1
|
Wang TT, Liu JY, Guo R, An JD, Huo JZ, Liu YY, Shi W, Ding B. Solvothermal Preparation of a Lanthanide Metal-Organic Framework for Highly Sensitive Discrimination of Nitrofurantoin and l-Tyrosine. Molecules 2021; 26:molecules26123673. [PMID: 34208577 PMCID: PMC8233945 DOI: 10.3390/molecules26123673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been rapidly developed for their broad applications in many different chemistry and materials fields. In this work, a multi-dentate building block 5-(4-(tetrazol-5-yl)phenyl)-isophthalic acid (H3L) containing tetrazole and carbolxylate moieties was employed for the synthesis of a two-dimensional (2D) lanthanide MOF [La(HL)(DMF)2(NO3)] (DMF = N,N-dimethylformamide) (1) under solvothermal condition. The fluorescent sensing application of 1 was investigated. 1 exhibits high sensitivity recognition for antibiotic nitrofurantoin (Ksv: 3.0 × 103 M−1 and detection limit: 17.0 μM) and amino acid l-tyrosine (Ksv: 1.4 × 104 M−1 and detection limit: 3.6 μM). This work provides a feasible detection platform of 2D MOFs for highly sensitive discrimination of antibiotics and amino acids.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jun-Dan An
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Wei Shi
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Correspondence: (W.S.); (B.D.)
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
- Correspondence: (W.S.); (B.D.)
| |
Collapse
|
2
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. This is an update of previously published versions of this review. OBJECTIVES To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references. Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 07 December 2020. SELECTION CRITERIA All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. DATA COLLECTION AND ANALYSIS Two authors independently assessed the trial eligibility, methodological quality and extracted the data. MAIN RESULTS Six trials were found, of which three trials reporting the results of a total of 56 participants, were suitable for inclusion in the review. The blood tyrosine concentrations were significantly higher in the participants receiving tyrosine supplements than those in the placebo group, mean difference 23.46 (95% confidence interval 12.87 to 34.05). No significant differences were found between any of the other outcomes measured. The trials were assessed as having a low to moderate risk of bias across several domains. AUTHORS' CONCLUSIONS From the available evidence no recommendations can be made about whether tyrosine supplementation should be introduced into routine clinical practice. Further randomised controlled studies are required to provide more evidence. However, given this is not an active area of research, we have no plans to update this review in the future.
Collapse
Affiliation(s)
- Tracey Remmington
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease treated with dietary restriction of the amino acid phenylalanine. The diet is initiated in the neonatal period to prevent learning disability; however, it is restrictive and can be difficult to follow. Whether the diet can be relaxed or discontinued during adolescence or should be continued for life remains a controversial issue, which we aim to address in this review. This is an updated version of a previously published review. OBJECTIVES To assess the effects of a low-phenylalanine diet commenced early in life for people with phenylketonuria. To assess the possible effects of relaxation or termination of the diet on intelligence, neuropsychological outcomes and mortality, growth, nutritional status, eating behaviour and quality of life. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Most recent search of the Inborn Errors of Metabolism Trials Register: 30 April 2020. SELECTION CRITERIA All randomised or quasi-randomised controlled trials comparing a low-phenylalanine diet to relaxation or termination of dietary restrictions in people with phenylketonuria. DATA COLLECTION AND ANALYSIS Two authors independently assessed study eligibility and methodological quality, and subsequently extracted the data. MAIN RESULTS We included four studies in this review (251 participants), and found few significant differences between treatment and comparison groups for the outcomes of interest. Blood phenylalanine levels were significantly lower in participants with phenylketonuria following a low-phenylalanine diet compared to those on a less restricted diet, mean difference (MD) at three months -698.67 (95% confidence interval (CI) -869.44 to -527.89). Intelligence quotient was significantly higher in participants who continued the diet than in those who stopped the diet, MD after 12 months 5.00 (95% CI 0.40 to 9.60). However, these results came from a single study. AUTHORS' CONCLUSIONS The results of non-randomised studies have concluded that a low-phenylalanine diet is effective in reducing blood phenylalanine levels and improving intelligence quotient and neuropsychological outcomes. We were unable to find any randomised controlled studies that have assessed the effect of a low-phenylalanine diet versus no diet from diagnosis. In view of evidence from non-randomised studies, such a study would be unethical and it is recommended that low-phenylalanine diet should be commenced at the time of diagnosis. There is uncertainty about the precise level of phenylalanine restriction and when, if ever, the diet should be relaxed. This should be addressed by randomised controlled studies; however, no new studies are expected in this area so we do not plan to update this review.
Collapse
Affiliation(s)
- Elisabeth Jameson
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Tracey Remmington
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Montoya Parra GA, Singh RH, Cetinyurek-Yavuz A, Kuhn M, MacDonald A. Status of nutrients important in brain function in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 2018; 13:101. [PMID: 29941009 PMCID: PMC6020171 DOI: 10.1186/s13023-018-0839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background Despite early and ongoing dietary management with a phe-restricted diet, suboptimal neuropsychological function has been observed in PKU. The restrictive nature of the PKU diet may expose patients to sub-optimal nutritional intake and deficiencies which may impact normal brain function. A systematic review of the published literature was carried out, where possible with meta-analysis, to compare the status of nutrients (Nutrients: DHA, EPA phospholipids, selenium, vitamins B6, B12, E, C, A, D, folic acid, choline, uridine, calcium, magnesium, zinc, iron, iodine and cholesterol) known to be important for brain development and functioning between individuals with PKU and healthy controls. Results Of 1534 publications identified, 65 studies met the entry criteria. Significantly lower levels of DHA, EPA and cholesterol were found for PKU patients compared to healthy controls. No significant differences in zinc, vitamins B12, E and D, calcium, iron and magnesium were found between PKU patients and controls. Because of considerable heterogeneity, the meta-analyses findings for folate and selenium were not reported. Due to an insufficient number of publications (< 4) no meta-analysis was undertaken for vitamins A, C and B6, choline, uridine, iodine and phospholipids. Conclusions The current data show that PKU patients have lower availability of DHA, EPA and cholesterol. Compliance with the phe-restricted diet including the micronutrient fortified protein substitute (PS) is essential to ensure adequate micronutrient status. Given the complexity of the diet, patients’ micronutrient and fatty acid status should be continuously monitored, with a particular focus on patients who are non-compliant or poorly compliant with their PS. Given their key role in brain function, assessment of the status of nutrients where limited data was found (e.g. choline, iodine) should be undertaken. Standardised reporting of studies in PKU would strengthen the output of meta-analysis and so better inform best practice for this rare condition. Electronic supplementary material The online version of this article (10.1186/s13023-018-0839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gina A Montoya Parra
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands.
| | - Rani H Singh
- Metabolic Genetics and Nutrition Program, Emory University, Atlanta, GA, USA
| | | | - Mirjam Kuhn
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Anita MacDonald
- Department of Metabolic Diseases, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
5
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
Preissler T, Bristot IJ, Costa BML, Fernandes EK, Rieger E, Bortoluzzi VT, de Franceschi ID, Dutra-Filho CS, Moreira JCF, Wannmacher CMD. Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 2016; 31:529-37. [PMID: 26573865 DOI: 10.1007/s11011-015-9763-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effects of phenylalanine on oxidative stress and some metabolic parameters in astrocyte cultures from newborn Wistar rats. Astrocytes were cultured under four conditions: control (0.4 mM phenylalanine concentration in the Dulbecco's Modified Eagle Medium (DMEM) solution), Phe addition to achieve 0.5, 1.0 or 1.5 mM final phenylalanine concentrations. After 72 h the astrocytes were separated for the biochemical measurements. Overall measure of mitochondrial function by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell viability measured by lactate dehydrogenase (LDH) assays indicated that phenylalanine induced cell damage at the three concentrations tested. The alteration on the various parameters of oxidative stress indicated that phenylalanine was able to induce free radicals production. Therefore, our results strongly suggest that Phe at concentrations usually found in PKU induces oxidative stress and consequently cell death in astrocytes cultures. Considering the importance of the astrocytes for brain function, it is possible that these astrocytes alterations may contribute to the brain damage found in PKU patients.
Collapse
Affiliation(s)
- Thales Preissler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Ivi Juliana Bristot
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna May Lopes Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Elissa Kerli Fernandes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Elenara Rieger
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Itiane Diehl de Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - José Claudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
7
|
Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr 2016; 55:1793-807. [PMID: 24279396 DOI: 10.1080/10408398.2012.708368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nutritional ergogenic aids have been in use for a long time to enhance exercise and sports performance. Dietary components that exhibit ergogenic activity are numerous and their consumption is common and popular among athletes. They often come under scrutiny by legal authorities for their claimed benefits and safety concerns. Amino acid derivatives are propagated as being effective aids to enhance physical and mental performance in many ways, even though studies have pointed out that individuals who are deficient are more likely to benefit from dietary supplementation of amino acid derivatives than normal humans. In this review, some of the most common and widely used amino acids derivatives in sports and athletics namely creatine, tyrosine, carnitine, HMB, and taurine have been discussed for their effects on exercise performance, mental activity as well as body strength and composition. Creatine, carnitine, HMB, and taurine are reported to delay the onset of fatigue, improve exercise performance, and body strength. HMB helps in increasing fat-free mass and reduce exercise induced muscle injury. Taurine has been found to reduce oxidative stress during exercise and also act as an antihypertensive agent. Although, studies have not been able to find any favorable effect of tyrosine administration on exercise performance, it has been proved to be very effective in fighting stress, improving mood and cognitive performance particularly in sleep-deprived subjects. While available data from published studies and findings are equivocal about the efficacy of creatine, tyrosine, and HMB, more comprehensive researches on carnitine and taurine are necessary to provide evidence for the theoretical basis of their ergogenic role in nutritional modification and supplementation.
Collapse
|
8
|
Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands--A review. J Psychiatr Res 2015; 70:50-7. [PMID: 26424423 DOI: 10.1016/j.jpsychires.2015.08.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Consuming the amino-acid tyrosine (TYR), the precursor of dopamine (DA) and norepinephrine (NE), may counteract decrements in neurotransmitter function and cognitive performance. However, reports on the effectiveness of TYR supplementation vary considerably, with some studies finding beneficial effects, whereas others do not. Here we review the available cognitive/behavioral studies on TYR, to elucidate whether and when TYR supplementation can be beneficial for performance. The potential of using TYR supplementation to treat clinical disorders seems limited and its benefits are likely determined by the presence and extent of impaired neurotransmitter function and synthesis. Likewise, the potential of TYR supplementation for enhancing physical exercise seems minimal as well, perhaps because the link between physical exercise and catecholamine function is mediated by many other factors. In contrast, TYR does seem to effectively enhance cognitive performance, particularly in short-term stressful and/or cognitively demanding situations. We conclude that TYR is an effective enhancer of cognition, but only when neurotransmitter function is intact and DA and/or NE is temporarily depleted.
Collapse
|
9
|
Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, Splett PL, Moseley K, Huntington K, Acosta PB, Vockley J, Van Calcar SC. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 2014; 16:121-31. [PMID: 24385075 PMCID: PMC3918542 DOI: 10.1038/gim.2013.179] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/16/2013] [Indexed: 11/09/2022] Open
Abstract
The effectiveness of a phenylalanine-restricted diet to improve the outcome of individuals with phenylalanine hydroxylase deficiency (OMIM no. 261600) has been recognized since the first patients were treated 60 years ago. However, the treatment regime is complex, costly, and often difficult to maintain for the long term. Improvements and refinements in the diet for phenylalanine hydroxylase deficiency have been made over the years, and adjunctive therapies have proven to be successful for certain patients. Yet evidence-based guidelines for managing phenylalanine hydroxylase deficiency, optimizing outcomes, and addressing all available therapies are lacking. Thus, recommendations for nutrition management were developed using evidence from peer-reviewed publications, gray literature, and consensus surveys. The areas investigated included choice of appropriate medical foods, integration of adjunctive therapies, treatment during pregnancy, monitoring of nutritional and clinical markers, prevention of nutrient deficiencies, providing of access to care, and compliance strategies. This process has not only provided assessment and refinement of current nutrition management and monitoring recommendations but also charted a direction for future studies. This document serves as a companion to the concurrently published American College of Medical Genetics and Genomics guideline for the medical treatment of phenylalanine hydroxylase deficiency.
Collapse
Affiliation(s)
- Rani H. Singh
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fran Rohr
- Division of Genetics and Metabolism, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dianne Frazier
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Cunningham
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shideh Mofidi
- Inherited Metabolic Disease Center, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Beth Ogata
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - Kathryn Moseley
- Department of Pediatrics, University of Southern California Medical Center, Los Angeles, California, USA
| | - Kathleen Huntington
- Metabolic Clinic, Institute for Development and Disability, Oregon Health Science University, Portland, Oregon, USA
| | | | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra C. Van Calcar
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Pascucci T, Giacovazzo G, Andolina D, Accoto A, Fiori E, Ventura R, Orsini C, Conversi D, Carducci C, Leuzzi V, Puglisi-Allegra S. Behavioral and neurochemical characterization of new mouse model of hyperphenylalaninemia. PLoS One 2013; 8:e84697. [PMID: 24376837 PMCID: PMC3869930 DOI: 10.1371/journal.pone.0084697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
- * E-mail:
| | - Giacomo Giacovazzo
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - Diego Andolina
- Fondazione Santa Lucia, IRCCS, Roma, Italy
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Accoto
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - Elena Fiori
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - Rossella Ventura
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - Cristina Orsini
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - David Conversi
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| | - Claudia Carducci
- Dipartimento di Medicina sperimentale e Patologia, Sapienza - Università di Roma, Roma, Italy
| | - Vincenzo Leuzzi
- Dipartimento di Scienze Neurologiche, Psichiatriche e Riabilitative dell'Età Evolutiva, Università di Roma, Roma, Italy
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro “Daniel Bovet”, Sapienza - Università di Roma, Roma, Italy
- Fondazione Santa Lucia, IRCCS, Roma, Italy
| |
Collapse
|
11
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. OBJECTIVES To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 28 June 2012. SELECTION CRITERIA All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. DATA COLLECTION AND ANALYSIS Two authors independently assessed the trial eligibility, methodological quality and extracted the data. MAIN RESULTS Six trials were found, of which three trials reporting the results of a total of 56 participants, were suitable for inclusion in the review. The blood tyrosine concentrations were significantly higher in the participants receiving tyrosine supplements than those in the placebo group, mean difference 23.46 (95% confidence interval 12.87 to 34.05). No significant differences were found between any of the other outcomes measured. AUTHORS' CONCLUSIONS From the available evidence no recommendations can be made about whether tyrosine supplementation should be introduced into routine clinical practice. Further randomised controlled studies are required to provide more evidence.
Collapse
Affiliation(s)
- Diana Webster
- Nutrition and Dietetic Department, Bristol Royal Hospital for Children, Bristol, UK.
| | | |
Collapse
|
12
|
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr 2013; 10:1. [PMID: 23281794 PMCID: PMC3538552 DOI: 10.1186/1550-2783-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician.
Collapse
Affiliation(s)
- Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Colin Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Paul La Bounty
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX, 76798, USA
| | - Lem Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Mike T Nelson
- Department of Health and Human Performance, University of St.Thomas, St. Paul, MN, 55105, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Stephen Schmitz
- Medical Surveillance and Risk Management, Shire HGT, 300 Shire Way, Lexington, MA, 02421, USA
| | | | - Doug S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jose Antonio
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| |
Collapse
|
13
|
Pascucci T, Giacovazzo G, Andolina D, Conversi D, Cruciani F, Cabib S, Puglisi-Allegra S. In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. J Inherit Metab Dis 2012; 35:1001-9. [PMID: 22447154 PMCID: PMC3470696 DOI: 10.1007/s10545-012-9473-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Phenylketonuria (PKU) is an inherited metabolic disease characterized by plasma hyperphenylalaninemia and several neurological symptoms that can be controlled by rigorous dietetic treatment. The cellular mechanisms underlying impaired brain functions are still unclear. It has been proposed, however, that phenylalanine interference in cognitive functions depends on impaired dopamine (DA) transmission in the prefrontal cortical area due to reduced availability of the precursor tyrosine. Here, using Pah(enu2) (ENU2) mice, the genetic murine model of PKU, we investigated all metabolic steps of catecholamine neurotransmission within the medial preFrontal Cortex (mpFC), availability of the precursor tyrosine, synthesis and release, to find an easy way to reinstate normal cortical DA neurotransmission. METHODS AND RESULTS Analysis of blood and brain levels of tyrosine showed reduced plasma and cerebral levels of tyrosine in ENU2 mice. Western blot analysis demonstrated deficient tyrosine hydroxylase (TH) protein levels in mpFC of ENU2 mice. Cortical TH activity, determined in vivo by measuring the accumulation of l-3,4-dihydroxyphenylalanine (L-DOPA) in mpFC after inhibition of L-aromatic acid decarboxylase with NSD-1015, was reduced in ENU2 mice. Finally, a very low dose of L-DOPA, which bypasses the phenylalanine-inhibited metabolic steps, restored DA prefrontal transmission to levels found in healthy mice. CONCLUSION The data suggests that a strategy of using tyrosine supplementation to treat PKU is unlikely to be effective, whereas small dose L-DOPA administration is likely to have a positive therapeutic effect.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centre Daniel Bovet, Sapienza University, via dei Marsi 78, 00185, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
van Spronsen FJ, de Groot MJ, Hoeksma M, Reijngoud DJ, van Rijn M. Large neutral amino acids in the treatment of PKU: from theory to practice. J Inherit Metab Dis 2010; 33:671-6. [PMID: 20976625 PMCID: PMC2992655 DOI: 10.1007/s10545-010-9216-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 07/18/2010] [Accepted: 09/19/2010] [Indexed: 11/30/2022]
Abstract
Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Department of Pediatrics, Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. OBJECTIVES To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. SEARCH STRATEGY We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 09 June 2010. SELECTION CRITERIA All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. DATA COLLECTION AND ANALYSIS Two authors independently assessed the trial eligibility, methodological quality and extracted the data. MAIN RESULTS Six trials were found, of which three trials reporting the results of a total of 56 participants, were suitable for inclusion in the review. The blood tyrosine concentrations were significantly higher in the participants receiving tyrosine supplements than those in the placebo group, mean difference 23.46 (95% confidence interval 12.87 to 34.05). No significant differences were found between any of the other outcomes measured. AUTHORS' CONCLUSIONS From the available evidence no recommendations can be made about whether tyrosine supplementation should be introduced into routine clinical practice. Further randomised controlled studies are required to provide more evidence.
Collapse
Affiliation(s)
- Diana Webster
- Nutrition and Dietetic Department, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK, BS2 8BJ
| | | |
Collapse
|
16
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease treated with dietary restriction of the amino acid phenylalanine. The diet is initiated in the neonatal period to prevent mental handicap; however, it is restrictive and can be difficult to follow. Whether the diet can be relaxed or discontinued during adolescence or should be continued for life remains a controversial issue, which we aim to address in this review. OBJECTIVES To assess the effects of a low-phenylalanine diet commenced early in life for people with phenylketonuria. To assess the possible effects of relaxation or termination of the diet on intelligence, neuropsychological outcomes and mortality, growth, nutritional status, eating behaviour and quality of life. SEARCH STRATEGY We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings.Most recent search of the Inborn Errors of Metabolism Trials Register: 05 March 2009. SELECTION CRITERIA All randomised or quasi-randomised controlled trials comparing a low-phenylalanine diet to relaxation or termination of dietary restrictions in people with phenylketonuria. DATA COLLECTION AND ANALYSIS Two authors independently assessed study eligibility and methodological quality, and subsequently extracted the data. MAIN RESULTS We included four studies in this review (251 participants), and found few significant differences between treatment and comparison groups for the outcomes of interest. Blood phenylalanine levels were significantly lower in participants with phenylketonuria following a low-phenylalanine diet compared to those on a less restricted diet, mean difference (MD) at three months -698.67 (95% confidence interval (CI) -869.44 to -527.89). Intelligence quotient was significantly higher in participants who continued the diet than in those who stopped the diet, MD after 12 months 5.00 (95% CI 0.40 to 9.60). However, these results came from a single study. AUTHORS' CONCLUSIONS The results of non-randomised studies have concluded that a low-phenylalanine diet is effective in reducing blood phenylalanine levels and improving intelligence quotient and neuropsychological outcomes. We were unable to find any randomised controlled studies that have assessed the effect of a low-phenylalanine diet versus no diet from diagnosis. In view of evidence from non-randomised studies, such a study would be unethical and it is recommended that low-phenylalanine diet should be commenced at the time of diagnosis. There is uncertainty about the precise level of phenylalanine restriction and when, if ever, the diet should be relaxed. This should be addressed by randomised controlled studies.
Collapse
Affiliation(s)
- Vanessa J Poustie
- Alder Hey Children's NHS Foundation TrustInstitute of Child Health, University of LiverpoolEaton RoadLiverpoolMerseysideUKL12 2AP
| | - Joanne Wildgoose
- Bradford Royal InfirmaryPhysio Corridor, Level 1Duckworth LaneBradfordUKBD9 6RJ
| | | |
Collapse
|
17
|
5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol 2009; 12:1067-79. [PMID: 19664307 DOI: 10.1017/s1461145709990381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult early treated hyperphenylalaninaemic patients can show specific deficits of prefrontal cortical functions. The development of additional therapeutic strategies for these patients requires the understanding of the mechanisms involved in phenylalanine-dependent impairment of fronto-cortical functions. We tested the hypothesis of phenylalanine interference with aminergic neurotransmission in the prefrontal cortex by evaluating, in vivo, amine release in adult Pah(enu2) mice, the genetic model of phenylketonuria. Mice of healthy background responded to a psychogenic stressor with the classic time-dependent increase of norepinephrine, dopamine and serotonin release from prefrontal cortical terminals. Neither the dopaminergic nor the serotoninergic responses were observable in the Pah(enu2) mice. Temporary reduction of circulating phenylalanine, by phenylalanine-free diet without amino- acid supplement, promoted recovery of the serotonin response only, demonstrating direct interference with serotonin synthesis in the mature brain. Evaluation of different steps of serotonin synthesis in the prefrontal cortex of hyperphenylalaninaemic mice demonstrated inhibition of cortical tryptophan hydroxylase activity. Finally, systemic administration of 5-hydroxytryptophan, the product of tryptophan hydroxylase activity, allowed frontal cortical serotonin response to stress in hyperphenylalaninaemic mice. Collectively, these results demonstrate that hyperphenylalaninaemia interferes with the ability of the mature prefrontal cortex to respond to psychological challenges, point to serotonin synthesis as the target of phenylalanine interference, and support the use of 5-hydroxytryptophan in lifelong treatment of hyperphenylalaninaemic subjects.
Collapse
|
18
|
Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: A meta-analysis. Neurosci Biobehav Rev 2009; 33:414-21. [DOI: 10.1016/j.neubiorev.2008.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 10/31/2008] [Accepted: 11/01/2008] [Indexed: 11/18/2022]
|
19
|
Sharman R, Sullivan K, Young R, McGill J. Biochemical markers associated with executive function in adolescents with early and continuously treated phenylketonuria. Clin Genet 2009; 75:169-74. [DOI: 10.1111/j.1399-0004.2008.01101.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are Neuropsychological Impairments in Children with Early-Treated Phenylketonuria (PKU) Related to White Matter Abnormalities or Elevated Phenylalanine Levels? Dev Neuropsychol 2007; 32:645-68. [PMID: 17931123 DOI: 10.1080/87565640701375963] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Huijbregts SCJ, de Sonneville LMJ, van Spronsen FJ, Licht R, Sergeant JA. The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neurosci Biobehav Rev 2002; 26:697-712. [PMID: 12479843 DOI: 10.1016/s0149-7634(02)00040-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we review neuropsychological test results of early and continuously treated Phenylketonuria (PKU) patients. To increase insight into the neuropsychological profile of this population, we have attempted to place the results within an attentional network model [Images of the mind, 1994], which proposes interacting but dissociable attentional networks for orienting, vigilance, and executive control of attention. Executive control of attention is discussed against the background of the process-specific theory of working memory (WM) [Handbook of neuropsychology, 1994], which postulates a distinction between the 'maintenance'-function of WM and the 'manipulation and monitoring'-function. Neuropsychological results are presented for 67 early and continuously treated PKU patients and 73 controls aged 7-14 years. Four neuropsychological tasks were employed to measure orienting, mnemonic processing, interference suppression, and top-down control in visual search. No differences were found in orienting and the maintenance-function of WM. In addition to previously reported impairments in sustained attention/vigilance and inhibition of prepotent responding, PKU patients exhibited deficits when top-down control was required in a visual search task, but showed no impairment when interference suppression was required. It is discussed how the specific neuropsychological impairments in PKU may be a consequence of mid-dorsolateral prefrontal cortex (DLPFC) dysfunctioning due to deficiencies in catecholamine modulation.
Collapse
Affiliation(s)
- S C J Huijbregts
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16-18, 2000. Pediatrics 2001; 108:972-82. [PMID: 11581453 DOI: 10.1542/peds.108.4.972] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To provide health care providers, patients, and the general public with a responsible assessment of currently available data regarding screening for and management of phenylketonuria (PKU). PARTICIPANTS A nonfederal, nonadvocate, 14-member panel representing the fields of pediatrics, genetics, human development, public policy, nursing, and molecular physiology and including patient representatives. In addition, 19 experts in pediatrics, medical genetics, psychology, pediatric neurology, biochemical and molecular genetics, and gene therapy presented data to the panel and to a conference audience of 312. EVIDENCE The literature was searched using Medline for January 1980 through July 2000, and an extensive bibliography of 3394 references was provided to the panel. Experts prepared abstracts for their conference presentations with relevant citations from the literature. Scientific evidence was given precedence over clinical anecdotal experience. CONSENSUS PROCESS The panel, answering predefined questions, developed its conclusions based on the scientific evidence presented in open forum and the scientific literature. The panel composed a draft statement, which was read in its entirety and circulated to the experts and the audience for comment. Thereafter, the panel resolved conflicting recommendations and released a revised statement at the end of the conference. The panel finalized the revisions within a few weeks after the conference. The draft statement was made available on the World Wide Web immediately after its release at the conference and was updated with the panel's final revisions. The statement is available at http://consensus.nih.gov. CONCLUSIONS Genetic testing for PKU has been in place for almost 40 years and has been very successful in preventing severe mental retardation in thousands of children and adults. Metabolic control is necessary across the lifespan of individuals with PKU. A comprehensive, multidisciplinary, integrated system is needed to delivery of care to individuals with PKU. Greatly needed are consistency and coordination between screening, treatment, data collection, and patient support programs. There should be equal access to culturally sensitive, age-appropriate treatment programs. Ethically sound, specific policies for storage, ownership, and use in future studies of archived samples remaining from PKU testing should be established. Research into the pathophysiology of PKU and relationship to genetic, neural, and behavioral variation is strongly encouraged. Uniform policies must be established to remove financial barriers to the acquisition of medical foods and modified low-protein foods and to provide access to support services needed to maintain metabolic control in individuals with PKU. Research on nondietary alternative treatments for PKU is strongly encouraged. To achieve optimal statistical power and cross-cultural applicability, it will be beneficial to use data acquired via national and international collaboration.phenylketonuria, hyperphenylalanimea, phenylketonuria screening, phenylalanine-restricted diet, maternal phenylketonuria, newborn screening, phenylalanine monitoring, phenylketonuria outcomes.
Collapse
|
23
|
Kalsner LR, Rohr FJ, Strauss KA, Korson MS, Levy HL. Tyrosine supplementation in phenylketonuria: diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids. J Pediatr 2001; 139:421-7. [PMID: 11562623 DOI: 10.1067/mpd.2001.117576] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Tyrosine supplementation has not consistently been found to improve neuropsychologic function in phenylketonuria (PKU), possibly because of failure to achieve adequate levels of tyrosine in the brain. OBJECTIVES To evaluate blood levels achieved after tyrosine supplementation in treated PKU and calculate brain influxes of tyrosine and other large neutral amino acids before and with tyrosine supplementation. STUDY DESIGN Ten subjects with PKU receiving a phenylalanine-restricted diet were studied over 48 hours; each received tyrosine supplementation (300 mg/kg) on day 2. Plasma phenylalanine and tyrosine were measured every 2 hours, and all free amino acids were measured every 6 hours. Brain influxes of tyrosine and other large neutral amino acids were calculated. RESULTS Plasma tyrosine levels were low normal at baseline. With supplementation there was a substantial but unsustained rise in plasma tyrosine. Calculated brain influx of tyrosine was 27% +/- 19% of normal before supplementation, increasing to 90% +/- 58% of normal with supplementation. Nevertheless, calculated influx remained less than 70% of normal at 50% of the time points. The calculated brain influxes of all other large neutral amino acids except tryptophan were 20% to 40% of normal before and with tyrosine supplementation. CONCLUSIONS Tyrosine supplementation in the diet for PKU produces marked but nonsustained increases in plasma tyrosine levels, with calculated brain influx that often remains suboptimal. This could explain the lack of consistent neuropsychologic benefit with tyrosine supplementation.
Collapse
Affiliation(s)
- L R Kalsner
- Division of Genetics and Department of Neurology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Controversies exist on the role of tyrosine in the pathogenesis of phenylketonuria (PKU) and, consequently, on the therapeutic role of tyrosine. This review examines data and theoretical considerations on the role of tyrosine in the pathogenesis and treatment of PKU. It is concluded that treatment with tyrosine alone to replace the phenylalanine-restricted diet cannot be justified. A treatment with large neutral amino acids (LNAA) including tyrosine to restore the balance in the transport of phenylalanine and other LNAA across the blood-brain barrier deserves further investigation. Such studies should prove the safety and the efficacy of such a treatment, finding the optimal dose of all LNAA, disclosing the correct age to start and the way to monitor treatment biochemically.
Collapse
Affiliation(s)
- F J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Hospital of Groningen, The Netherlands.
| | | | | |
Collapse
|
25
|
Hanley WB, Lee AW, Hanley AJ, Lehotay DC, Austin VJ, Schoonheyt WE, Platt BA, Clarke JT. "Hypotyrosinemia" in phenylketonuria. Mol Genet Metab 2000; 69:286-94. [PMID: 10870846 DOI: 10.1006/mgme.2000.2985] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been postulated that the significant incidence of learning disabilities in well-treated patients with phenylketonuria (PKU) may be due, in part, to reduced production of neurotransmitters as a result of deficient tyrosine transport across the neuronal cell membrane. Hypotyrosinemia has been reported in treated and untreated PKU but virtually no data are available. We decided to examine this in our patient population and to compare it with the published norms, patient data from our hospital clinical biochemical laboratory database, and a group of normal children and adolescents in a private pediatric practice. We found that the mean nonfasting plasma tyrosine in 99 classical PKU patients was 41.1 micromol/L, in 26 mild (atypical) PKU patients 53.3 micromol/L, and in 35 non-PKU mild hyperphenylalaninemia patients 66.6 micromol/L. This compared to nonfasting plasma tyrosine levels in 102 non-PKU subjects of 64.0 micromol/L in our hospital biochemistry database, 69.1 micromol/L in 58 volunteers in the private office practice, and 64-78.8 micromol/L in infants, children, and adolescents in the literature review. Our data support the previously undocumented statements in the literature that plasma tyrosine levels are low in PKU.
Collapse
Affiliation(s)
- W B Hanley
- Division of Clinical & Biochemical Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bross R, Ball RO, Clarke JT, Pencharz PB. Tyrosine requirements in children with classical PKU determined by indicator amino acid oxidation. Am J Physiol Endocrinol Metab 2000; 278:E195-201. [PMID: 10662702 DOI: 10.1152/ajpendo.2000.278.2.e195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tyrosine (Tyr) is an essential amino acid in phenylketonuria (PKU) because of the limited hydroxylation of phenylalanine (Phe) to Tyr. The recommended intakes for Tyr in PKU are at least five times the recommended phenylalanine intakes. This suggests that Phe and Tyr contribute approximately 20 and 80%, respectively, of the aromatic amino acid (AAA) requirement (REQ). In animals and normal humans, dietary Tyr was shown to spare 40-50% of the Phe requirement, proportions that reflect dietary and tissue protein composition. We tested the hypothesis that the Tyr REQ in PKU would account for 45% of the total AAA REQ by indicator amino acid oxidation (IAAO). Tyr REQ was determined in five children with PKU by examining the effect of varying dietary Tyr intake on lysine oxidation and the appearance of (13)CO(2) in breath (F(13)CO(2)) under dietary conditions of adequate energy, protein (1.5 g x kg(-1) x day(-1)), and phenylalanine (25 mg x kg(-1) x day(-1)). Lysine oxidation and F(13)CO(2) were determined using a primed 4-h oral equal-dose infusion of L-[1-(13)C]lysine. Lysine oxidation and F(13)CO(2) decreased linearly as Tyr intake increased, to a break point that was interpreted as the mean dietary Tyr requirement (16.3 and 19.2 mg x kg(-1) x day(-1), respectively). At Tyr intakes of >16.3 and 19.2 mg x kg(-1) x day(-1), lysine oxidation and F(13)CO(2), respectively, were low and constant. This represents 40.4 and 44.4%, respectively, of the total AAA intake. The current recommendations for Tyr intake in PKU patients appear to be overestimated by a factor of approximately 5. This study is the first application of the IAAO technique in a pediatric population and in humans with an inborn error of metabolism.
Collapse
Affiliation(s)
- R Bross
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S 3E2
| | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap however the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in PKU. Therefore, this review aims to assess the efficasy of tyrosine supplementation for phenylketonuria. OBJECTIVES To assess the effects of tyrosine supplementation alongside or instead of phenylalanine restricted diet for patients with phenylketonuria who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of phenylalanine restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. SEARCH STRATEGY We searched the Cochrane Cystic Fibrosis and Genetic Disorders Trials Register which is a specialist trials register which comprises references identified from comprehensive electronic database searches, handsearching relevant journals and handsearching abstract books of conference proceedings. Additional studies were identified from handsearching the Journal of Inherited Metabolic Disease (from inception, 1978, to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references. Date of the most recent search of the Group's specialised register: November 1999. SELECTION CRITERIA All randomised or pseudo-randomised trials investigating the use of tyrosine supplementation versus placebo in patients with phenylketonuria in addition to, or instead of, a phenylalanine restricted diet. Patients treated for maternal phenylketonuria were excluded. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed the trial eligibility, methodological quality and extracted the data. MAIN RESULTS Two trials were included with a total of 47 patients. The blood tyrosine concentrations were significantly higher in the patients receiving tyrosine supplements than those in the placebo group (weighted mean difference 22.526, 95% Confidence interval (CI) 12.182 - 32.870). No significant differences were found between any of the other outcomes measured. REVIEWER'S CONCLUSIONS From the available evidence no recommendations can be made about whether tyrosine supplementation should be introduced into routine clinical practice. Further randomised controlled studies are required to provide further evidence.
Collapse
Affiliation(s)
- V J Poustie
- Evidence Based Child Health Unit, Institute of Child Health, Royal Liverpool Children's Hospital NHS Trust, Alder Hey, Eaton Road, Liverpool, Merseyside, UK, L12 2AP.
| | | |
Collapse
|
28
|
Abstract
Phenylketonuria, an autosomal recessively transmitted disorder of amino acid metabolism, is caused by a deficiency of hepatic phenylalanine hydroxylase converting phenylalanine to tyrosine. Thus, phenylalanine accumulates to plasma levels exceeding 1200 mumol/l. Untreated phenylketonuria is characterized by microcephaly, epilepsy, severe mental retardation and, in some cases, progressive supranuclear motor disturbances. These symptoms can largely be prevented by the early start of a phenylalanine-restricted diet. Neurological investigations of treated patients reveal only minor neurological signs, such as tremor or brisk deep tendon reflexes. Magnetic resonance imaging shows white matter abnormalities. However, in single patients, progressive neurological symptoms occurred. Thus, the long-term prognosis of treated phenylketonuria is still under discussion.
Collapse
Affiliation(s)
- J Pietz
- Department of Pediatric Neurology, University of Heidelberg, Germany.
| |
Collapse
|