1
|
Sharma U. The SLE Conundrum: A Comprehensive Analysis of Pathogenesis, Recent Developments, and the Future of Therapeutic Interventions. Crit Rev Immunol 2025; 45:41-54. [PMID: 39612276 DOI: 10.1615/critrevimmunol.2024053504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with multifactorial interactions among various susceptibility factors. Significant strides have been made in understanding the pathogenesis of SLE, leading to the development of targeted therapies and the exploration of alternative treatments. The approval of new therapies has expanded patient treatment options, and ongoing clinical trials promise to enhance the treatment landscape further. The future of SLE treatment lies in personalized, targeted therapies that minimize side effects and improve patient outcomes. This review comprehensively analyzes SLE's current status and prospects based on recent studies, patents, clinical trials, and formulations. Continued research and clinical trials are crucial to uncovering new therapeutic options and ultimately transforming the treatment landscape for SLE. With sustained efforts and advancements in medical science, we can offer a better quality of life and improved survival rates for SLE patients.
Collapse
|
2
|
Kosałka-Węgiel J, Jakieła B, Dziedzic R, Milewski M, Siwiec-Koźlik A, Zaręba L, Bazan-Socha S, Sanak M, Musiał J, Korkosz M. Circulating B Lymphocyte Subsets in Patients with Systemic Lupus Erythematosus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1994. [PMID: 39768874 PMCID: PMC11727997 DOI: 10.3390/medicina60121994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Background/Objectives: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the abnormal activation of autoreactive T and B cells, autoantibody production, complement activation, and immune-complex deposition, resulting in tissue damage. However, data on immunologic disturbances in SLE, particularly regarding flares, are scarce. Methods: We investigated 35 patients with SLE: 12 (34.3%) with disease exacerbation (SLE disease activity index [SLEDAI] ≥ 5 points) and 23 (65.7%) in remission (SLEDAI < 5 points). All patients met the 2019 EULAR/ACR SLE criteria. Flow cytometry was used to identify B cell subsets, including memory B cells. Results: In the whole patient group, SLEDAI was positively related to the percentage of transitional/regulatory B cells (r = 0.38, p = 0.034). Some lymphocyte subsets correlated with complement levels, e.g., the percentage of naïve and memory B cells showed associations with C3c complement (r = 0.43, p = 0.018 and r = -0.45, p = 0.016, respectively). Furthermore, regarding inflammatory markers, we found associations between C-reactive protein and the percentage of plasmablasts (r = 0.40, p = 0.026) and plasmocytes (r = 0.44, p = 0.017). Finally, the percentage of plasmablasts correlated with SLE duration (r = 0.42, p = 0.016). In the follow-up analysis, during a median observation of 5 years, 5 out of the initially 23 inactive SLE patients developed a disease flare. They were characterized by longer disease duration stated in the beginning compared to patients who remained in remission (p = 0.019). Conclusions: Our study highlights significant associations between various B cell subsets and SLE disease activity. A more personalized approach to indicate patients with SLE at a higher risk of lupus flares is crucial for better management.
Collapse
Affiliation(s)
- Joanna Kosałka-Węgiel
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Jakubowskiego 2, 30-688 Kraków, Poland;
- University Hospital, Department of Rheumatology, Immunology and Internal Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (M.M.); (A.S.-K.); (S.B.-S.)
| | - Bogdan Jakieła
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (B.J.); (M.S.); (J.M.)
| | - Radosław Dziedzic
- Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Św. Łazarza 16, 31-530 Kraków, Poland;
| | - Mamert Milewski
- University Hospital, Department of Rheumatology, Immunology and Internal Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (M.M.); (A.S.-K.); (S.B.-S.)
| | - Andżelika Siwiec-Koźlik
- University Hospital, Department of Rheumatology, Immunology and Internal Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (M.M.); (A.S.-K.); (S.B.-S.)
| | - Lech Zaręba
- University of Rzeszów, College of Natural Sciences, Institute of Computer Science, Pigonia 1, 35-310 Rzeszów, Poland;
| | - Stanisława Bazan-Socha
- University Hospital, Department of Rheumatology, Immunology and Internal Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (M.M.); (A.S.-K.); (S.B.-S.)
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (B.J.); (M.S.); (J.M.)
| | - Marek Sanak
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (B.J.); (M.S.); (J.M.)
| | - Jacek Musiał
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (B.J.); (M.S.); (J.M.)
| | - Mariusz Korkosz
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Jakubowskiego 2, 30-688 Kraków, Poland;
- University Hospital, Department of Rheumatology, Immunology and Internal Medicine, Jakubowskiego 2, 30-688 Kraków, Poland; (M.M.); (A.S.-K.); (S.B.-S.)
| |
Collapse
|
3
|
Feng H, Lu Q, Liu Y, Shi M, Lian H, Ni L, Wu X. Risk factors of disease activity and renal damage in patients with systemic lupus erythematosus. Int Urol Nephrol 2024; 56:3845-3855. [PMID: 38937413 DOI: 10.1007/s11255-024-04105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To evaluate the clinical features of patients with Systemic Lupus Erythematosus (SLE) and explore the risk factors of disease activity and renal damage. METHODS A retrospective study involving 194 patients were performed. Patients were divided into lupus nephritis (LN) group (63.40%) and non-LN group (36.60%), different disease activity group, and different renal function group according to the clinical data. Multivariate logistic regression analysis showed that albumin (ALB), uric acid (UC), total cholesterol (TC), and anti-dsDNA antibodies were the influencing factors of LN in patients with SLE (P < 0.05); ALB, UC, and complement 3(C3) were the influencing factors of lupus disease activity (P < 0.05); UC, C3, and hemoglobin (HB) were the influencing factors of abnormal renal function in SLE patients. RESULTS The results of the ROC curve showed that ALB, UA, and TC had certain predictive value for combined LN in patients with SLE, and the predictive value of ALB was greater than that of TC (P < 0.05); ALB, UA, and C3 being predictors of the activity of patients with SLE; BUN, UA, and HB all had certain predictive value for the abnormal renal function in patients with LN. SLE patients have the high incidence of renal impairment. CONCLUSION The results of this study suggest that patients with SLE should regularly monitor the levels of ALB, UA, TC, C3, and HB, as well as pay attention to the intervention of hyperlipidemia and hyperuricemia in patients with SLE to better control disease progression.
Collapse
Affiliation(s)
- HuiLing Feng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - MengMeng Shi
- Taikang Medical School, (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Huan Lian
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - LiHua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
van der Meulen S, Monahan RC, Gelderman KA, van Kooten C, Teng YKO, Huizinga TWJ, Steup-Beekman GM, Trouw LA. Circulating levels of endogenous complement inhibitors correlate inversely with complement consumption in systemic lupus erythematosus. Eur J Immunol 2024; 54:e2450998. [PMID: 39165045 DOI: 10.1002/eji.202450998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is marked by excessive complement activation, contributing to tissue damage. Complement activation can be detected in many organs including the skin, kidney, and brain. The involvement of the central nervous system is particularly relevant to understanding neuropsychiatric SLE (NPSLE), one of the poorest understood manifestations of SLE for which no biomarkers are available. We studied the levels of complement inhibitors in SLE in relation to disease activity and as possible biomarkers to identify NPSLE. Serum levels of complement inhibitors C1-inhibitor (C1-INH), C4b-binding protein (C4BP), Factor I, and Factor H were measured in 345 SLE patients (including 102 with NPSLE) and 108 healthy controls. Compared with controls, SLE patients had higher C1-INH and C4BP but lower Factor I and H levels. All inhibitors positively correlated with total C3 and C4 levels. While correlating with the SLE Disease Activity Index (SLEDAI), no distinction in inhibitor levels was found between SLE and NPSLE patients. Over time, C1-INH and Factor H levels normalized, but no significant changes were observed for C4BP and Factor I. In SLE the levels of circulating complement inhibitors are inversely correlated to complement consumption but do not serve as biomarkers for NPSLE.
Collapse
Affiliation(s)
- Stef van der Meulen
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rory C Monahan
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cees van Kooten
- Department of Internal Medicine section Nephrology, Center of Expertise for Lupus-, Vasculitis and Complement-mediated Systemic Autoimmune Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Y K Onno Teng
- Department of Internal Medicine section Nephrology, Center of Expertise for Lupus-, Vasculitis and Complement-mediated Systemic Autoimmune Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Rheumatology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
6
|
Jinshan Z, Fangqi C, Juanmei C, Yifan J, Yuqing W, Ting W, Jing Z, Changzheng H. Risk assessment tool for anemia of chronic disease in systemic lupus erythematosus: a prediction model. Clin Rheumatol 2024; 43:2857-2866. [PMID: 39023656 DOI: 10.1007/s10067-024-07067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE This study aims to develop a predictive model for estimating the likelihood of anemia of chronic disease (ACD) in patients with systemic lupus erythematosus (SLE) and to elucidate the relationship between various factors and ACD METHODS: Individuals diagnosed with SLE for at least one year were enrolled and categorized into two groups: those with ACD and those without anemia symptoms. Patients were randomly assigned to training and test sets at an 8:2 ratio. The least absolute shrinkage and selection operator (LASSO) method was used to select predictors, followed by logistic regression for modeling. Model performance was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) for both training and test sets. RESULTS The study included a total of 216 patients, with 172 in the training set and 44 in the test set. LASSO identified 6 variables for constructing the predictive model, resulting in an area under the curve (AUC) of 0.833 (95% CI, 0.773-0.892) in the training set and 0.861 (95% CI, 0.750-0.972) in the test set. Calibration curves indicated consistency between expected and observed probabilities. DCA indicated that the model yielded a net benefit with threshold probabilities ranging from 20% to 90% in the training set and from 10% to 80% in the test set. CONCLUSION This study presents a predictive model for assessing the risk of ACD in SLE patients. The model effectively captures the underlying mechanism of ACD in SLE and empowers clinicians to make well-informed treatment adjustments. Key Points • Development of a New Predictive Model: This study introduces a new predictive model to evaluate the likelihood of anemia of chronic disease (ACD) in patients with systemic lupus erythematosus (SLE). The model utilizes routine laboratory parameters to identify high-risk individuals, addressing a significant gap in current clinical practice. • Reflection of Potential Mechanisms for ACD Development: By incorporating the factors needed to construct the predictive model, this study also sheds light on the potential mechanisms of ACD development in SLE patients.
Collapse
Affiliation(s)
- Zhan Jinshan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Fangqi
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cao Juanmei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Yifan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wang Yuqing
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wu Ting
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhang Jing
- Department of Dermatology, General Hospital of the Central Theatre Command of the People's Liberation Army, Wuhan, Hubei, China.
| | - Huang Changzheng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev 2024; 23:103611. [PMID: 39209014 DOI: 10.1016/j.autrev.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
Collapse
Affiliation(s)
| | - Synda Boumediene
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America
| | - Gabriel J Tobón
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America; Department of Internal Medicine, Division of Rheumatology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America.
| |
Collapse
|
8
|
Triaille C, Rao NM, Rice GI, Seabra L, Sutherland FJH, Bondet V, Duffy D, Gennery AR, Fournier B, Bader-Meunier B, Troedson C, Cleary G, Buso H, Dalby-Payne J, Ranade P, Jansen K, De Somer L, Frémond ML, Chavan PP, Wong M, Dale RC, Wouters C, Quartier P, Khubchandani R, Crow YJ. Hereditary C1q Deficiency is Associated with Type 1 Interferon-Pathway Activation and a High Risk of Central Nervous System Inflammation. J Clin Immunol 2024; 44:185. [PMID: 39196411 PMCID: PMC11358312 DOI: 10.1007/s10875-024-01788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Hereditary C1q deficiency (C1QDef) is a rare monogenic disorder leading to defective complement pathway activation and systemic lupus erythematosus (SLE)-like manifestations. The link between impairment of the complement cascade and autoimmunity remains incompletely understood. Here, we assessed type 1 interferon pathway activation in patients with C1QDef. Twelve patients with genetically confirmed C1QDef were recruited through an international collaboration. Clinical, biological and radiological data were collected retrospectively. The expression of a standardized panel of interferon stimulated genes (ISGs) in peripheral blood was measured, and the level of interferon alpha (IFNα) protein in cerebrospinal fluid (CSF) determined using SIMOA technology. Central nervous system (encompassing basal ganglia calcification, encephalitis, vasculitis, chronic pachymeningitis), mucocutaneous and renal involvement were present, respectively, in 10, 11 and 2 of 12 patients, and severe infections recorded in 2/12 patients. Elevated ISG expression was observed in all patients tested (n = 10/10), and serum and CSF IFNα elevated in 2/2 patients. Three patients were treated with Janus-kinase inhibitors (JAKi), with variable outcome; one displaying an apparently favourable response in respect of cutaneous and neurological features, and two others experiencing persistent disease despite JAKi therapy. To our knowledge, we report the largest original series of genetically confirmed C1QDef yet described. Additionally, we present a review of all previously described genetically confirmed cases of C1QDef. Overall, individuals with C1QDef demonstrate many characteristics of recognized monogenic interferonopathies: particularly, cutaneous involvement (malar rash, acral vasculitic/papular rash, chilblains), SLE-like disease, basal ganglia calcification, increased expression of ISGs in peripheral blood, and elevated levels of CSF IFNα.
Collapse
Affiliation(s)
- Clément Triaille
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
- Pôle de Pathologies Rhumatismales Systémiques Et Inflammatoires, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Neha Mohan Rao
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Fraser J H Sutherland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Benjamin Fournier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Christopher Troedson
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Gavin Cleary
- Paediatric Rheumatology, Alder Hey Children's Hospital, Liverpool, UK
| | - Helena Buso
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Jacqueline Dalby-Payne
- Specialty of Child and Adolescent Health, Faculty of Medicine, The University of Sydney, Camperdown, Australia
- Department of General Medicine, The Children's Hospital at Westmead, Westmead, Australia
| | - Prajakta Ranade
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Katrien Jansen
- Division of Pediatric Neurology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lien De Somer
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | | | - Melanie Wong
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, Australia
| | - Russell C Dale
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Carine Wouters
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Pierre Quartier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Raju Khubchandani
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
10
|
Watanabe-Kusunoki K, Anders HJ. Balancing efficacy and safety of complement inhibitors. J Autoimmun 2024; 145:103216. [PMID: 38552408 DOI: 10.1016/j.jaut.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany; Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany.
| |
Collapse
|
11
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
12
|
Guo L, Zhao S, Liu X. Development of a nomogram for membranous nephropathy prediction in patients with primary Sjögren's syndrome: a 6-year retrospective study. Front Immunol 2024; 15:1320880. [PMID: 38633257 PMCID: PMC11021693 DOI: 10.3389/fimmu.2024.1320880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives Nephritis is a life-threatening complication of primary Sjögren's syndrome (pSS), with membranous nephropathy (MN) being prevalent. Renal biopsy is the gold standard for MN diagnosis, but it is invasive and cannot be repeatedly performed. This study aimed to develop a nomogram for the prediction of MN in patients with pSS. Methods This retrospective study included patients with pSS admitted to the Rheumatology and Immunology Department of the First Affiliated Hospital of China Medical University between January 2015 and January 2021. A nomogram was developed using multivariable logistic regression analysis and evaluated using receiver operating characteristic (ROC) curve analysis. Bootstrap resampling analysis (1,000 times) was performed to evaluate the nomogram for discrimination and the calibration curve for consistency. Results A total of 237 patients with pSS [aged 53.00 (44.00, 61.00) years] were included, with 35 pSS-MN patients. Based on clinical practice and multivariable logistic regression analysis, seven variables associated with pSS-MN were selected, including white blood cells, creatine, complement 3, rheumatoid factor, antinuclear antibodies, anti-SSA antibody, and interstitial lung disease. The area under the ROC curve was 0.860 (95% confidence interval: 0.796-0.919), indicating good predictive power. In addition, the nomogram exhibited excellent performance, as demonstrated by the calibration curve and decision curve analysis. Conclusion This study developed a risk prediction nomogram for MN in patients with pSS, with high predictive power. It may be used to improve the management of patients with pSS.
Collapse
Affiliation(s)
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Xudong Liu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| |
Collapse
|
13
|
Zhao X, Wu H, Li S, Gao C, Wang J, Ge L, Song Z, Ni B, You Y. The impact of the COVID-19 pandemic on SLE. Mod Rheumatol 2024; 34:247-264. [PMID: 36961736 DOI: 10.1093/mr/road030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Little is known about the association between coronavirus disease 2019 (COVID-19) and autoimmune diseases, especially in the case of systemic lupus erythematosus (SLE). SLE patients met with many questions during the pandemic in COVID-19, such as how to minimize risk of infection, the complex pathological features and cytokine profiles, diagnosis and treatment, rational choice of drugs and vaccine, good nursing, psychological supervision, and so on. In this study, we review and discuss the multifaceted effects of the COVID-19 pandemic on patients living with SLE using the available literature. Cross-talk in implicated inflammatory pathways/mechanisms exists between SLE and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and SARS-CoV-2 displays similar clinical characteristics and immuno-inflammatory responses to SLE. Current epidemiological data inadequately assess the risk and severity of COVID-19 infection in patients with SLE. More evidence has shown that hydroxychloroquine and chloroquine cannot prevent COVID-19. During the pandemic, patients with SLE had a higher rate of hospitalization. Vaccination helps to reduce the risk of infection. Several therapies for patients with SLE infected with COVID-19 are discussed. The cases in the study can provide meaningful information for clinical diagnosis and management. Our main aim is to help preventing infection and highlight treatment options for patients with SLE infected with COVID-19.
Collapse
Affiliation(s)
- Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haohao Wu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shifei Li
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi You
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
14
|
Zou X, Yang M, Ye Z, Li T, Jiang Z, Xia Y, Tan S, Long Y, Wang X. Uncovering lupus nephritis-specific genes and the potential of TNFRSF17-targeted immunotherapy: a high-throughput sequencing study. Front Immunol 2024; 15:1303611. [PMID: 38440734 PMCID: PMC10909935 DOI: 10.3389/fimmu.2024.1303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets. Methods We performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry. Results Our analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the 'regulation of biological quality' GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells. Discussion Our findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN.
Collapse
Affiliation(s)
- Xiaojuan Zou
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Ying Xia
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Shenghai Tan
- Department of Surgical Intensive Care Unit (SICU), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Long
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Alduraibi FK, Tsokos GC. Lupus Nephritis Biomarkers: A Critical Review. Int J Mol Sci 2024; 25:805. [PMID: 38255879 PMCID: PMC10815779 DOI: 10.3390/ijms25020805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Lupus nephritis (LN), a major complication in individuals diagnosed with systemic lupus erythematosus, substantially increases morbidity and mortality. Despite marked improvements in the survival of patients with severe LN over the past 50 years, complete clinical remission after immunosuppressive therapy is achieved in only half of the patients. Therefore, timely detection of LN is vital for initiating prompt therapeutic interventions and improving patient outcomes. Biomarkers have emerged as valuable tools for LN detection and monitoring; however, the complex role of these biomarkers in LN pathogenesis remains unclear. Renal biopsy remains the gold standard for the identification of the histological phenotypes of LN and guides disease management. However, the molecular pathophysiology of specific renal lesions remains poorly understood. In this review, we provide a critical, up-to-date overview of the latest developments in the field of LN biomarkers.
Collapse
Affiliation(s)
- Fatima K. Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Beth Israel Deaconess Medical Center, Harvard Teaching Hospital, Boston, MA 02215, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - George C. Tsokos
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Beth Israel Deaconess Medical Center, Harvard Teaching Hospital, Boston, MA 02215, USA
| |
Collapse
|
16
|
Larsen ML, Troldborg A, Toonen EJM, Hurler L, Prohaszka Z, Cervenak L, Gudmann Hansen A, Thiel S. Differentiating between activation via the lectin or the classical complement pathway in patients with systemic lupus erythematosus. Clin Exp Immunol 2023; 214:18-25. [PMID: 37407023 PMCID: PMC10711355 DOI: 10.1093/cei/uxad070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023] Open
Abstract
Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.
Collapse
Affiliation(s)
- Mads Lamm Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltan Prohaszka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Wang S, Broder A, Shao D, Kesarwani V, Boderman B, Aguilan J, Sidoli S, Suzuki M, Greally JM, Saenger YM, Rovin BH, Michelle Kahlenberg J. Urine Proteomics Link Complement Activation with Interstitial Fibrosis/Tubular Atrophy in Lupus Nephritis Patients. Semin Arthritis Rheum 2023; 63:152263. [PMID: 37802003 PMCID: PMC10783434 DOI: 10.1016/j.semarthrit.2023.152263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Intrarenal complement activation has been implicated in the pathogenesis of tubulointerstitial fibrosis in lupus nephritis (LN) based on prior animal studies. The assembly of the membrane attack complex (MAC) by complement C5b to C9 on the cell membrane leads to cytotoxic pores and cell lysis, while CD59 inhibits MAC formation by preventing C9 from joining the complex. We hypothesize that complement activation and imbalance between complement activation and inhibition, as defined by increased production of individual complement components and uncontrolled MAC activation relative to CD59 inhibition, are associated with interstitial fibrosis and tubular atrophy (IFTA) in LN and correlate with the key mediators of kidney fibrosis- transforming growth factor receptors beta (TGFRβ), platelet-derived growth factor beta (PDGFβ) and platelet-derived growth factor receptor beta (PDGFRβ). METHODS We included urine samples from 46 adults and pediatric biopsy-proven lupus nephritis patients who underwent clinically indicated kidney biopsies between 2010 and 2019. We compared individual urinary complement components and the urinary C9-to-CD59 ratio between LN patients with moderate/severe IFTA and none/mild IFTA. IFTA was defined as none/mild (<25% of interstitium affected) versus moderate/severe (≥ 25% of interstitium affected). Proteomics analysis was performed using mass spectrometry (Orbitrap Fusion Lumos, Thermo Scientific) and processed by the Proteome Discoverer. Urinary complement proteins enriched in LN patients with moderate/severe IFTA were correlated with serum creatinine, TGFβR1, TGFβR2, PDGFβ, and PDGFRβ. RESULTS Of the 46 LN patients included in the study, 41 (89.1%) were women, 20 (43.5%) self-identified as Hispanic or Latino, and 26 (56.5%) self-identified as Black or African American. Ten of the 46 (21.7%) LN patients had moderate/severe IFTA on kidney biopsy. LN patients with moderate/severe IFTA had an increased urinary C9-to-CD59 ratio [median 0.91 (0.83-1.05) vs 0.81 (0.76-0.91), p=0.01]. Urinary C3 and CFI levels in LN patients with moderate/severe IFTA were higher compared to those with none/mild IFTA [C3 median (IQR) 24.4(23.5-25.5) vs. 20.2 (18.5-22.2), p= 0.02], [CFI medium (IQR) 28.8 (21.8-30.6) vs. 20.4 (18.5-22.9), p=0.01]. Complement C9, CD59, C3 and CFI correlated with TGFβR1, PDGFβ, and PDGFRβ, while C9, CD59 and C3 correlated with TGFβR2. CONCLUSION This study is one of the first to compare the urinary complement profile in LN patients with moderate/severe IFTA and none/mild IFTA in human tissues. This study identified C3, CFI, and C9-to-CD59 ratio as potential markers of tubulointerstitial fibrosis in LN.
Collapse
Affiliation(s)
- Shudan Wang
- Division of Rheumatology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - Anna Broder
- Division of Rheumatology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Daming Shao
- Department of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Vartika Kesarwani
- Department of Medicine, University of Wisconsin Hospital and Clinics, WI, USA
| | - Brianna Boderman
- Department of Medicine, University of Connecticut School of Medicine, CT, USA
| | - Jennifer Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Yvonne M Saenger
- Department of Oncology and Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Brad H Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
18
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|
19
|
García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, Fernández-Cladera Y, González-Rivero AF, López-Mejías R, Díaz-González F, González-Gay MÁ, Ferraz-Amaro I. HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus. J Clin Med 2023; 12:5405. [PMID: 37629447 PMCID: PMC10455830 DOI: 10.3390/jcm12165405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cholesterol efflux capacity (CEC), the ability of high-density lipoprotein (HDL) cholesterol to accept cholesterol from macrophages, has been linked to cardiovascular events. Systemic lupus erythematosus (SLE) is characterized by the consumption of complement (C) proteins and has been associated with an increased risk of cardiovascular disease. CEC is reduced in SLE patients compared to controls. In the present work, our objective was to analyze whether the disruption of C influences CEC in patients with SLE. New-generation functional assays of the three pathways of the C system were performed in 207 patients with SLE. Additionally, serum levels of inactive (C1q, C2, C3, C4, and factor D) and activated (C3a) molecules, and regulators (C1-inhibitor and factor H) of C system were measured. CEC, using an in vitro assay, and lipoprotein serum concentrations were assessed. Multivariable linear regression analysis was performed to assess the relationship between C system and CEC. After full multivariable analysis, the alternative C cascade functional test showed a significant and negative relationship with CEC. This was also the case for C2 and C3, in which the associations were found to be positive and statistically significant, after adjustment for covariates. In conclusion, C system and CEC are interconnected in patients with SLE.
Collapse
Affiliation(s)
- María García-González
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (M.G.-G.); (F.D.-G.)
| | - Fuensanta Gómez-Bernal
- Division of Central Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.G.-B.); (Y.F.-C.); (A.F.G.-R.)
| | | | - Yolanda Fernández-Cladera
- Division of Central Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.G.-B.); (Y.F.-C.); (A.F.G.-R.)
| | - Agustín F. González-Rivero
- Division of Central Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.G.-B.); (Y.F.-C.); (A.F.G.-R.)
| | - Raquel López-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Federico Díaz-González
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (M.G.-G.); (F.D.-G.)
- Department of Internal Medicine, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Miguel Á. González-Gay
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, 39005 Santander, Spain
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (M.G.-G.); (F.D.-G.)
- Department of Internal Medicine, University of La Laguna (ULL), 38200 Tenerife, Spain
| |
Collapse
|
20
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|
22
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
23
|
Abstract
Cerebrovascular accidents (CVAs) or strokes are part of the common thrombotic manifestations of Systemic Lupus Erythematosus (SLEs) and Antiphospholipid syndrome (APS). Such neurological thrombotic events tend to occur in patients with SLE at a higher frequency when Antiphospholipid antibodies (aPLs) are present, and tend to involve the large cerebral vessels. The mechanism of stroke in SLE can be driven by complement deposition and neuroinflammation involving the blood-brain barrier although the traditional cardiovascular risk factors remain major contributing factors. Primary prevention with antiplatelet therapy and disease activity controlling agent is the basis of the management. Anticoagulation via warfarin had been a tool for secondary prevention, especially in stroke recurrence, although the debate continues regarding the target international normalized ratio (INR). The presence of either of the three criteria antiphospholipid antibodies (aPLs) and certain non-criteria aPL can be an independent risk factor for stroke. The exact mechanism for the involvement of the large cerebral arteries, especially in lupus anticoagulant (LAC) positive cases, is still to be deciphered. The data on the role of non-criteria aPL remain very limited and heterogenous, but IgA antibodies against β2GPI and the D4/5 subunit as well as aPS/PT IgG might have a contribution. Anticoagulation with warfarin has been recommended although the optimal dosing or the utility of combination with antiplatelet agents is still unknown. Minimal data is available for direct oral anticoagulants (DOACs).
Collapse
Affiliation(s)
- Georges El Hasbani
- Department of Internal Medicine, St Vincent's Medical Center, Bridgeport, CT, USA
| | - Imad Uthman
- Department of Internal Medicine, 11238American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
24
|
Ayano M, Horiuchi T. Complement as a Biomarker for Systemic Lupus Erythematosus. Biomolecules 2023; 13:367. [PMID: 36830735 PMCID: PMC9953581 DOI: 10.3390/biom13020367] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease of immune complex deposition; therefore, complement plays a vital role in the pathogenesis of SLE. In general, complement levels in blood and complement deposition in histological tests are used for the management of SLE. Thus, the evaluation of complement status can be useful in the diagnosis of SLE, assessment of disease activity, and prediction of treatment response and prognosis. In addition, novel complement biomarkers, such as split products and cell-bound complement activation products, are considered to be more sensitive than traditional complement markers, such as serum C3 and C4 levels and total complement activity (CH50), which become more widely used. In this review, we report the complement testing in the management of SLE over the last decade and summarize their utility.
Collapse
Affiliation(s)
- Masahiro Ayano
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, 4546 Tsurumibaru, Tsurumi, Beppu 874-0838, Japan
| |
Collapse
|
25
|
Ma Z, Mao C, Jia Y, Yu F, Xu P, Tan Y, Zou QH, Zhou XJ, Kong W, Fu Y. ADAMTS7-Mediated Complement Factor H Degradation Potentiates Complement Activation to Contributing to Renal Injuries. J Am Soc Nephrol 2023; 34:291-308. [PMID: 36735376 PMCID: PMC10103097 DOI: 10.1681/asn.0000000000000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
26
|
Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv Healthc Mater 2023; 12:e2202066. [PMID: 36414019 PMCID: PMC11468661 DOI: 10.1002/adhm.202202066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Indexed: 11/24/2022]
Abstract
Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.
Collapse
Affiliation(s)
- Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT97BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | | | - Andi Dian Permana
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Sumarheni Sudir
- Department of PharmacyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Airin R. Nurdin
- Department of Dermatology and VenereologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
| | - Ririn Nislawati
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
- Department of OphthalmologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
| | - Rafikah Hasyim
- Department of Oral BiologyFaculty of DentistryHasanuddin UniversityMakassar90245Indonesia
| | - Christopher J. Scott
- Patrick G Johnson Centre for Cancer ResearchQueen's University BelfastBelfastBT97BLUK
| | | |
Collapse
|
27
|
Song W, Li C, Qiu J, Dong J, Liu D, Dai Y. Differential expression of exosomal miRNAs and proteins in the plasma of systemic lupus erythematous patients. Heliyon 2023; 9:e13345. [PMID: 36820039 PMCID: PMC9937897 DOI: 10.1016/j.heliyon.2023.e13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/25/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Systemic lupus erythematous (SLE) is a complex chronic autoimmune disease with difficult early treatment and accurate diagnosis. Circulating exosomes containing proteins, lipids and nucleic acids can be ideal diagnostic biomarkers and disease management strategies for SLE. Our aim was to examine the unique expression profiles of circulating exosomal miRNAs and proteins in patients with SLE patients. Using RNA-sequencing and proteomic approaches, we compared the expression patterns of exosomal miRNAs and proteins in the plasma of SLE patients and healthy subjects, and discussed the underlying signaling network of circulating exosomes. We also summarize common molecules (miRNAs and proteins) and pathways shared by our plasma exosomes, as well as previously reported data (PBMC, T cells, B cells and plasma). We identified groups of differentially expressed exosomal miRNAs and proteins in the plasma of SLE patients and healthy controls. We obtained consensus molecules (39 miRNAs, 14 proteins) and 21 signaling pathways that are common in our current study and previous reports. Common molecules (miRNAs and proteins) and pathways shared by our plasma exosomes data and other circulating components data reported previously indicate their potential application in the clinical treatment and diagnosis of SLE disease.
Collapse
Affiliation(s)
- Wencong Song
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, China
| | - Chunhong Li
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Afliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Qiu
- Yulin Normal University, Yulin, 537000, China
| | - Jiyou Dong
- Yulin Normal University, Yulin, 537000, China,Corresponding author.
| | - Dongzhou Liu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518000, China,Corresponding author.
| | - Yong Dai
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518000, China,Corresponding author.
| |
Collapse
|
28
|
Meng S, Wang T, Zhao Q, Hu Q, Chen Y, Li H, Liu C, Liu D, Hong X. Proteomics Analysis of Plasma-Derived Exosomes Unveils the Aberrant Complement and Coagulation Cascades in Dermatomyositis/Polymyositis. J Proteome Res 2023; 22:123-137. [PMID: 36507906 PMCID: PMC9830643 DOI: 10.1021/acs.jproteome.2c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dermatomyositis and polymyositis (DM/PM) are systemic autoimmune diseases characterized by proximal muscle weakness. The underlying pathogenetic mechanism of this disease remains under-researched. Here, using proteomics analysis, a great overlap of differentially expressed plasma exosomal proteins involved in the complement and coagulation cascade pathway, including FGA, FGB, FGG, C1QB, C1QC, and VWF, was identified in DM/PM patients versus healthy controls. Correlation analysis showed that the expression levels of complement-associated proteins (C1QB and C1QC) correlated positively with CRP, ESR, and platelet count. ROC curve analysis demonstrated that complement and coagulation cascade-associated proteins could be strong predictors for DM/PM. In addition, we also identified several other proteins that were differentially expressed in DM and PM. The selected candidate proteins were further validated by parallel reaction monitoring (PRM) and enzyme-linked immunosorbent assay (ELISA). Together, our findings indicate that these exosome-derived proteins might participate in microvascular damage in DM/PM through the activation of the complement and coagulation cascade pathway and function as biomarkers for the clinical diagnosis of DM/PM.
Collapse
Affiliation(s)
- Shuhui Meng
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Tingting Wang
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Qianqian Zhao
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Qiu Hu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Yulan Chen
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Heng Li
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Cuilian Liu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Dongzhou Liu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,
| | - Xiaoping Hong
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,
| |
Collapse
|
29
|
Van Laethem F, Donaty L, Tchernonog E, Lacheretz-Szablewski V, Russello J, Buthiau D, Almeras M, Moreaux J, Bret C. LAIR1, an ITIM-Containing Receptor Involved in Immune Disorders and in Hematological Neoplasms. Int J Mol Sci 2022; 23:ijms232416136. [PMID: 36555775 PMCID: PMC9788452 DOI: 10.3390/ijms232416136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1, CD305) belongs to the family of immune-inhibitory receptors and is widely expressed on hematopoietic mature cells, particularly on immune cells. Four different types of ligands of LAIR1 have been described, including collagens, suggesting a potential immune-regulatory function on the extracellular matrix. By modulating cytokine secretion and cellular functions, LAIR1 displays distinct patterns of expression among NK cell and T/B lymphocyte subsets during their differentiation and cellular activation and plays a major negative immunoregulatory role. Beyond its implications in physiology, the activity of LAIR1 can be inappropriately involved in various autoimmune or inflammatory disorders and has been implicated in cancer physiopathology, including hematological neoplasms. Its action as an inhibitory receptor can result in the dysregulation of immune cellular responses and in immune escape within the tumor microenvironment. Furthermore, when expressed by tumor cells, LAIR1 can modulate their proliferation or invasion properties, with contradictory pro- or anti-tumoral effects depending on tumor type. In this review, we will focus on its role in normal physiological conditions, as well as during pathological situations, including hematological malignancies. We will also discuss potential therapeutic strategies targeting LAIR1 for the treatment of various autoimmune diseases and cancer settings.
Collapse
Affiliation(s)
| | - Lucie Donaty
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | | | - Vanessa Lacheretz-Szablewski
- Department of Biopathology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
| | - Jennifer Russello
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | | | | | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34396 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34396 Montpellier, France
- Correspondence: ; Tel.: +33-0467-337-031
| |
Collapse
|
30
|
Zhao J, Jiang J, Wang Y, Liu D, Li T, Zhang M. Significance of urine complement proteins in monitoring lupus activity. PeerJ 2022; 10:e14383. [PMID: 36420131 PMCID: PMC9677877 DOI: 10.7717/peerj.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Complement activation is a critical feature in the development of systemic lupus erythematosus (SLE). Whether there are changes of complement components in the urine of SLE has not been reported. The aim of the study was to evaluate the complement-related proteins in the urine of SLE, verify differentially expressed proteins(DEPs) in the active phase of SLE, further explore their clinical application value. Methods First, we used bioinformatics and functional enrichment to screen and identify the urine protein profile of SLE patients. Then, analyzed and verified the proteins related to the complement pathway by western-blot and Parallel Reaction Monitoring (PRM) technology. Further evaluated the relationship between urinary DEPs related to complement pathway and disease activity. Results A total of 14 complement pathway-related proteins were screened for differences in expression between the active group and the stable group, eight of these DEPs were up-regulated and six were down-regulated. These DEPs may play a key role in SLE disease activity. We used PRM technology to verify the eight up-regulated proteins, and found that four of these complement proteins, namely C9, C8A, C4B, and C8G, were significantly increased in active group. Furthermore, these four DEPs were highly correlated with disease activity. In the urine of SLE patients, AUCs of 0.750, 0.840, 0.757 and 0.736 were achieved with C9, C8A, C4B, and C8G, respectively. Conclusions Complement-related DEPs in urine have a certain correlation with SLE disease activity. Urine C9, C8A, C4B and C8G present promising non-invasive biomarkers for monitoring lupus activity.
Collapse
Affiliation(s)
- Jin Zhao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jun Jiang
- Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yuhua Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan Liu
- Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Tao Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China,Peking University Ninth School of Clinical Medicine, Beijing, China,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
31
|
Lundtoft C, Sjöwall C, Rantapää‐Dahlqvist S, Bengtsson AA, Jönsen A, Pucholt P, Wu YL, Lundström E, Eloranta M, Gunnarsson I, Baecklund E, Jonsson R, Hammenfors D, Forsblad‐d'Elia H, Eriksson P, Mandl T, Bucher S, Norheim KB, Auglaend Johnsen SJ, Omdal R, Kvarnström M, Wahren‐Herlenius M, Truedsson L, Nilsson B, Kozyrev SV, Bianchi M, Lindblad‐Toh K, Yu C, Nordmark G, Sandling JK, Svenungsson E, Leonard D, Rönnblom L. Strong Association of Combined Genetic Deficiencies in the Classical Complement Pathway With Risk of Systemic Lupus Erythematosus and Primary Sjögren's Syndrome. Arthritis Rheumatol 2022; 74:1842-1850. [PMID: 35729719 PMCID: PMC9828039 DOI: 10.1002/art.42270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Complete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjögren's syndrome (SS) has not been studied systematically. This study was undertaken to investigate potential associations of heterozygous C2 deficiency and C4 copy number variation with clinical manifestations in patients with SLE and patients with primary SS. METHODS The presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients who had received a diagnosis of SLE (n = 958) or primary SS (n = 911) and in 2,262 healthy controls through the use of DNA sequencing. The concentration of complement proteins in plasma and classical complement function were analyzed in a subgroup of SLE patients. RESULTS Heterozygous C2 deficiency-when present in combination with a low C4A copy number-substantially increased the risk of SLE (odds ratio [OR] 10.2 [95% confidence interval (95% CI) 3.5-37.0]) and the risk of primary SS (OR 13.0 [95% CI 4.5-48.4]) when compared to individuals with 2 C4A copies and normal C2. For patients heterozygous for rs9332736 with 1 C4A copy, the median age at diagnosis was 7 years earlier in patients with SLE and 12 years earlier in patients with primary SS when compared to patients with normal C2. Reduced C2 levels in plasma (P = 2 × 10-9 ) and impaired function of the classical complement pathway (P = 0.03) were detected in SLE patients with heterozygous C2 deficiency. Finally, in a primary SS patient homozygous for C2 deficiency, we observed low levels of anti-Scl-70, which suggests a risk of developing systemic sclerosis or potential overlap between primary SS and other systemic autoimmune diseases. CONCLUSION We demonstrate that a genetic pattern involving partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and for primary SS. Our results emphasize the central role of the complement system in the pathogenesis of both SLE and primary SS.
Collapse
Affiliation(s)
- Christian Lundtoft
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
- Present address:
Olink Proteomics
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | | | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Pascal Pucholt
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Yee Ling Wu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, and the Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinois
| | - Emeli Lundström
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | | | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Eva Baecklund
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Helena Forsblad‐d'Elia
- Department of Rheumatology and Inflammation ResearchSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Per Eriksson
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Thomas Mandl
- Division of Rheumatology, Department of Clinical Sciences MalmöLund University, and NovartisMalmöSweden
| | - Sara Bucher
- Department of Rheumatology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Katrine B. Norheim
- Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway, and the Institute of Clinical Science, University of BergenBergenNorway
| | | | - Roald Omdal
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway, and the Department of RheumatologyStavanger University HospitalStavangerNorway
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and the Academic Specialist Center, Center for Rheumatology, Stockholm Health ServicesStockholmSweden
| | - Marie Wahren‐Herlenius
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and Broegelmann Research Laboratory, Department of Clinical Science, University of BergenBergenNorway
| | - Lennart Truedsson
- Department of Microbiology, Immunology, and GlycobiologyLund University HospitalLundSweden
| | - Bo Nilsson
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - Sergey V. Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Kerstin Lindblad‐Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Broad Institute of MIT and HarvardCambridgeMassachusetts
| | | | - Chack‐Yung Yu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's HospitalColumbusOhio
| | - Gunnel Nordmark
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | | | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Dag Leonard
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Lars Rönnblom
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| |
Collapse
|
32
|
Gabrili JJM, Villas-Boas IM, Pidde G, Squaiella-Baptistão CC, Woodruff TM, Tambourgi DV. Complement System Inhibition Modulates the Inflammation Induced by the Venom of Premolis semirufa, an Amazon Rainforest Moth Caterpillar. Int J Mol Sci 2022; 23:13333. [PMID: 36362117 PMCID: PMC9658021 DOI: 10.3390/ijms232113333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed "pararamosis". To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.
Collapse
Affiliation(s)
- Joel J. M. Gabrili
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Giselle Pidde
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
33
|
Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, Zeb S, Tariq MA, Patlolla SR, Ali J, Hashim SN, Hashim S. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management. Cureus 2022; 14:e30330. [DOI: 10.7759/cureus.30330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/11/2022] Open
|
34
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
35
|
Structural Features of Patients with Drusen-like Deposits and Systemic Lupus Erythematosus. J Clin Med 2022; 11:jcm11206012. [PMID: 36294333 PMCID: PMC9605325 DOI: 10.3390/jcm11206012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relevance of drusen-like deposits (DLD) in patients with systemic lupus erythematosus (SLE) is to a large extent uncertain. Their genesis is proposed to be correlated to immune-complex and complement depositions in the framework of SLE. The intention of this study was to determine potential morphological differences in the choroid and retina as well as potential microvascular changes comparing two cohorts of SLE patients divergent in the presence or absence of DLD using multimodal imaging. Methods: Both eyes of 16 SLE patients with DLD were compared to an age- and sex-matched control-group consisting of 16 SLE patients without detectable DLD. Both cohorts were treated with hydroxychloroquine (HCQ) and did not differ in the treatment duration or dosage. Using spectral-domain optical coherence tomography (SD-OCT) choroidal volume measures, choroidal vascularity indices (CVI) and retinal layer segmentation was performed and compared. In addition, by the exploitation of optical coherence tomography angiography vascular density, perfusion density of superficial and deep retinal capillary plexuses and the choriocapillaris were analyzed. For the choroidal OCT-scans, a subset of 51 healthy individuals served as a reference-group. Results: CVI measures revealed a significant reduction in eyes with DLD compared to healthy controls (0.56 (0.54−0.59) versus 0.58 (0.57−0.59) (p = 0.018) and 0.56 (0.54−0.58) versus 0.58 (0.57−0.60) (p < 0.001)). The photoreceptor cell layer presented significant thinning in both eyes of subjects with DLD compared to control subjects without DLD (68.8 ± 7.7 µm vs. 77.1 ± 7.3 µm for right eyes, p = 0.008, and 66.5 ± 10.5 µm vs. 76.1 ± 6.3 µm for left eyes, p = 0.011). OCTA scans revealed no significant changes, yet there could be observed numerically lower values in the capillary plexuses of the retina in eyes with DLD than in eyes without DLD. Conclusions: Our results illustrated significant alterations in the choroidal and retinal analyzes, suggesting a correlation between DLD and the progression of inflammatory processes in the course of SLE leading to retinal degeneration. For this reason, DLD could serve as a biomarker for a more active state of disease.
Collapse
|
36
|
Nakano M, Ota M, Takeshima Y, Iwasaki Y, Hatano H, Nagafuchi Y, Itamiya T, Maeda J, Yoshida R, Yamada S, Nishiwaki A, Takahashi H, Takahashi H, Akutsu Y, Kusuda T, Suetsugu H, Liu L, Kim K, Yin X, Bang SY, Cui Y, Lee HS, Shoda H, Zhang X, Bae SC, Terao C, Yamamoto K, Okamura T, Ishigaki K, Fujio K. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 2022; 185:3375-3389.e21. [PMID: 35998627 DOI: 10.1016/j.cell.2022.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.
Collapse
Affiliation(s)
- Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Takeshima
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Junko Maeda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Aya Nishiwaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Haruka Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Akutsu
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Kusuda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Hamanomachi hospital, Fukuoka 810-8539, Japan
| | - Lu Liu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul 02447, South Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, South Korea
| | - Xianyong Yin
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Xuejun Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan; The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyoshi Ishigaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
Lundtoft C, Pucholt P, Martin M, Bianchi M, Lundström E, Eloranta ML, Sandling JK, Sjöwall C, Jönsen A, Gunnarsson I, Rantapää-Dahlqvist S, Bengtsson AA, Leonard D, Baecklund E, Jonsson R, Hammenfors D, Forsblad-d'Elia H, Eriksson P, Mandl T, Magnusson Bucher S, Norheim KB, Auglaend Johnsen SJ, Omdal R, Kvarnström M, Wahren-Herlenius M, Notarnicola A, Andersson H, Molberg Ø, Diederichsen LP, Almlöf J, Syvänen AC, Kozyrev SV, Lindblad-Toh K, Nilsson B, Blom AM, Lundberg IE, Nordmark G, Diaz-Gallo LM, Svenungsson E, Rönnblom L. Complement C4 Copy Number Variation is Linked to SSA/Ro and SSB/La Autoantibodies in Systemic Inflammatory Autoimmune Diseases. Arthritis Rheumatol 2022; 74:1440-1450. [PMID: 35315244 PMCID: PMC9543510 DOI: 10.1002/art.42122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Copy number variation of the C4 complement components, C4A and C4B, has been associated with systemic inflammatory autoimmune diseases. This study was undertaken to investigate whether C4 copy number variation is connected to the autoimmune repertoire in systemic lupus erythematosus (SLE), primary Sjögren's syndrome (SS), or myositis. METHODS Using targeted DNA sequencing, we determined the copy number and genetic variants of C4 in 2,290 well-characterized Scandinavian patients with SLE, primary SS, or myositis and 1,251 healthy controls. RESULTS A prominent relationship was observed between C4A copy number and the presence of SSA/SSB autoantibodies, which was shared between the 3 diseases. The strongest association was detected in patients with autoantibodies against both SSA and SSB and 0 C4A copies when compared to healthy controls (odds ratio [OR] 18.0 [95% confidence interval (95% CI) 10.2-33.3]), whereas a weaker association was seen in patients without SSA/SSB autoantibodies (OR 3.1 [95% CI 1.7-5.5]). The copy number of C4 correlated positively with C4 plasma levels. Further, a common loss-of-function variant in C4A leading to reduced plasma C4 was more prevalent in SLE patients with a low copy number of C4A. Functionally, we showed that absence of C4A reduced the individuals' capacity to deposit C4b on immune complexes. CONCLUSION We show that a low C4A copy number is more strongly associated with the autoantibody repertoire than with the clinically defined disease entities. These findings may have implications for understanding the etiopathogenetic mechanisms of systemic inflammatory autoimmune diseases and for patient stratification when taking the genetic profile into account.
Collapse
Affiliation(s)
| | | | | | - Matteo Bianchi
- Science for Life Laboratory and Uppsala University, Uppsala, Sweden
| | - Emeli Lundström
- Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - Andreas Jönsen
- Lund University and Skåne University Hospital, Lund, Sweden
| | - Iva Gunnarsson
- Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | - Roald Omdal
- Stavanger University Hospital, Stavanger, Norway
| | - Marika Kvarnström
- Karolinska Institutet, Karolinska University Hospital, and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Karolinska Institutet and Karolinska University Hospital Stockholm, Sweden, and University of Bergen, Bergen, Norway
| | | | | | | | - Louise Pyndt Diederichsen
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, and Odense University Hospital, Odense, Denmark
| | - Jonas Almlöf
- Science for Life Laboratory and Uppsala University, Uppsala, Sweden
| | | | - Sergey V Kozyrev
- Science for Life Laboratory and Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory and Uppsala University, Uppsala, Sweden, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | - Ingrid E Lundberg
- Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
38
|
Evaluation of red blood cell distribution width-platelet ratio as a predictor of adverse pregnancy outcomes and disease severity in systemic lupus erythematosus. Clin Rheumatol 2022; 41:2987-2993. [PMID: 35788840 DOI: 10.1007/s10067-022-06169-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The red blood cell distribution width to platelet ratio (RPR) is known to reflect systemic inflammation. This study aimed to explore the predictive value of RPR for disease activity and adverse pregnancy outcomes (APOs) in pregnant women with systemic lupus erythematosus (SLE). METHODS We retrospectively evaluated case data of all pregnant women with SLE managed at the First Affiliated Hospital of Zhengzhou University from January 2014 to March 2017. Correlations between RPR and SLE clinical disease activity, organ involvement, and maternal complications were analysed. Changes in the RPR and erythrocyte sedimentation rate (ESR) were observed before and after treatment. A receiver operating characteristic (ROC) curve was used to predict disease activity and APOs based on RPR. RESULTS A total of 118 patients were enrolled, including 77 in the disease-active group and 41 in the disease-inactive group. The live birth rate was significantly higher in the disease-inactive group than in the disease-active group (P < 0.001). Compared to the disease-inactive group, the number of patients with elevated RPR, anti-dsDNA antibody level, and ESR was significantly higher in the disease-active group, whereas their platelet-lymphocyte ratios and complement 3 and 4 levels were significantly lower. The disease-active group was more likely to experience APOs (P < 0.001), mainly due to premature birth, low birth weight, and pregnancy loss. The ROC curve indicated that RPR had an effect on disease activity and APOs. CONCLUSION RPR can be used as a predictor of disease severity and APOs in pregnant women with SLE. Key Points • RPR positively correlated with SLEDAI; patients with elevated RPR have higher disease activity, more organ, and more maternal complications. • Monitoring RPR could better predict disease activity in pregnant patients with SLE and reduce the incidence of maternal complications and APOs.
Collapse
|
39
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
40
|
Hultström M, Frithiof R, Grip J, Lindelöf L, Rooijackers O, Pigazzini S, Niemi M, Cordioli M, Nkambule L, Maricic T, Ekdahl KN, Nilsson B, Lipcsey M, Zeberg H, Eriksson O. Genetic determinants of mannose-binding lectin activity predispose to thromboembolic complications in critical COVID-19. Nat Immunol 2022; 23:861-864. [PMID: 35624204 DOI: 10.1038/s41590-022-01227-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Hultström
- Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Epidemiology, McGill University, Montréal, Quebec, Canada.,Lady Davis Institute of Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| | - Robert Frithiof
- Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan Grip
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Lindelöf
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olav Rooijackers
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Pigazzini
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mari Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mattia Cordioli
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Lindo Nkambule
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hugo Zeberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Blasco M, Guillén-Olmos E, Diaz-Ricart M, Palomo M. Complement Mediated Endothelial Damage in Thrombotic Microangiopathies. Front Med (Lausanne) 2022; 9:811504. [PMID: 35547236 PMCID: PMC9082680 DOI: 10.3389/fmed.2022.811504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Thrombotic microangiopathies (TMA) constitute a group of different disorders that have a common underlying mechanism: the endothelial damage. These disorders may exhibit different mechanisms of endothelial injury depending on the pathological trigger. However, over the last decades, the potential role of the complement system (CS) has gained prominence in their pathogenesis. This is partly due to the great efficacy of complement-inhibitors in atypical hemolytic syndrome (aHUS), a TMA form where the primary defect is an alternative complement pathway dysregulation over endothelial cells (genetic and/or adquired). Complement involvement has also been demonstrated in other forms of TMA, such as thrombotic thrombocytopenic purpura (TTP) and in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS), as well as in secondary TMAs, in which complement activation occurs in the context of other diseases. However, at present, there is scarce evidence about the efficacy of complement-targeted therapies in these entities. The relationship between complement dysregulation and endothelial damage as the main causes of TMA will be reviewed here. Moreover, the different clinical trials evaluating the use of complement-inhibitors for the treatment of patients suffering from different TMA-associated disorders are summarized, as a clear example of the entry into a new era of personalized medicine in its management.
Collapse
Affiliation(s)
- Miquel Blasco
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Elena Guillén-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Marta Palomo
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Alduraibi F, Fatima H, Hamilton JA, Chatham WW, Hsu HC, Mountz JD. Lupus nephritis correlates with B cell interferon-β, anti-Smith, and anti-DNA: a retrospective study. Arthritis Res Ther 2022; 24:87. [PMID: 35436902 PMCID: PMC9014622 DOI: 10.1186/s13075-022-02766-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background In systemic lupus erythematosus (SLE), detection of interferon-β (IFNβ) in B cells was found to be most prominent in patients with high anti-Smith (Sm) and renal disease, but a mechanistic connection was not clear. The objective of the present study is to determine the association of IFNβ in peripheral blood naïve B cells with the histopathological features of lupus nephritis (LN). Methods The percentage of IFNβ+ cells in IgD+CD27− naïve CD19+ B cells (B cell IFNβ) among peripheral blood mononuclear cells (PBMCs) from 80 SLE patients were analyzed using flow cytometry. Serological and clinical data were collected. The correlations of B cell IFNβ with LN classification and with histopathological findings (light, electron, and immunofluorescence [IF] microscopic analyses for deposition of IgM, IgG, IgA, C1q, and C3) were determined in 23 available biopsy specimens. Results B cell IFNβ is positively associated with anti-Sm (p = 0.001), anti-DNA (p = 0.013), and LN (p < 0.001) but was negatively associated with oral/nasal ulcer (p = 0.003) and photosensitivity (p = 0.045). B cell IFNβ positively correlated with immune complex (IC) deposit in the glomerular basement membrane (GBM) (p = 0.002) but not in the mesangial (p = 0.107) or tubular region (p = 0.313). Patients with high B cell IFNβ had statistically increased development of the proliferative LN (Classes III, IV and/or V), compared to patients with low B cell IFNβ (p < 0.0001). Histopathological features positively associated with increased B cell IFNβ included active glomerular lesions as determined by fibrocellular crescents (p = 0.023), chronic glomerular lesions indicated by segmental sclerosis (p = 0.033), and a membranous pattern of renal damage indicated by spike/holes (p = 0.015). Conclusion B cell IFNβ correlates with history of severe LN, glomerular basement membrane (GBM) IC deposition, and anatomical features of both active and chronic glomerular lesions.
Collapse
Affiliation(s)
- Fatima Alduraibi
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA.,Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.,Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Huma Fatima
- Division of Anatomic Pathology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennie A Hamilton
- Department of Medicine, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
| | - W Winn Chatham
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA. .,Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
43
|
Tang C, Fang M, Tan G, Zhang S, Yang B, Li Y, Zhang T, Saxena R, Mohan C, Wu T. Discovery of Novel Circulating Immune Complexes in Lupus Nephritis Using Immunoproteomics. Front Immunol 2022; 13:850015. [PMID: 35419005 PMCID: PMC8996714 DOI: 10.3389/fimmu.2022.850015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The goal is to discover novel circulating immune complexes (ICx) in the serum of lupus nephritis (LN) as potential biomarkers. Methods Protein A/G magnetic beads or C1q-coated plates were used to capture ICx in the serum of LN, followed by the identification of immunoglobulin-binding proteins using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Bioinformatic approaches and single-cell RNA sequencing (scRNA Seq) databases were used to select potential candidate ICx markers in LN. The selected ICx markers were further validated using ELISA. Results A total of 300 immunoglobulin-binding proteins were discovered in the screening, among which 77 proteins were detectable only in LN samples. Bioinformatics-assisted selection allowed us to further identify 10 potential immunoglobulin-binding proteins, which form ICx as potential biomarkers in LN. In a validation cohort of 62 LN patients and 21 healthy controls (HC), we found that prolyl 3-hydroxylase 1 (P3H1), phosphatase and actin regulator 4 (PHACTR4), and regulator of G-protein signaling 12 (RGS12) ICx exhibited discriminative capability in distinguishing LN from HC, with an area under the curve (AUC) values of 0.82, 0.99, and 0.90, respectively. Furthermore, a biomarker panel comprising CD14, CD34, cystatin A, myocyte enhancer factor 2C (MEF2C), RGS12, and ubiquitin C (UBC) ICx could distinguish active LN from inactive LN with an AUC value of 0.85, which is comparable to or better than pathological parameters such as renal activity index (AI) and renal chronicity index (CI). Conclusion Immunoproteomics-based discovery studies have enabled us to identify circulating immune complexes as potential biomarkers of LN.
Collapse
Affiliation(s)
- Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Min Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Gongjun Tan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Bowen Yang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ramesh Saxena
- Division of Nephrology, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
44
|
Bolouri N, Akhtari M, Farhadi E, Mansouri R, Faezi ST, Jamshidi A, Mahmoudi M. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflamm Res 2022; 71:537-554. [PMID: 35298669 DOI: 10.1007/s00011-022-01554-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE), the most common form of lupus, is a multisystemic rheumatic disease with different clinical features that generally affect women of childbearing age. The common symptoms of SLE are very similar to other autoimmune and non-autoimmune disorders, thereby it is known as a thousand faces disease. In this article, we are going to discuss some of the most updated information about immune system-related factors, cells, and cytokines involved in SLE pathogenesis. METHODS Different electronic databases, especially PubMed/MEDLINE, Scopus, and Google Scholar, were searched to review and analyze relevant literature on the role of innate and adaptive immune cells and cytokines in the pathogenesis of SLE. A search for relevant literature was accomplished using various keywords including systemic lupus erythematosus, apoptosis, autoantibodies, immunopathogenesis of SLE, adaptive and innate immune cells, inflammatory cytokines, hormones, etc. RESULTS AND CONCLUSION: The most important characteristic of SLE is the production of antibodies against different nuclear autoantigens like double-strand DNA and RNA. The depositions of the immune complexes (ICs) that are generated between autoantibodies and autoantigens, along with aberrant clearance of them, can lead to permanent inflammation and contribute to tissue or organ damage. Related mechanisms underlying the initiation and development of SLE have not been clarified yet. Although, defects in immune tolerance, enhanced antigenic load, hyperactivity of T cells, and inappropriate regulation of B cells contribute to the pathogenic autoantibodies generation. Besides, sex hormones that influence the immune system seem to act as triggers or protectors of SLE development.
Collapse
Affiliation(s)
- Nasim Bolouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Tahereh Faezi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
46
|
Increased Complement Activation in Systemic Sclerosis Patients with Skin and Lung Fibrosis. J Pers Med 2022; 12:jpm12020284. [PMID: 35207772 PMCID: PMC8880367 DOI: 10.3390/jpm12020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: The involvement of complement system in the phenotypic expression of systemic sclerosis (SSc) is a debated topic. We aimed to assay complement fractions in SSc patients and to correlate their levels with the clinical course of disease. Key points: 1. CH50 is increased in SSc patients compared to HC; 2. Serum C2 levels are increased in SSc patients compared to HC; 3. CH50 may represent a biomarker of skin and lung fibrosis severity in SSc patients. Method: Complement hemolysis 50% (CH50), C2, C3 and C4 levels have been assessed in 85 SSc patients and 47 healthy controls (HC). Results: SSc patients displayed a statistically significant higher value of CH50 [76.3 U/mL (IQR 65.8–89.4 U/mL) vs. 29.6 U/mL (IQR 24.7–34 U/mL); p < 0.0001] and of C2 [26.1 mg/L (IQR 24.1–32.1 mg/L) vs. 22.7 mg/L (IQR 20.6–24.4 mg/L); p < 0.0001] if compared to HC. Patients with diffuse cutaneous SSc (dcSSc) had higher levels of CH50 than patients with limited cutaneous SSc (lcSSc) [83.6 U/mL (IQR 72.3–102.7 U/mL) vs. 71.3 U/mL (IQR 63.7–83.6 U/mL); p = 0.003]. SSc patients with interstitial lung disease (ILD) had higher CH50 levels if compared to SSc patients without ILD [79.6 U/mL (IQR 68.3–97.4 U/mL) vs. 69.7 U/mL (54.6–85.7 U/mL); p = 0.042]. A positive linear correlation existed between CH50 and the modified Rodnan Skin Score (mRSS) (r = 0.285, p = 0.008) and disease severity scale (DSS) (r = 0.285, p = 0.005); a negative linear correlation was demonstrated between CH50 and the diffusing capacity of carbon monoxide (DLco) (r = −0.252, p = 0.012). In multiple linear regression analysis, only DSS was significant (p = 0.01, beta coefficient 2.446). Conclusions: Our results show an increment of CH50 and serum C2 levels in SSc patients in comparison to HC; we retain that CH50 may represent a biomarker of disease severity and of skin and lung fibrosis in these patients.
Collapse
|
47
|
Hubbard EL, Pisetsky DS, Lipsky PE. Anti-RNP antibodies are associated with the interferon gene signature but not decreased complement levels in SLE. Ann Rheum Dis 2022; 81:632-643. [PMID: 35115332 DOI: 10.1136/annrheumdis-2021-221662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The goals of these studies were to elucidate the inter-relationships of specific anti-nuclear antibody (ANA), complement, and the interferon gene signature (IGS) in the pathogenesis of systemic lupus erythematosus (SLE). METHODS Data from the Illuminate trials were analysed for antibodies to dsDNA as well as RNA-binding proteins (RBP), levels of C3, C4 and various IGS. Statistical hypothesis testing, linear regression analyses and classification and regression trees analysis were employed to assess relationships between the laboratory features of SLE. RESULTS Inter-relationships of ANAs, complement and the IGS differed between patients of African Ancestry (AA) and European Ancestry (EA); anti-RNP and multiple autoantibodies were more common in AA patients and, although both related to the presence of the IGS, relationships between autoantibodies and complement differed. Whereas, anti-dsDNA had an inverse relationship to C3 and C4, levels of anti-RNP were not related to these markers. The IGS was only correlated with anti-dsDNA in EA SLE and complement was more correlated to the IGS in AA SLE. Finally, autoantibodies occurred in the presence and absence of the IGS, whereas the IGS was infrequent in anti-dsDNA/anti-RBP-negative SLE patients. CONCLUSION There is a complex relationship between autoantibodies and the IGS, with anti-RNP associated in AA and both anti-dsDNA and RNP associated in EA. Moreover, there was a difference in the relationship between anti-dsDNA, but not anti-RBP, with complement levels. The lack of a relationship of anti-RNP with C3 and C4 suggests that anti-RNP immune complexes (ICs) may drive the IGS without complement fixation, whereas anti-dsDNA ICs involve complement consumption.
Collapse
Affiliation(s)
- Erika L Hubbard
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA.,RILITE Foundation, Charlottesville, Virginia, USA
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Rheumatology, Durham VA Medical Center, Durham, North Carolina, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA .,RILITE Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
48
|
Ham YJ, Nicklason E, Wightman T, Akom S, Sandhu K, Harraka P, Colville D, Catran A, Barit D, Langsford D, Pianta T, Foote A, Buchanan R, Mack H, Savige J. Retinal drusen are more common and larger in SLE with renal impairment. Kidney Int Rep 2022; 7:848-856. [PMID: 35497809 PMCID: PMC9039474 DOI: 10.1016/j.ekir.2022.01.1063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Complement has been implicated in systemic lupus erythematosus (SLE) pathogenesis on the basis of the associations with inherited complement defects and genome-wide association study risk alleles, glomerular deposits, reduced serum levels, and occasional reports of retinal drusen. This study examined drusen in SLE and their clinical significance. Methods This cross-sectional observational study compared individuals with SLE recruited from renal and rheumatology clinics with hospital controls. Participants were reviewed for clinical features and underwent imaging with a nonmydriatic retinal camera. Deidentified images were examined by 2 trained graders for drusen number and size using a grid overlay. Results The cohort with SLE (n = 65) comprised 55 women (85%) and 10 men (15%) with a median age of 47 years (interquartile range 35–59), where 23 (35%) were of southern European or Asian ancestry, and 32 (49%) had biopsy-proven lupus nephritis. Individuals with SLE had higher mean drusen numbers than controls (27 ± 60, 3 ± 9, respectively, P = 0.001), more drusen counts ≥10 (31, 48% and 3, 5%, respectively, P < 0.001), and more medium-large drusen (14, 22% and 3, 5%, respectively, P < 0.001). In SLE, mean drusen counts were higher, and drusen were larger, with an estimated glomerular filtration rate (eGFR) <90 ml/min per 1.73 m2 (P = 0.02, P = 0.02, respectively) or class IV nephritis (P = 0.03, P = 0.02). Conclusion Drusen composition resembles that of glomerular immune deposits. CFH controls complement activation in the extracellular matrix and CFH risk variants are shared by drusen in macular degeneration and by SLE. CFH represents a possible treatment target for SLE especially with renal impairment.
Collapse
|
49
|
Dasdemir S, Yildiz M, Celebi D, Sahin S, Aliyeva N, Haslak F, Gunalp A, Adrovic A, Barut K, Artim Esen B, Kasapcopur O. Genetic screening of early-onset patients with systemic lupus erythematosus by a targeted next-generation sequencing gene panel. Lupus 2022; 31:330-337. [PMID: 35086391 DOI: 10.1177/09612033221076733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE In this study, we aimed to screen 31 genes (C1QA, C1QB, C1QC, C1R, C1S, C2, C3, TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, DNASE1, DNASE1L3, PRKCD, ACP5, SLC7A7, IFIH1, TMEM173, ISG15, CYBB, FAS, FASLG, KRAS, NRAS, MAN2B1, PEPD, PTPN11, RAG2, and SHOC2), that we have categorized under the umbrella term "monogenic lupus" using a targeted next-generation sequencing (NGS) panel in 24 individuals with early-onset (≤10 years of age) systemic lupus erythematosus (SLE) and in 24 patients with late-onset (>10 years of age) disease. METHODS A total of 48 SLE patients (24 with disease onset ≤10 years of age and 24 with disease onset >10 years of age) were included. Patients with late-onset disease have been used as patient controls. Sequencing was carried out using 400 bp kit on the Ion S5 system. RESULTS Among the 48 patients, three had one pathogenic variant and 45 patients had at least one rare variant classified as benign, likely benign or variant of unknown significance (VUS). In all three patients with a pathogenic variant, the onset of disease was before 10 years of age. Two patients (they were siblings) carried C1QA homozygote pathogenic allele (p.Gln208Ter, rs121909581), and one patient carried PEPD heterozygote pathogenic allele (p.Arg184Gln, rs121917722). CONCLUSION We demonstrated a pathogenic variant in our target gene panel with a frequency of 9.52% in patients with a disease onset ≤10 years of age. All patients with early-onset SLE phenotype, irrespective of a positive family history for SLE or parental consanguinity, should be scanned for a single-gene defect by a targeted gene panel sequencing. With the discovery of many single-gene defects and ongoing efforts to identify novel genes in SLE, similar gene panels including even more genes will possibly become more necessary and practical in the future.
Collapse
Affiliation(s)
- Selcuk Dasdemir
- Department of Medical Biology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Mehmet Yildiz
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Damla Celebi
- Department of Medical Biology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Sezgin Sahin
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Numune Aliyeva
- Department of Internal Medicine, Istanbul Faculty of Medicine, Division of Rheumatology, 64041Istanbul University, Istanbul, Turkey
| | - Fatih Haslak
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aybuke Gunalp
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Amra Adrovic
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kenan Barut
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahar Artim Esen
- Department of Internal Medicine, Istanbul Faculty of Medicine, Division of Rheumatology, 64041Istanbul University, Istanbul, Turkey
| | - Ozgur Kasapcopur
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
50
|
Tan G, Baby B, Zhou Y, Wu T. Emerging Molecular Markers Towards Potential Diagnostic Panels for Lupus. Front Immunol 2022; 12:808839. [PMID: 35095896 PMCID: PMC8792845 DOI: 10.3389/fimmu.2021.808839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease which can affect various tissues and organs, posing significant challenges for clinical diagnosis and treatment. The etiology of SLE is highly complex with contributions from environmental factors, stochastic factors as well as genetic susceptibility. The current criteria for diagnosing SLE is based primarily on a combination of clinical presentations and traditional lab testing. However, these tests have suboptimal sensitivity and specificity. They are unable to indicate disease cause or guide physicians in decision-making for treatment. Therefore, there is an urgent need to develop a more accurate and robust tool for effective clinical management and drug development in lupus patients. It is fortunate that the emerging Omics have empowered scientists in the discovery and identification of potential novel biomarkers of SLE, especially the markers from blood, urine, cerebrospinal fluids (CSF), and other bodily fluids. However, many of these markers have not been carefully validated for clinical use. In addition, it is apparent that individual biomarkers lack sensitivity or specificity. This review summarizes the sensitivity, specificity and diagnostic value of emerging biomarkers from recent studies, and discusses the potential of these markers in the development of biomarker panel based diagnostics or disease monitoring system in SLE.
Collapse
Affiliation(s)
- Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Binila Baby
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yuqiu Zhou
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|