1
|
Min Y, Heo Y, Feng F, Kim D, Kim M, Yang J, Kim HJ, Jee Y, Ghosh M, Kang I, Son YO. High-Sucrose Diet Accelerates Arthritis Progression in a Collagen-Induced Rheumatoid Arthritis Model. Mol Nutr Food Res 2023; 67:e2300244. [PMID: 37688304 DOI: 10.1002/mnfr.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Indexed: 09/10/2023]
Abstract
SCOPE High dietary sugar and sweeteners are suspected to cause the development of rheumatoid arthritis (RA) symptoms through the induction of proinflammatory cytokine release. However, the mechanisms by which increased dietary sugar affects RA etiology are not yet fully understood. The study uses a mouse model of collagen-induced RA (CIA) to investigate the relationship between excessive sugar consumption and RA risk. METHODS AND RESULTS RA-associated pathological features are assessed in the nonimmunized (NI) control group, the CIA-positive control group, and the CIA + high-sucrose diet (CIA+HS, 63% calories from sucrose) group. Compared with the CIA group, the CIA+HS group shows a greater increase in paw thickness and clinical scores, as well as, a higher degree of pannus formation and inflammation in the knee, ankle, and sole tissues. Moreover, the infiltration of immune cells is increased in the CIA+HS group. Although the expression of hepatic lipogenic genes, is not altered, that of toll-like receptor (TLR4) and IL-1β is considerably elevated in the CIA+HS group. CONCLUSIONS These findings suggest that excessive sucrose consumption causes hepatic fibrosis and inflammation, contributing to the pathophysiology of RA.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Dahye Kim
- Division of Animal Genetics and Bioinformatics, The National Institute of Animal Science, RDA, Wanju, 55465, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Hyo Jin Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil, 626126, India
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| |
Collapse
|
2
|
Hao S, Zhang S, Ye J, Chen L, Wang Y, Pei S, Zhu Q, Xu J, Tao Y, Zhou N, Yin H, Duan C, Mao C, Zheng M, Xiao Y. Goliath induces inflammation in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO Rep 2023; 24:e56932. [PMID: 36862324 PMCID: PMC10074109 DOI: 10.15252/embr.202356932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid β-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.
Collapse
Affiliation(s)
- Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yongzhen Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Neng Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiyong Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaoming Mao
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
3
|
Diplock B, Hing W, Marks D. The long head of biceps at the shoulder: a scoping review. BMC Musculoskelet Disord 2023; 24:232. [PMID: 36978047 PMCID: PMC10044783 DOI: 10.1186/s12891-023-06346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND This review aimed to explore the available literature to update our understanding of the long head of biceps (LHB) at the shoulder. Synthesise our findings to identify emergent themes and knowledge gaps to inform future research and management directions. METHODS PubMed, Embase, Cinahl, SportDiscus, CENTRAL, and Web of Science were searched from inception to 31st December 2021. Articles were included if they referenced adult participants > 18 years of age and were written in English. RESULTS 214 articles were included in the final analysis, and results were categorised into six emergent themes: (1) Anatomy - Normal anatomical variation of the biceps from aberrant origins, third and fourth accessory heads, and an absence of the LHB tendon (LHBT) are not necessarily benign, with shoulder pain and instability a commonly reported theme. (2) Function - Bicep's role in glenohumeral elevation and stability in healthy shoulders is minimal. In contrast, LHB has a more significant role in shoulder stability and humeral head depression in subjects with rotator cuff failure or an absent LHBT. (3) Pathology - There is an association between LHB tendinopathy, rotator cuff disease, LHBT instability and occult rotator cuff tears. Early recruitment and hyperactivity of the LHB in subjects with symptomatic rotator cuff tears and instability suggest a potential compensatory role. (4) Assessment - The limited diagnostic utility of special orthopaedic tests in assessing LHBT pathology was a consistent theme. The utility of magnetic resonance imaging and ultrasound to identify full-thickness tendon tears and instability of the LHBT was moderate to high. However, the utility of clinical tests and imaging may be underestimated due to arthroscopy's limitations in fully visualising the proximal LHBT. (5) Non-Surgical Management - Ultrasound-guided injections into the biceps sheath show greater accuracy and patient outcomes than blinded injections; however, the entry of injectate into the intraarticular glenohumeral joint may have unwanted complications. (6) Surgical management - For the surgical management of biceps pathology with or without rotator cuff pathology, both biceps tenodesis and tenotomy report similar improvements in pain without any significant adverse effect on strength or function. Tenodesis favoured higher overall constant scores and a lower incidence of Popeye deformity and cramping arm pain, with tenotomy trending to be more cost and time effective. For patients with a healthy LHBT, rotator cuff repair with adjunctive tenodesis or tenotomy fails to provide additional clinical improvements compared to rotator cuff repair in isolation. CONCLUSIONS The scoping review highlights the variability of biceps anatomy, which is not necessarily benign and suggests a minimal role of the LHB in shoulder elevation and stability in healthy individuals. In contrast, individuals with rotator cuff tears experience proximal humeral migration and demonstrate hyperactivity of the LHB, suggesting a potential compensation role. The observed prevalence of LHBT pathology with rotator cuff tears is well established; however, the cause-and-effect relationship between LHBT pathology and rotator cuff disease is undetermined. The diagnostic utility of clinical tests and imaging to exclude LHBT pathology may be understated due to the limitations of arthroscopy to visualise the proximal LHBT fully. Rehabilitation programs for the LHB are understudied. Similar post-surgical clinical outcomes are observed for tenodesis and tenotomy for biceps and rotator cuff-related shoulder pain. Subjects undergoing biceps tenodesis are less likely to have cramping arm pain and a Popeye deformity than patients undergoing biceps tenotomy. The significance of routine surgical removal of the LHBT and sequelae on rotator cuff tear progression to failure and long-term shoulder function is unknown, and further research is required. PRE-REGISTRATION OSF: https://osf.io/erh9m.
Collapse
Affiliation(s)
- Brendan Diplock
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia.
| | - Wayne Hing
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Darryn Marks
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
4
|
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity 2022; 55:2255-2270. [PMID: 36516818 DOI: 10.1016/j.immuni.2022.11.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Significant recent progress in understanding rheumatoid arthritis (RA) pathogenesis has led to improved treatment and quality of life. The introduction of targeted-biologic and -synthetic disease modifying anti-rheumatic drugs (DMARDs) has also transformed clinical outcomes. Despite this, RA remains a life-long disease without a cure. Unmet needs include partial response and non-response to treatment in many patients, failure to achieve immune homeostasis or drug free remission, and inability to repair damaged tissues. RA is now recognized as the end of a multi-year prodromal phase in which systemic immune dysregulation, likely beginning in mucosal surfaces, is followed by a symptomatic clinical phase. Inflammation and immune reactivity are primarily localized to the synovium leading to pain and articular damage, but is also associated with a broader series of comorbidities. Here, we review recently described immunologic mechanisms that drive breach of tolerance, chronic synovitis, and remission.
Collapse
Affiliation(s)
- Stefano Alivernini
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Rheumatology - Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gary S Firestein
- Division of Rheumatology, Allergy, and Immunology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
5
|
Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022; 79:301. [PMID: 35588018 PMCID: PMC9118817 DOI: 10.1007/s00018-022-04329-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated Mϴs nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of Mϴs by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated Mϴs, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated Mϴs was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human Mϴs as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated Mϴ hyperactivation. IRAK4i therapy counteracts Mϴ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human Mϴs. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Umar S, Palasiewicz K, Volin MV, Zanotti B, Al-Awqati M, Sweiss N, Shahrara S. IRAK4 inhibitor mitigates joint inflammation by rebalancing metabolism malfunction in RA macrophages and fibroblasts. Life Sci 2021; 287:120114. [PMID: 34732329 PMCID: PMC10020992 DOI: 10.1016/j.lfs.2021.120114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Recent studies show a connection between glycolysis and inflammatory response in rheumatoid arthritis (RA) macrophages (MΦs) and fibroblasts (FLS). Yet, it is unclear which pathways could be targeted to rebalance RA MΦs and FLS metabolic reprogramming. To identify novel targets that could normalize RA metabolic reprogramming, TLR7-mediated immunometabolism was characterized in RA MΦs, FLS and experimental arthritis. We uncovered that GLUT1, HIF1α, cMYC, LDHA and lactate were responsible for the TLR7-potentiated metabolic rewiring in RA MΦs and FLS, which was negated by IRAK4i. While in RA FLS, HK2 was uniquely expanded by TLR7 and negated by IRAK4i. Conversely, TLR7-driven hypermetabolism, non-oxidative PPP (CARKL) and oxidative phosphorylation (PPARγ) were narrowly dysregulated in TLR7-activated RA MΦs and FLS and was reversed by IRAK4i. Consistently, IRAK4i therapy disrupted arthritis mediated by miR-Let7b/TLR7 along with impairing a broad-range of glycolytic intermediates, GLUT1, HIF1α, cMYC, HK2, PFKFB3, PKM2, PDK1 and RAPTOR. Notably, inhibition of the mutually upregulated glycolytic metabolites, HIF1α and cMYC, was capable of mitigating TLR7-induced inflammatory imprint in RA MΦs and FLS. In keeping with IRAK4i, treatment with HIF1i and cMYCi intercepted TLR7-enhanced IRF5 and IRF7 in RA MΦs, distinct from RA FLS. Interestingly, in RA MΦs and FLS, IRAK4i counteracted TLR7-induced CARKL reduction in line with HIF1i. Whereas, cMYCi in concordance with IRAK4i, overturned oxidative phosphorylation via PPARγ in TLR7-activated RA MΦs and FLS. The blockade of IRAK4 and its interconnected intermediates can rebalance the metabolic malfunction by obstructing glycolytic and inflammatory phenotypes in RA MΦs and FLS.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America.
| |
Collapse
|
7
|
Ungsudechachai T, Honsawek S, Jittikoon J, Udomsinprasert W. Clusterin Is Associated with Systemic and Synovial Inflammation in Knee Osteoarthritis. Cartilage 2021; 13:1557S-1565S. [PMID: 32917098 PMCID: PMC8808832 DOI: 10.1177/1947603520958149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This study aimed to determine possible associations between transcriptional and translational levels of clusterin (CLU) in the systemic and local joint environments with the severity of knee osteoarthritis (OA) and to investigate CLU mRNA expression in knee OA fibroblast-like synoviocytes (FLSs) stimulated with tumor necrosis factor-α. DESIGN Circulating and synovial fluid CLU levels in 259 knee OA patients were quantified using an enzyme-linked immunosorbent assay. Relative CLU mRNA expression in 50 knee OA synovial tissues and 4 knee OA FLSs was determined using real-time polymerase chain reaction. RESULTS Plasma CLU levels of knee OA patients were significantly higher than paired synovial fluid samples. Compared with early-stage knee OA patients, those with advanced-stage OA had considerably increased plasma and synovial fluid CLU levels. There were significant positive associations of plasma and synovial fluid CLU levels with radiographic severity of knee OA. Plasma CLU levels were directly correlated with its synovial fluid levels and high-sensitivity C-reactive protein levels in the patients. Receiver-operating characteristic curve analysis unveiled the potential utility of plasma CLU as a novel biomarker for knee OA severity (AUC = 0.80), with a sensitivity of 71.4% and a specificity of 73.3%. Marked upregulation of CLU mRNA expression was observed in both the inflamed synovial tissues and FLSs of knee OA. CONCLUSION Increased CLU mRNA and protein levels in the systemic and local joint environments of knee OA might reflect knee OA severity, especially systemic and synovial inflammation.
Collapse
Affiliation(s)
- Tachatra Ungsudechachai
- Department of Biochemistry, Faculty of
Pharmacy, Mahidol University, Bangkok, Thailand,Pharmacology and Biomolecular Science
Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry,
Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of
Pharmacy, Mahidol University, Bangkok, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of
Pharmacy, Mahidol University, Bangkok, Thailand,Wanvisa Udomsinprasert, Department of
Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road,
Rajathevi, Bangkok 10400, Thailand.
| |
Collapse
|
8
|
Umar S, Palasiewicz K, Volin MV, Romay B, Rahat R, Tetali C, Arami S, Guma M, Ascoli C, Sweiss N, Zomorrodi RK, O'Neill LAJ, Shahrara S. Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis alleviates inflammatory phenotype in both cell types. Cell Mol Life Sci 2021; 78:7693-7707. [PMID: 34705053 PMCID: PMC8739866 DOI: 10.1007/s00018-021-03978-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have shown the significance of metabolic reprogramming in immune and stromal cell function. Yet, the metabolic reconfiguration of RA macrophages (MΦs) is incompletely understood during active disease and in crosstalk with other cell types in experimental arthritis. This study elucidates a distinct regulation of glycolysis and oxidative phosphorylation in RA MΦs compared to fibroblast (FLS), although PPP (Pentose Phosphate pathway) is similarly reconfigured in both cell types. 2-DG treatment showed a more robust impact on impairing the RA M1 MΦ-mediated inflammatory phenotype than IACS-010759 (IACS, complexli), by reversing ERK, AKT and STAT1 signaling, IRF8/3 transcription and CCL2 or CCL5 secretion. This broader inhibitory effect of 2-DG therapy on RA M1 MΦs was linked to dysregulation of glycolysis (GLUT1, PFKFB3, LDHA, lactate) and oxidative PPP (NADP conversion to NADPH), while both compounds were ineffective on oxidative phosphorylation. Distinctly, in RA FLS, 2-DG and IACS therapies constrained LPS/IFNγ-induced AKT and JNK signaling, IRF5/7 and fibrokine expression. Disruption of RA FLS metabolic rewiring by 2-DG or IACS therapy was accompanied by a reduction of glycolysis (HIF1α, PFKFB3) and suppression of citrate or succinate buildup. We found that 2-DG therapy mitigated CIA pathology by intercepting joint F480+iNOS+MΦ, Vimentin+ fibroblast and CD3+T cell trafficking along with downregulation of IRFs and glycolytic intermediates. Surprisingly, IACS treatment was inconsequential on CIA swelling, cell infiltration, M1 and Th1/Th17 cytokines (IFN-γ/IL-17) and joint glycolytic mediators. Collectively, our results indicate that blockade of glycolysis is more effective than inhibition of complex 1 in CIA, in part due to its effectiveness on the MΦ inflammatory phenotype.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, San Diego, School of Medicine, University of California, La Jolla, CA, USA
- VA Medical Center, San Diego, CA, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, The University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Arias de la Rosa I, Escudero-Contreras A, Ruiz-Ponce M, Román-Rodríguez C, Pérez-Sánchez C, Ábalos-Aguilera MDC, Ortega-Castro R, Alcaide J, Murri M, Font P, Calvo-Gutiérrez J, Luque-Tevar M, Patiño-Trives AM, Guzmán-Ruiz R, Malagón MDM, Tinahones FJ, Collantes-Estévez E, López-Pedrera C, Barbarroja N. Molecular Changes in the Adipose Tissue Induced by Rheumatoid Arthritis: Effects of Disease-Modifying Anti-Rheumatic Drugs. Front Immunol 2021; 12:744022. [PMID: 34721412 PMCID: PMC8549628 DOI: 10.3389/fimmu.2021.744022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
Disease severity, progression and response to therapy might be worse in obese rheumatoid arthritis (RA) patients, but paradoxically, obesity also might protect from radiographic joint damage. Thus, the intricate relationship between obesity and RA needs urgent clarification. The aim of this study was to assess the influence of obesity on the onset and development of RA and to determine whether arthritis could modify the adipose tissue biology and whether conventional Disease Modifying Anti-Rheumatic Drugs (cDMARDs) can modulate these alterations. Two strategies were followed: (1) clinical profiling of two cohorts of RA: non-obese and obese patients; and (2) mechanistic studies carried out in both a collagen-induced arthritis (CIA) in an obese mouse model and 3T3-L1 adipocytes treated with cDMARDs (leflunomide, methotrexate, and hydroxychloroquine). In our cohort of RA patients with low-moderate disease activity, the presence of obesity was not related to a higher activity of the disease; actually, disease activity score 28-erythrocyte sedimentation rate (DAS28-ESR) was reduced in the obese RA patients. However, the induction of arthritis promoted transcriptomic changes in the adipose tissue under obesity condition in the obese CIA model. Treatment with hydroxychloroquine reduced weight and insulin resistance, accompanied by beneficial metabolic effects in the adipose tissue. These molecular changes in adipose tissue were also observed after methotrexate administration. In sum, arthritis might affect directly the inflammatory burden and metabolic alterations associated with obesity in adipose tissue. Clinicians should be cautious measuring the activity of the disease in obesity and managing the best therapeutic options for the metabolic comorbidities of these patients, where the combination of hydroxychloroquine and methotrexate should be considered to improve adipose tissue dysfunction in obese RA.
Collapse
Affiliation(s)
- Iván Arias de la Rosa
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Miriam Ruiz-Ponce
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Cristóbal Román-Rodríguez
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - María Del Carmen Ábalos-Aguilera
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Rafaela Ortega-Castro
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Juan Alcaide
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Malaga Hospital Complex, Virgen de la Victoria, Malaga, Spain.,Centros de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mora Murri
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Malaga Hospital Complex, Virgen de la Victoria, Malaga, Spain.,Centros de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Font
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Jerusalem Calvo-Gutiérrez
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Maria Luque-Tevar
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Alejandra Maria Patiño-Trives
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Maria Del Mar Malagón
- Centros de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Francisco José Tinahones
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Malaga Hospital Complex, Virgen de la Victoria, Malaga, Spain.,Centros de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Collantes-Estévez
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Chary López-Pedrera
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service/Deparment of Medicine and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia Hospital, Cordoba, Spain
| |
Collapse
|
10
|
Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA, Zomorrodi RK, Arami S, Gonzalez M, Rao V, Zanotti B, Fox DA, Sweiss N, Shahrara S. IRAK4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cell Mol Immunol 2021; 18:2199-2210. [PMID: 32415262 PMCID: PMC8429735 DOI: 10.1038/s41423-020-0433-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Flares of joint inflammation and resistance to currently available biologic therapeutics in rheumatoid arthritis (RA) patients could reflect activation of innate immune mechanisms. Herein, we show that a TLR7 GU-rich endogenous ligand, miR-Let7b, potentiates synovitis by amplifying RA monocyte and fibroblast (FLS) trafficking. miR-Let7b ligation to TLR7 in macrophages (MΦs) and FLSs expanded the synovial inflammatory response. Moreover, secretion of M1 monokines triggered by miR-Let7b enhanced Th1/Th17 cell differentiation. We showed that IRAK4 inhibitor (i) therapy attenuated RA disease activity by blocking TLR7-induced M1 MΦ or FLS activation, as well as monokine-modulated Th1/Th17 cell polarization. IRAK4i therapy also disrupted RA osteoclastogenesis, which was amplified by miR-Let7b ligation to joint myeloid TLR7. Hence, the effectiveness of IRAK4i was compared with that of a TNF inhibitor (i) or anti-IL-6R treatment in collagen-induced arthritis (CIA) and miR-Let7b-mediated arthritis. We found that TNF or IL-6R blocking therapies mitigated CIA by reducing the infiltration of joint F480+iNOS+ MΦs, the expression of certain monokines, and Th1 cell differentiation. Unexpectedly, these biologic therapies were unable to alleviate miR-Let7b-induced arthritis. The superior efficacy of IRAK4i over anti-TNF or anti-IL-6R therapy in miR-Let7b-induced arthritis or CIA was due to the ability of IRAK4i therapy to restrain the migration of joint F480+iNOS+ MΦs, vimentin+ fibroblasts, and CD3+ T cells, in addition to negating the expression of a wide range of monokines, including IL-12, MIP2, and IRF5 and Th1/Th17 lymphokines. In conclusion, IRAK4i therapy may provide a promising strategy for RA therapy by disconnecting critical links between inflammatory joint cells.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Arami
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Gonzalez
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vikram Rao
- Pfizer Research, Cambridge, MA, 02139, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Palasiewicz K, Umar S, Romay B, Zomorrodi RK, Shahrara S. Tofacitinib therapy intercepts macrophage metabolic reprogramming instigated by SARS-CoV-2 Spike protein. Eur J Immunol 2021; 51:2330-2340. [PMID: 34107055 PMCID: PMC8237023 DOI: 10.1002/eji.202049159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
The molecular mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein was characterized to identify novel therapies. The impact of tofacitinib, IL-6R Ab, or TNFi therapy was determined on Spike protein or LPS/IFN-γ-induced signaling, inflammation, and metabolic reprogramming in MΦs and/or rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS). ACE2 frequency was markedly expanded in MΦs compared to T cells and RA FLS. Tofacitinib suppresses Spike protein potentiated STAT1 signaling, whereas this function was unchanged by TNFi. Tofacitinib impairs IL-6/IFN/LPS-induced STAT1 and STAT3 phosphorylation in RA MΦs and FLS. Interestingly, tofacitinib had a broader inhibitory effect on the monokines, glycolytic regulators, or oxidative metabolites compared to IL-6R Ab and TNFi in Spike-protein-activated MΦs. In contrast, all three therapies disrupted IFN-α and IFN-β secretion in response to Spike protein; nonetheless, the IFN-γ was only curtailed by tofacitinib or IL-6R Ab. While tofacitinib counteracted MΦ metabolic rewiring instigated by Spike protein, it was inconsequential on the glycolysis expansion mediated via HK2 and/or LDHA in the activated RA MΦ and FLS. Nevertheless, the potentiated inflammatory response and the diminished oxidative phosphorylation modulated by Spike protein and/or LPS/IFN-γ stimulation in MΦs or RA FLS were reversed by tofacitinib. In conclusion, tofacitinib suppresses MΦ inflammation and immunometabolism triggered by Spike protein and may provide a promising strategy for COVID-19 patients.
Collapse
Affiliation(s)
- Karol Palasiewicz
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Sadiq Umar
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Bianca Romay
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Ryan K. Zomorrodi
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Shiva Shahrara
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
12
|
Naseri H, Zarrin R, Ayremlou P, Aghdashi MA, Seyedmardani S. Evaluating the relationship between dietary intake with inflammatory factors, lipid profile and clinical symptoms in patients with rheumatoid arthritis. Clin Nutr ESPEN 2020; 40:138-143. [PMID: 33183527 DOI: 10.1016/j.clnesp.2020.09.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Rheumatoid arthritis (RA) is one of the most common life-threatening and associated with inflammation. The aim of this study was to evaluate the relation between dietary intake, inflammatory factors, lipid profile, medication and clinical outcomes in patients with rheumatoid arthritis. METHODS This cross-sectional study were conducted in 72 patients with RA that referred to Rheumatology Clinic, Urmia, Iran. After describing the study and obtaining patient consent, fasting blood samples were collected from all participants in start stage, Nuclear Factor-Kappa B (NF-KB), Oxidized Low-Density Lipoprotein (Ox-LDL), lipid profile and clinical symptoms were record in participants. Also, Data on dietary intake and physical activity were collected with relevant questionnaires. RESULTS There was a positive significant relation between energy intakes and low-density lipoprotein Cholesterol (LDL-C) (R = 0.855, P = 0.023), carbohydrate intake with total cholesterol (R = 0.297, P = 0.045), carbohydrate intake and NF-kB (R = 0.292, P = 0.017), fat intakes and Ox-LDL (R = 0.321, P = 0.027), prednisolone and Triglyceride (TG) (R = 0.378, P = 0.016), calcium supplement, folic acid and High-Density Lipoprotein Cholesterol (HDL-C) (R = 0.259, R = 0.34, R = 0.355, P = 0.09 respectively). In addition, the correlation between carbohydrate and energy intakes with HDL-C were negative significant (R = -0.355, P = 0.09 and R = -0.259, P = 0.034). SJC, Tender Joint Count (TJC), Erythrocyte Sedimentation Rate (ESR) and VAS were related to DAS28 and other variables shown no relation with DAS28. CONCLUSION There are many factors affecting the clinical symptoms of patients with RA that attention to nutritional and medicinal factors can have a significant role in the clinical symptoms and complications of these patients.
Collapse
Affiliation(s)
- Hojjat Naseri
- Department of Nutrition Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Rasoul Zarrin
- Department of Nutrition Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Parvin Ayremlou
- Department of Epidemiology, Urmia Imam Khomeini University Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mir Amir Aghdashi
- Department of Rheumatology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | |
Collapse
|
13
|
Wang X, Sun L, He N, An Z, Yu R, Li C, Li Y, Li Y, Liu X, Fang X, Zhao J. Increased expression of CXCL2 in ACPA-positive rheumatoid arthritis and its role in osteoclastogenesis. Clin Exp Immunol 2020; 203:194-208. [PMID: 33010041 DOI: 10.1111/cei.13527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 12/16/2022] Open
Abstract
Anti-citrullinated protein/peptide antibodies (ACPA) play important roles in the pathogenesis of rheumatoid arthritis (RA). ACPA-positive (ACPA+ ) and ACPA-negative (ACPA- ) RA were suggested to be different disease subsets, with distinct differences in genetic variation and clinical outcomes. The aims of the present study were to compare gene expression profiles in ACPA+ and ACPA- RA, and to identify novel candidate gene signatures that might serve as therapeutic targets. Comprehensive transcriptome analysis of peripheral blood mononuclear cells (PBMCs) from ACPA+ and ACPA- RA patients and healthy controls was performed via RNA sequencing. A validation cohort was used to further investigate differentially expressed genes via polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Spearman's correlation test was used to evaluate the correlation of differentially expressed genes and the clinical and laboratory data of the patients. The role of differentially expressed genes in osteoclastogenesis was further investigated. Expression of C-X-C motif chemokine ligand 2 (CXCL2) was significantly increased in ACPA+ RA than in ACPA- RA, which was validated in PBMCs and serum. CXCL2 promoted the migration of CD14+ monocytes and increased osteoclastogenesis in RA patients. RAW264.7 macrophages were used to investigate specific mechanisms, and the results suggested that CXCL2 stimulated osteoclastogenesis via extracellular receptor kinase (ERK) mitogen-activated protein kinase (MAPK) and nuclear factor kappa B pathways. In conclusion, CXCL2 was highly expressed in ACPA+ RA than in ACPA- RA. CXCL2 promoted osteoclastogenesis and was related to bone erosion in RA, which suggests that the blockade of CXCL2 might be a novel strategy for the treatment of RA.
Collapse
Affiliation(s)
- X Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - L Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - N He
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Z An
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - R Yu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - C Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Y Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Y Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - X Fang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - J Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Ji Z, Wu S, Xu Y, Qi J, Su X, Shen L. Obesity Promotes EAE Through IL-6 and CCL-2-Mediated T Cells Infiltration. Front Immunol 2019; 10:1881. [PMID: 31507583 PMCID: PMC6718738 DOI: 10.3389/fimmu.2019.01881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Growing evidence suggests that obesity is associated with the susceptibility and disease severity of multiple sclerosis. The chronic inflammation induced by obesity is believed to contribute to this process. However, the immune mechanisms connecting obesity to the prevalence and pathogenesis of MS are poorly defined. In this study, we show that high fat diet (HFD)-induced obese mice developed an exacerbated EAE as indicated by higher clinical scores and more severe pathological changes in spinal cord than the control mice fed with normal diet (ND), following immunization with myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. The exacerbation of EAE in HFD mice was associated with enhanced microglial activation and increased expansion of Th1 and Th17 cells. The HFD mice also showed aggravated disease in an adoptive T cell transfer EAE model. Mechanistically, HFD augmented the expression level of IL-6 and CCL-2 both in serum and brain, and blockade of IL-6 and CCL-2 signal ameliorated EAE with reduced T cells infiltration in CNS. Taken together, our results suggest that obesity promotes CNS inflammation in EAE through IL-6 and CCL-2 mediated the inflammatory cells infiltration.
Collapse
Affiliation(s)
- Zhe Ji
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaru Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Overweight/obesity affects histological features and inflammatory gene signature of synovial membrane of Rheumatoid Arthritis. Sci Rep 2019; 9:10420. [PMID: 31320744 PMCID: PMC6639364 DOI: 10.1038/s41598-019-46927-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Overweight/obesity influence disease burden and clinical outcome of Rheumatoid Arthritis (RA). The impact of overweight/obesity on synovial tissue (ST) inflammation is largely unknown. Here, we investigated the histological and transcriptional signature of ST obtained from RA in different disease phases (disease onset, failure to first-line conventional DMARDs and in sustained clinical and ultrasound remission) finding that overweight/obese DMARDs naive RA showed higher likelihood of follicular synovitis, higher IHC scores for sublining inflammatory cells (CD68+, CD21+ and CD20+) and higher IL-1RA plasma levels than normal weight RA. Regardless to the synovitis pattern, overweight/obese DMARDs naive RA showed a worse clinical response to “Treat-to-target” (T2T) than normal weight RA at 6 and 12 months follow-up. Conversely, MTX-IR RA did not show significant differences in synovial inflammation based on BMI category. Overweight/obese RA in stable clinical and US remission showed higher degree of residual synovitis in terms of sublining CD68+, CD20+ cells and lining and sublining CD3+ compared to normal weight RA. Finally, gene expression profile analysis revealed that ST of overweight/obese DMARDs naive RA is enriched by CCL3 and MyD88 compared to normal weight RA in sustained disease remission, the latter correlating with BMI and IHC scores for synovial CD68+ cells. These findings suggest that indeed overweight/obese RA show higher degree of synovitis at disease onset and after remission achievement that influences the response rate to T2T and should be considered within the management of patients with RA.
Collapse
|
16
|
Taghadosi M, Samimi Z, Assar S, Salahshoor MR, Jalili C. Plasma Leptin Does Not Reflect the Effect of High Body Mass Index on Disease Activity in Rheumatoid Arthritis. Immunol Invest 2019; 49:32-45. [PMID: 31223038 DOI: 10.1080/08820139.2019.1631844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: The effect of obesity on disease severity in rheumatoid arthritis (RA) remains controversial. Adipocytes secrete pro-inflammatory cytokines and adipokines which may contribute to RA disease activity. The goal of the present study is to address the association between body mass index (BMI) with plasma levels of leptin, pro-inflammatory cytokines, and RA disease severity.Methods: Fifty RA patients (20 newly diagnosed and 30 under treatment) as well as 30 age- and sex-matched healthy subjects were included in this survey. The plasma levels of leptin and pro-inflammatory cytokines, including TNF-α and IL-6, were measured, and the results were compared among the patients in the three different categories of BMI, including <25, ≥25-30, and ≥30.Results: In our study, a significant positive correlation was observed between disease activity score-28 (DAS-28) and BMI in overweight (OW) RA patients (p = .036 r = 0.440). The plasma levels of leptin were significantly higher in patients group, compared to healthy subjects (p < .05); moreover, leptin levels were significantly higher in OW and obese patients compared to RA patients with normal BMI (p = .011, p = .001, respectively) and also BMI had positive correlation with leptin concentrations just in the newly diagnosed patients (p < .0001, r = 0.748). There was no correlation between leptin and DAS-28. The plasma IL-6 and TNF-α did not show significant differences between RA patients and healthy subjects, and also the plasma leptin did not have any correlation with plasma levels of IL-6 and TNF-α.Conclusion: BMI contribution to RA disease severity is independent of systemic levels of leptin and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mahdi Taghadosi
- Assistant Professor in Department of Immunology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Student Research Committee, Immunology Department, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of medical sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Professor of Medical Biology Research Center, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
|
18
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a multisystem disease of unknown cause. Obesity can affect many physiological factors. The relationship between obesity and sarcoidosis is unclear, and can been described as posing a 'chicken and egg' scenario for the patient as it is not always clear whether it is a consequence of, or a risk factor for any disease. The purpose of this review is to examine the dual roles of obesity on sarcoidosis morbidity and the incidence. RECENT FINDINGS Obesity magnifies the symptoms of sarcoidosis and corticosteroid therapy increases BMI. Prospective epidemiologic studies started to explore the role of obesity as a potential risk factor for sarcoidosis. Three studies in the United States, and one study in Denmark, have demonstrated significantly increased risks of sarcoidosis among obese compared with nonobese patients; risk estimates ranged from 1.42 [95% confidence interval (CI), 1.07-1.89] to 3.59 (95% CI, 2.31-5.57). SUMMARY Obesity can be both a consequence of sarcoidosis treatment, and a contributor to disease risk likely through the pro-inflammatory environment of obesity. Prospective epidemiologic cohort studies are needed to explore the cause of sarcoidosis and insight into possible avenues of treatment development and prevention.
Collapse
|
19
|
Skoczyńska M, Świerkot J. The role of diet in rheumatoid arthritis. Reumatologia 2018; 56:259-267. [PMID: 30237632 PMCID: PMC6142028 DOI: 10.5114/reum.2018.77979] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic connective tissue disease which develops in the course of an autoimmune inflammatory process triggered by environmental factors in a genetically predisposed person. One of the environmental factors is the diet. RA patients' adherence to a healthy diet remains low, despite plentiful data confirming positive effects of some foods, e.g. fish rich in n-3 polyunsaturated fatty acids (PUFAs), as well as the negative influence of unhealthy eating patterns, such as high consumption of fats and sugars, on RA incidence, activity and treatment response. In this review, we present current knowledge on the role of diet in rheumatoid arthritis, including dietary factors' preventive/promoting influence on RA development, as well as their impact on RA activity. We hope this article will aid and encourage clinicians to recommend a relevant dietary intervention to their RA patients.
Collapse
Affiliation(s)
- Marta Skoczyńska
- Department and Clinic of Rheumatology and Internal Medicine, Wrocław Medical Hospital, Wrocław Medical University, Poland
| | - Jerzy Świerkot
- Department and Clinic of Rheumatology and Internal Medicine, Wrocław Medical Hospital, Wrocław Medical University, Poland
| |
Collapse
|
20
|
Tolusso B, Gigante MR, Alivernini S, Petricca L, Fedele AL, Di Mario C, Aquilanti B, Magurano MR, Ferraccioli G, Gremese E. Chemerin and PEDF Are Metaflammation-Related Biomarkers of Disease Activity and Obesity in Rheumatoid Arthritis. Front Med (Lausanne) 2018; 5:207. [PMID: 30123797 PMCID: PMC6085446 DOI: 10.3389/fmed.2018.00207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: Obesity is a risk factor for Rheumatoid Arthritis (RA) being associated to low grade inflammation. This study aimed to determine whether PEDF and Chemerin are biomarkers of inflammation related to fat accumulation in RA and to investigate whether weight loss associates with clinical disease improvement through the modification of fat-related biomarkers in overweight/obese RA with low-moderate disease. Participants and Methods: Two-hundred and thirty RA patients were enrolled, of whom 176 at disease onset treated according to a treat-to-target strategy (T2T) and 54 overweight/obese RA in stable therapy and low-moderate disease activity. Gene expression of adipokines, interleukin-6 and their receptors were examined in adipose tissue from obese RA. Obese RA with low-moderate disease activity underwent low-calories diet aiming to Body Mass Index (BMI) reduction >5%, maintaining RA therapy unchanged. Chemerin, PEDF and Interleukin-6 plasma values were assessed by ELISA and disease activity was evaluated. Results: At RA onset, PEDF and Chemerin plasma values correlated with BMI (p < 0.001) but only Chemerin plasma values correlated with disease activity (p < 0.001). After adopting a T2T strategy, Chemerin arose as an independent factor associated with remission in early RA [OR(95%CIs):0.49(0.25–0.97)]. Moreover, after low-calories diet, RA with low-moderate disease activity reaching BMI reduction ≥5% (62.6%) at 6 months had significant decrease of PEDF (p < 0.05) and Chemerin (p < 0.05) plasma values, in parallel with the improvement in disease activity. Conclusions: PEDF and Chemerin arose as biomarkers of obesity and metaflammation respectively, providing a link between chronic inflammation and excess of body weight in RA. Therefore, BMI reduction of at least 5% in obese RA allowed better disease control without modifying RA treatment.
Collapse
Affiliation(s)
- Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Barbara Aquilanti
- Service of Dietary and Human Nutrition, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Rosaria Magurano
- Service of Psychology and Psychotherapy, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
21
|
Impact of obesity on autoimmune arthritis and its cardiovascular complications. Autoimmun Rev 2018; 17:821-835. [PMID: 29885537 PMCID: PMC9996646 DOI: 10.1016/j.autrev.2018.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Obesity can instigate and sustain a systemic low-grade inflammatory environment that can amplify autoimmune disorders and their associated comorbidities. Metabolic changes and inflammatory factors produced by the adipose tissue have been reported to aggravate autoimmunity and predispose the patient to cardiovascular disease (CVD) and metabolic comorbidities. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are autoimmune arthritic diseases, often linked with altered body mass index (BMI). Severe joint inflammation and bone destruction have a debilitating impact on the patient's life; there is also a staggering risk of cardiovascular morbidity and mortality. Furthermore, these patients are at risk of developing metabolic symptoms, including insulin resistance resulting in type 2 diabetes mellitus (T2DM). In addition, arthritis severity, progression and response to therapy can be markedly affected by the patient's BMI. Hence, a complex integrative pathogenesis interconnects autoimmunity with metabolic and cardiovascular disorders. This review aims to shed light on the network that connects obesity with RA, PsA, systemic lupus erythematosus and Sjӧgren's syndrome. We have focused on clarifying the mechanism by which obesity affects different cell types, inflammatory factors and traditional therapies in these autoimmune disorders. We conclude that to further optimize arthritis therapy and to prevent CVD, it is imperative to uncover the intricate relation between obesity and arthritis pathology.
Collapse
|
22
|
Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, Liu X, Shao Y, Zhao C, Pan J, Xu S, Zhang Y, Xie D, Cai D, Bai X. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis 2018; 77:1524-1534. [DOI: 10.1136/annrheumdis-2018-213450] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
ObjectivesTo investigate the roles and regulatory mechanisms of synovial macrophages and their polarisation in the development of osteoarthritis (OA).MethodsSynovial tissues from normal patients and patients with OA were collected. M1 or M2-polarised macrophages in synovial tissues of patients with OA and OA mice were analysed by immunofluorescence and immunohistochemical staining. Mice with tuberous sclerosis complex 1 (TSC1) or Rheb deletion specifically in the myeloid lineage were generated and subjected to intra-articular injection of collagenase (collagenase-induced osteoarthritis, CIOA) and destabilisation of the medial meniscus (DMM) surgery to induce OA. Cartilage damage and osteophyte size were measured by Osteoarthritis Research Society International score and micro-CT, respectively. mRNA sequencing was performed in M1 and control macrophages. Mice and ATDC5 cells were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in OA.ResultsM1 but not M2-polarised macrophages accumulated in human and mouse OA synovial tissue. TSC1 deletion in the myeloid lineage constitutively activated mechanistic target of rapamycin complex 1 (mTORC1), increased M1 polarisation in synovial macrophages and exacerbated experimental OA in both CIOA and DMM models, while Rheb deletion inhibited mTORC1, enhanced M2 polarisation and alleviated CIOA in mice. The results show that promoting the macrophage M1 polarisation leads to exacerbation of experimental OA partially through secretion of Rspo2 and activation of β-catenin signalling in chondrocytes.ConclusionsSynovial macrophage M1 polarisation exacerbates experimental CIOA partially through Rspo2. M1 macrophages and Rspo2 are potential therapeutic targets for OA treatment.
Collapse
|
23
|
Luo Y, Blackledge WC. Microbiome-based mechanisms hypothesized to initiate obesity-associated rheumatoid arthritis. Obes Rev 2018; 19:786-797. [PMID: 29426061 DOI: 10.1111/obr.12671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023]
Abstract
Worldwide, the growing obesity pandemic contributes to a range of chronic diseases. Recent epidemiological studies have suggested an association between obesity and the development of rheumatoid arthritis (RA), particularly among young women, whereby pro-inflammatory effects of adipokines provide one explanatory hypothesis. Yet, recent clinical and laboratory-based studies provide emerging evidence indicating microbiome involvement in RA initiation and development, including anti-citrullinated antibody formation and Th17 cell activation. Obesity and RA-associated microbiome alteration might provide a plausible link to address the impact of obesity to RA pathogenesis. The microbiome's influence on RA development - at mucosal as well as articular sites - and relevant pathophysiological mechanisms regarding obesity's association with RA are presented herein to discuss this hypothesis and aid understanding of obesity's role in RA development.
Collapse
Affiliation(s)
- Y Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
24
|
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Department of Internal Medicine, Postgraduate School of Rheumatology, University of Genova, Genova, Italy
| | - Elena Nikiphorou
- Academic Rheumatology Department, King's College London & The Whittington Hospital NHS Trust, London, UK
| |
Collapse
|
25
|
Nagata Y, Yamamoto T, Hayashi M, Hayashi S, Kadowaki M. Improvement of Therapeutic Efficacy of Oral Immunotherapy in Combination with Regulatory T Cell-Inducer Kakkonto in a Murine Food Allergy Model. PLoS One 2017; 12:e0170577. [PMID: 28107533 PMCID: PMC5249179 DOI: 10.1371/journal.pone.0170577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022] Open
Abstract
Oral immunotherapy (OIT) has been considered a promising approach for food allergies (FAs). However, the current OIT strategy is limited in terms of the long-term efficacy and safety. We have previously demonstrated that kakkonto, a traditional Japanese herbal medicine, suppresses the occurrence of allergic symptoms in a murine model of ovalbumin (OVA)-induced FA, which is attributed to the induction of the Foxp3+ CD4+ regulatory T cells. In this study, we established an OIT model using the FA mice with already established allergic symptoms and determined whether kakkonto could improve the efficacy of OIT. The OIT method consisted of initially administrating a very small amount of OVA and slowly increasing the amount. Allergic symptoms decreased in the OIT-treated FA mice. OIT significantly downregulated Th2 immune response-related gene expression in the FA mouse colon, and decreased the level of mouse mast cell protease-1, a marker of mast cell degranulation in the FA mouse plasma. Moreover, the concomitant use of kakkonto significantly enhanced the effectiveness of OIT on the allergic symptoms, and the combination therapy further suppressed the Th2 immune responses and the mast cell degranulation. In addition, OIT significantly increased the population of Foxp3+ CD4+ regulatory T cells in the FA mouse colon, and this population was further increased by OIT in combination with kakkonto. Furthermore, the combined therapy with kakkonto reduced the expression of RA-degrading enzyme CYP26B1 mRNA in the FA mouse colon. These findings indicated that the combination of OIT with kakkonto represents a promising approach for FA treatment.
Collapse
Affiliation(s)
- Yuka Nagata
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- * E-mail:
| | - Michie Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|