1
|
Andriushin ND, Sukhanov AS, Korshunov AN, Pavlovskii MS, Rahn MC, Nikitin SE. Phonon Topology and Winding of Spectral Weight in Graphite. PHYSICAL REVIEW LETTERS 2023; 131:246601. [PMID: 38181154 DOI: 10.1103/physrevlett.131.246601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/19/2023] [Indexed: 01/07/2024]
Abstract
The topology of electronic and phonon band structures of graphene is well studied and known to exhibit a Dirac cone at the K point of the Brillouin zone. Here, we applied inelastic x-ray scattering (IXS) along with ab initio calculations to investigate phonon topology in graphite, the 3D analog of graphene. We identified a pair of modes that form a very weakly gapped linear anticrossing at the K point that can be essentially viewed as a Dirac cone approximant. The IXS intensity in the vicinity of the quasi-Dirac point reveals a harmonic modulation of the phonon spectral weight above and below the Dirac energy, which was previously proposed as an experimental fingerprint of the nontrivial topology. We illustrate how the topological winding of IXS intensity can be understood in terms of atomic displacements and highlight that the intensity winding is not in fact sensitive in telling quasi- and true Dirac points apart.
Collapse
Affiliation(s)
- N D Andriushin
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - A S Sukhanov
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - A N Korshunov
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01069 Dresden, Germany
- Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
- Quantum Criticality and Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - M S Pavlovskii
- Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
| | - M C Rahn
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - S E Nikitin
- Quantum Criticality and Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| |
Collapse
|
2
|
Büscher J, Mirone A, Stękiel M, Spahr D, Morgenroth W, Haussühl E, Milman V, Bosak A, Ivashko O, von Zimmermann M, Dippel AC, Winkler B. Elastic stiffness coefficients of thiourea from thermal diffuse scattering. J Appl Crystallogr 2021; 54:287-294. [PMID: 33833654 PMCID: PMC7941310 DOI: 10.1107/s1600576720016039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
The complete elastic stiffness tensor of thiourea has been determined from thermal diffuse scattering (TDS) using high-energy photons (100 keV). Comparison with earlier data confirms a very good agreement of the tensor coefficients. In contrast with established methods to obtain elastic stiffness coefficients (e.g. Brillouin spectroscopy, inelastic X-ray or neutron scattering, ultrasound spectroscopy), their determination from TDS is faster, does not require large samples or intricate sample preparation, and is applicable to opaque crystals. Using high-energy photons extends the applicability of the TDS-based approach to organic compounds which would suffer from radiation damage at lower photon energies.
Collapse
Affiliation(s)
- Julia Büscher
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| | - Alessandro Mirone
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, France
| | - Michał Stękiel
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| | - Dominik Spahr
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| | - Wolfgang Morgenroth
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| | - Eiken Haussühl
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| | | | - Alexei Bosak
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, France
| | - Oleh Ivashko
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | | | | | - Björn Winkler
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Wollenweber L, Preston TR, Descamps A, Cerantola V, Comley A, Eggert JH, Fletcher LB, Geloni G, Gericke DO, Glenzer SH, Göde S, Hastings J, Humphries OS, Jenei A, Karnbach O, Konopkova Z, Loetzsch R, Marx-Glowna B, McBride EE, McGonegle D, Monaco G, Ofori-Okai BK, Palmer CAJ, Plückthun C, Redmer R, Strohm C, Thorpe I, Tschentscher T, Uschmann I, Wark JS, White TG, Appel K, Gregori G, Zastrau U. High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013101. [PMID: 33514249 DOI: 10.1063/5.0022886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.
Collapse
Affiliation(s)
- L Wollenweber
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T R Preston
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A Descamps
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - V Cerantola
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A Comley
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - J H Eggert
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - G Geloni
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D O Gericke
- Centre for Fusion, Space & Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S Göde
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J Hastings
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - O S Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - A Jenei
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - O Karnbach
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Z Konopkova
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R Loetzsch
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - B Marx-Glowna
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - E E McBride
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - G Monaco
- Dipartimento di Fisica, Universita di Trento, via Sommarive 14, Povo 38123, TN, Italy
| | - B K Ofori-Okai
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - C A J Palmer
- School of Mathematics and Physics, Queen's University Belfast, University Road, BT7 1NN Belfast, United Kingdom
| | - C Plückthun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R Redmer
- Universität Rostock, Institut für Physik, Albert-Einstein-Straße 23-24, 18051 Rostock, Germany
| | - C Strohm
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - I Thorpe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - I Uschmann
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - T G White
- Physics Department, University of Nevada at Reno, Reno, Nevada 89506, USA
| | - K Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Gregori
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - U Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
4
|
Descamps A, Ofori-Okai BK, Appel K, Cerantola V, Comley A, Eggert JH, Fletcher LB, Gericke DO, Göde S, Humphries O, Karnbach O, Lazicki A, Loetzsch R, McGonegle D, Palmer CAJ, Plueckthun C, Preston TR, Redmer R, Senesky DG, Strohm C, Uschmann I, White TG, Wollenweber L, Monaco G, Wark JS, Hastings JB, Zastrau U, Gregori G, Glenzer SH, McBride EE. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci Rep 2020; 10:14564. [PMID: 32884061 PMCID: PMC7471281 DOI: 10.1038/s41598-020-71350-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.
Collapse
Affiliation(s)
- A Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA.
| | - B K Ofori-Okai
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - K Appel
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - V Cerantola
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Comley
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - S Göde
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - O Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - O Karnbach
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R Loetzsch
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - D McGonegle
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - C A J Palmer
- School of Mathematics and Physics, Queen's University, University Road BT7 1NN, Belfast, UK
| | - C Plueckthun
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - T R Preston
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - R Redmer
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - D G Senesky
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA
| | - C Strohm
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - I Uschmann
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - T G White
- University of Nevada, Reno, NV, 89557, USA
| | - L Wollenweber
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Monaco
- Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - J B Hastings
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - U Zastrau
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Gregori
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
5
|
Said AH, Sinn H, Toellner TS, Alp EE, Gog T, Leu BM, Bean S, Alatas A. High-energy-resolution inelastic X-ray scattering spectrometer at beamline 30-ID of the Advanced Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:827-835. [PMID: 32381787 PMCID: PMC7285690 DOI: 10.1107/s1600577520002854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Inelastic X-ray scattering is a powerful and versatile technique for studying lattice dynamics in materials of scientific and technological importance. In this article, the design and capabilities of the momentum-resolved high-energy-resolution inelastic X-ray spectrometer (HERIX) at beamline 30-ID of the Advanced Photon Source are reported. The instrument operates at 23.724 keV and has an energy resolution of 1.3-1.7 meV. It can accommodate momentum transfers of up to 72 nm-1, at a typical X-ray flux of 4.5 × 109 photons s-1 meV-1 at the sample. A suite of in situ sample environments are provided, including high pressure, static magnetic fields and uniaxial strains, all at high or cryogenic temperatures.
Collapse
Affiliation(s)
- Ayman H. Said
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Harald Sinn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thomas S. Toellner
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ercan E. Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Thomas Gog
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Bogdan M. Leu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Physics, Miami University, Oxford, OH 45056, USA
| | - Sunil Bean
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ahmet Alatas
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|