initiation. Especially the activity of the heterotrimeric eIF4F complex is often altered in malignant cells, since it is the direct connection to key oncogenic signaling pathways such as the PI3K/AKT/mTOR-pathway. A large body of literature exists that demonstrates targeting the translational machinery as a promising anti-neoplastic approach. The objective of this study was to determine whether eIF4F complex members are aberrantly expressed in NB and whether targeting parts of the complex may be a therapeutic strategy against NB. We show that eIF4AI is overexpressed in NB patient tissue using immunohistochemistry, immunoblotting, and RT-qPCR. NB cell lines exhibit decreased viability, increased apoptosis rates as well as changes in cell cycle distribution when treated with the synthetic rocaglate CR-1-31-B, which clamps eIF4A and eIF4F onto mRNA, resulting in a translational block. Additionally, this study reveals that CR-1-31-B is effective against NB cell lines at low nanomolar doses (≤20 nM), which have been shown to not affect non-malignant cells in previous studies. Thus, our study provides information of the expression status on eIF4AI in NB and offers initial promising insight into targeting translation initiation as an anti-tumorigenic approach for NB.
Collapse
|