1
|
Zhong Z, Gao Y, He C, Li W, Sang L, Huang Y, Chen X, Xie M, Zhang C, Yu Y, Zhu T, Sun J. Nintedanib improves bleomycin-induced pulmonary fibrosis by inhibiting the Clec7a/SPP1 pathway in interstitial macrophages. Cell Signal 2025; 128:111635. [PMID: 39892726 DOI: 10.1016/j.cellsig.2025.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a terminal lung disease with high mortality rate. Although Nintedanib (Nin) is an effective treatment for IPF, its precise mechanism of action remains unclear. In this study, we performed an integrated analysis of single-cell sequencing and RNA-seq data from lung tissues of both fibrotic and Nin-treated fibrotic mice to uncover new therapeutic mechanisms of Nin in IPF. Our results revealed an increase in interstitial macrophages following bleomycin (BLM) treatment. We used Monocle2, Cellchat, and in vivo experiments to demonstrate that Nin can inhibit Clec7a in interstitial macrophages, thereby suppressing the SPP1-mediated profibrotic pathway. Additionally, we utilized Scenic to predict transcription factors and identified NFκB as a major transcription factor in interstitial macrophages. In the in vitro experiments, we found that inhibiting Clec7a improved the secretion of SPP1 by M2 macrophages through the NFκB pathway. In subsequent in vivo experiments, we found that inhibiting of Clec7a improves pulmonary fibrosis through the NFκB/SPP1 pathway, and Nin alleviated BLM-induced pulmonary fibrosis by inhibiting Clec7a in interstitial macrophages. In summary, our study indicates that interstitial macrophages are upregulated in pulmonary fibrosis, and Nin reduces fibrosis by inhibiting Clec7a in interstitial macrophages, which in turn diminishes the NFκB /SPP1 pathway. These findings provided a new perspective on the mechanism of action of Nin in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Zuoquan Zhong
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Yefei Gao
- Shaoxing People's Hospital, Shaoxing, China
| | - Chunxiao He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Weijie Li
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Le Sang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Yunlei Huang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Xing Chen
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyao Xie
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Yuefang Yu
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China.
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
2
|
Volkmann ER, Tashkin DP, Leng M, Kim GHJ, Goldin J, Harui A, Roth MD. Biological correlates of radiological features of systemic sclerosis interstitial lung disease. ERJ Open Res 2025; 11:00596-2024. [PMID: 39902269 PMCID: PMC11788817 DOI: 10.1183/23120541.00596-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 02/05/2025] Open
Abstract
Background and objectives The extent and pattern of radiological features (e.g. fibrosis and ground glass) can influence treatment approaches for systemic sclerosis-related interstitial lung disease (SSc-ILD). However, the pathobiology underlying these radiological features is poorly understood and warrants further investigation. Methods 68 proteins were measured in bronchoalveolar lavage (BAL) fluid from 103 SSc-ILD participants in Scleroderma Lung Study I. Quantitative image analysis calculated the extent of fibrosis (QLF) and ground-glass opacity (QGG) from concurrent high-resolution computed tomography (HRCT) scans. The relationship between BAL proteins and quantitative HRCT scores was assessed by univariate and multivariate analyses. Results QLF scores correlated weakly with the extent of QGG, suggesting two distinct processes. In a univariate analysis, 25 proteins from several biological pathways correlated with QLF scores, including profibrotic factors, tissue remodelling proteins, proteins involved in monocyte/macrophage migration and activation, and proteins linked to inflammation and immune regulation. In contrast, QGG scores correlated with only six proteins, of which four were unique and related to granulocyte activation, mobilisation of bone marrow mesenchymal stem cells and activation of T-cells, B-cells, macrophages and eosinophils. In the multivariate models, interleukin-4, CCL7, receptor activator of nuclear factor-κB and tumour necrosis factor-α were independently associated with QLF, whereas interferon-γ was independently associated with QGG. Interpretation QLF and QGG represent distinct radiological features of SSc-ILD, a conclusion reinforced by the presence of different biological pathways present within BAL fluid that associate with each. The identified proteins and related biological pathways may represent important therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth R. Volkmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Donald P. Tashkin
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mei Leng
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Grace Hyun J. Kim
- Department of Radiology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Goldin
- Department of Radiology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Airi Harui
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Michael D. Roth
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Viswanathan VK, Ghoshal AG, Mohan A, Patil K, Bhargave C, Choudhari S, Mehta S. Patient Profile-Based Management with Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Pulm Ther 2024; 10:377-409. [PMID: 39340742 PMCID: PMC11573957 DOI: 10.1007/s41030-024-00271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A severe and progressive interstitial lung disease (ILD) known as idiopathic pulmonary fibrosis (IPF) has an unknown etiology with poorly defined mechanisms of development. Among the currently prescribed pharmacological interventions for IPF, nintedanib demonstrates the ability to decelerate the deterioration of lung function and yield positive clinical outcomes. Multiple randomized placebo-controlled trials have confirmed the efficacy and acceptable safety profile of nintedanib. Real-world evidence studies also support the use of nintedanib in IPF, being an efficient and well-tolerated treatment option. It has the potential to stabilize the disease progression in patients with ILD. Patients with IPF frequently have comorbidities like diabetes and hypertension, which can exacerbate the course of disease, reduce quality of life, and decrease treatment adherence. For well-informed decision-making, it is important for healthcare professionals to recognize the position of nintedanib therapy in IPF with comorbidities. The gastrointestinal adverse effects, notably diarrhea, dominate the nintedanib safety profile. These can be effectively controlled by closely monitoring side effects, administering anti-diarrheal and anti-emetic drugs, reducing the nintedanib dose, and discontinuing it in case of severe symptoms with an option to reintroduce the treatment after side effects subside. Symptomatic interventions and monitoring of liver enzymes may reduce the occurrence of permanent treatment discontinuations.
Collapse
Affiliation(s)
| | - Aloke G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ketaki Patil
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India.
| | - Chaitanya Bhargave
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Sanjay Choudhari
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Suyog Mehta
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| |
Collapse
|
5
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
6
|
Goldman N, Ong VH, Denton CP. Pathogenesis of interstitial lung disease in systemic sclerosis. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:141-151. [PMID: 39439973 PMCID: PMC11492824 DOI: 10.2478/rir-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
Interstitial lung disease (ILD) is a frequent important complication of systemic sclerosis (SSc). Factors relevant to aetiopathogenesis of SSc are also central to SSc-ILD. Severity of SSc-ILD is variable but it has a major impact on morbidity and mortality. Factors determining SSc-ILD susceptibility reflect the genetic architecture of SSc and are increasingly being defined. There are aspects linked to immunogenomics and non-immunological genetic factors that may be less conserved and underlie some of the geographical and racial diversity of SSc. These associations may also underlie important links between autoantibody subgroups and patient level risk of SSc-ILD. Examination of blood and tissue samples and observational clinical research together with integrated analysis of in vitro and in vivo preclinical models have elucidated pathogenic mechanisms of SSc-ILD. These have confirmed the potential importance of immune mechanisms in the innate and adaptive immune systemic as well as a significant role for profibrotic pathways especially transforming growth factor beta (TGFbeta) and its regulators and downstream mediators. Recent analysis of clinical trial cohorts as well as integrated and multilevel high dimensional analysis of bio-samples has shed further light on SSc-ILD. This is likely to underpin future advances in stratified and precision medicine for treatment of SSc.
Collapse
Affiliation(s)
- Nina Goldman
- Center for Rheumatology, University College London, London, UK
| | - Voon H Ong
- Center for Rheumatology, University College London, London, UK
| | | |
Collapse
|
7
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
8
|
Lauer D, Magnin CY, Kolly LR, Wang H, Brunner M, Chabria M, Cereghetti GM, Gabryś HS, Tanadini-Lang S, Uldry AC, Heller M, Verleden SE, Klein K, Sarbu AC, Funke-Chambour M, Ebner L, Distler O, Maurer B, Gote-Schniering J. Radioproteomics stratifies molecular response to antifibrotic treatment in pulmonary fibrosis. JCI Insight 2024; 9:e181757. [PMID: 39012714 PMCID: PMC11383602 DOI: 10.1172/jci.insight.181757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed 2 distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug-related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing patients with ILD, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a noninvasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- David Lauer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cheryl Y Magnin
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Luca R Kolly
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Huijuan Wang
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matthias Brunner
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mamta Chabria
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Grazia M Cereghetti
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hubert S Gabryś
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Stijn E Verleden
- Department of ASTARC, University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Adela-Cristina Sarbu
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
| | - Manuela Funke-Chambour
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Radiology, Cantonal Hospital Lucerne, Luzern, Switzerland
- Institute for Radiology, Hirslanden Bern Klinik Beau-Site, Bern, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Janine Gote-Schniering
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Zheng S, Liu Y. Progress in the Study of Fra-2 in Respiratory Diseases. Int J Mol Sci 2024; 25:7143. [PMID: 39000247 PMCID: PMC11240912 DOI: 10.3390/ijms25137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.
Collapse
Affiliation(s)
- Shuping Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
10
|
Romano E, Rosa I, Fioretto BS, Manetti M. Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines 2024; 12:1331. [PMID: 38927538 PMCID: PMC11201654 DOI: 10.3390/biomedicines12061331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
In systemic sclerosis (SSc, or scleroderma), defective angiogenesis, clinically manifesting with abnormal capillary architecture and severe capillary reduction, represents a hallmark of early-stage disease, usually preceding the onset of tissue fibrosis, and is caused by several cellular and molecular mechanisms affecting microvascular endothelial cells with different outcomes. Indeed, once damaged, endothelial cells can be dysfunctionally activated, thus becoming unable to undergo angiogenesis and promoting perivascular inflammation. They can also undergo apoptosis, transdifferentiate into profibrotic myofibroblasts, or acquire a senescence-associated secretory phenotype characterized by the release of exosomes and several profibrotic and proinflammatory mediators. In this narrative review, we aimed to give a comprehensive overview of recent studies dealing with the cellular and molecular mechanisms underlying SSc defective angiogenesis and the related endothelial cell dysfunctions, mainly the endothelial-to-mesenchymal transition process. We also discussed potential novel vascular treatment strategies able to restore the angiogenic process and reduce the endothelial-to-mesenchymal transition in this complex disease.
Collapse
Affiliation(s)
- Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
11
|
Grandi A, Ferrini E, Zoboli M, Buseghin D, Pennati F, Khalajzeyqami Z, Ciccimarra R, Villetti G, Stellari FF. A mouse model of progressive lung fibrosis with cutaneous involvement induced by a combination of oropharyngeal and osmotic minipump bleomycin delivery. Am J Physiol Lung Cell Mol Physiol 2024; 326:L736-L753. [PMID: 38651940 PMCID: PMC11381007 DOI: 10.1152/ajplung.00408.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Systemic sclerosis (SSc) with interstitial lung disease (SSc-ILD) lacks curative pharmacological treatments, thus necessitating effective animal models for candidate drug discovery. Existing bleomycin (BLM)-induced SSc-ILD mouse models feature spatially limited pulmonary fibrosis, spontaneously resolving after 28 days. Here, we present an alternative BLM administration approach in female C57BL/6 mice, combining oropharyngeal aspiration (OA) and subcutaneous mini-pump delivery (pump) of BLM to induce a sustained and more persistent fibrosis, while retaining stable skin fibrosis. A dose-finding study was performed with BLM administered as 10 µg (OA) +80 mg/kg (pump) (10 + 80), 10 + 100, and 15 + 100. Forty-two days after OA, micro-computed tomography (micro-CT) imaging and histomorphometric analyses showed that the 10 + 100 and 15 + 100 treatments induced significant alterations in lung micro-CT-derived readouts, Ashcroft score, and more severe fibrosis grades compared with saline controls. In addition, a marked reduction in hypodermal thickness was observed in the 15 + 100 group. A time-course characterization of the BLM 15 + 100 treatment at days 28, 35, and 42, including longitudinal micro-CT imaging, revealed progressing alterations in lung parameters. Lung histology highlighted a sustained fibrosis accompanied by a reduction in hypodermis thickness throughout the explored time-window, with a time-dependent increase in fibrotic biomarkers detected by immunofluorescence analysis. BLM-induced alterations were partly mitigated by Nintedanib treatment. Our optimized BLM delivery approach leads to extensive and persistent lung fibrotic lesions coupled with cutaneous fibrotic alterations: it thus represents a significant advance compared with current preclinical models of BLM-induced SSc-ILD.NEW & NOTEWORTHY This study introduces an innovative approach to enhance the overall performance of the mouse bleomycin (BLM)-induced model for systemic sclerosis with interstitial lung disease (SSc-ILD). By combining oropharyngeal aspiration and subcutaneous mini-pump delivery of BLM, our improved model leads to sustained lung fibrosis and stable skin fibrosis in female C57BL/6 mice. The optimized 15 + 100 treatment results in extensive and persistent lung fibrotic lesions and thus represents a significant improvement over existing preclinical models of BLM-induced SSc-ILD.
Collapse
Affiliation(s)
- Andrea Grandi
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Erica Ferrini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Davide Buseghin
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
- ANTHEM (AdvaNced Technologies for Human-centrEd Medicine), Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Zahra Khalajzeyqami
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | | |
Collapse
|
12
|
Zhang MD, Huang WY, Luo JY, He RQ, Huang ZG, Li JD, Qin F, Chen G, Lei L. The 'whole landscape' of research on systemic sclerosis over the past 73 years. Autoimmun Rev 2024; 23:103538. [PMID: 38556034 DOI: 10.1016/j.autrev.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE This study aimed to analyse existing research on systemic sclerosis (SSc) conducted over the past 73 years to develop an essential reference for a comprehensive and objective understanding of this field of inquiry. METHODS Using the Web of Science Core Collection, PubMed, and Scopus databases as data sources for the bibliometric analysis, we searched for published literature related to SSc over the past 73 years. The Bibliometrix package was used to analyse key bibliometric indicators, such as annual publication volume, countries, journals, author contributions, and research hotspots. RESULTS From 1970 to 2022, the number of SSc articles steadily increased, reaching its peak in 2020-2022, with approximately 1200 papers published in each of these three years. Matucci-Cerinic et al.'s team published the most articles (425). The United States (11,282), Italy (7027), and France (5226) were the most predominant contexts. The most influential scholars in the field were Denton, Leroy, Steen, and Khanna, with H-indices of 86, 84, and 83, respectively. Arthritis and Rheumatism was the most influential journal in this field (H-index 142). High-frequency keywords in the SSc field included fibrosis (738), inflammation (242), vasculopathy (145), fibroblasts (120), and autoantibodies (118) with respect to pathogenesis, and interstitial lung disease (ILD, 708), pulmonary arterial hypertension (PAH, 696), and Raynaud's phenomenon (326) with regards to clinical manifestations. CONCLUSION In the past three years, SSc research has entered a period of rapid development, mainly driven by research institutions in Europe and the United States. The most influential journal has been Arthritis and Rheumatism, and autoimmune aspects, vasculopathy, fibrogenesis, PAH, and ILD remain the focus of current research and indicate trends in future research.
Collapse
Affiliation(s)
- Meng-Di Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Fang Qin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China.
| | - Ling Lei
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, 530021 Nanning, PR China.
| |
Collapse
|
13
|
Soldano S, Smith V, Montagna P, Gotelli E, Campitiello R, Pizzorni C, Paolino S, Sulli A, Cere A, Cutolo M. Nintedanib downregulates the profibrotic M2 phenotype in cultured monocyte-derived macrophages obtained from systemic sclerosis patients affected by interstitial lung disease. Arthritis Res Ther 2024; 26:74. [PMID: 38509595 PMCID: PMC10953168 DOI: 10.1186/s13075-024-03308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterized by vasculopathy and progressive fibrosis of skin and several internal organs, including lungs. Macrophages are the main cells involved in the immune-inflammatory damage of skin and lungs, and alternatively activated (M2) macrophages seem to have a profibrotic role through the release of profibrotic cytokines (IL10) and growth factors (TGFβ1). Nintedanib is a tyrosine kinase inhibitor targeting several fibrotic mediators and it is approved for the treatment of SSc-related interstitial lung disease (ILD). The study aimed to evaluate the effect of nintedanib in downregulating the profibrotic M2 phenotype in cultured monocyte-derived macrophages (MDMs) obtained from SSc-ILD patients. METHODS Fourteen SSc patients, fulfilling the 2013 ACR/EULAR criteria for SSc, 10 SSc patients affected by ILD (SSc-ILD pts), 4 SSc patients non affected by ILD (SSc pts no-ILD), and 5 voluntary healthy subjects (HSs), were recruited at the Division of Clinical Rheumatology-University of Genova, after obtaining Ethical Committee approval and patients' informed consent. Monocytes were isolated from peripheral blood, differentiated into MDMs, and then maintained in growth medium without any treatment (untreated cells), or treated with nintedanib (0.1 and 1µM) for 3, 16, and 24 h. Gene expression of macrophage scavenger receptors (CD204, CD163), mannose receptor-1 (CD206), Mer tyrosine kinase (MerTK), identifying M2 macrophages, together with TGFβ1 and IL10, were evaluated by quantitative real-time polymerase chain reaction. Protein synthesis was investigated by Western blotting and the level of active TGFβ1 was evaluated by ELISA. Statistical analysis was carried out using non-parametric Wilcoxon test. RESULTS Cultured untreated SSc-ILD MDMs showed a significant increased protein synthesis of CD206 (p < 0.05), CD204, and MerTK (p < 0.01), together with a significant upregulation of the gene expression of MerTK and TGFβ1 (p < 0.05; p < 0.01) compared to HS-MDMs. Moreover, the protein synthesis of CD206 and MerTK and the gene expression of TGFβ1 were significantly higher in cultured untreated MDMs from SSc-ILD pts compared to MDMs without ILD (p < 0.05; p < 0.01). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly downregulated the gene expression and protein synthesis of CD204, CD206, CD163 (p < 0.05), and MerTK (p < 0.01) compared to untreated cells after 24 h of treatment. Limited to MerTK and IL10, both nintedanib concentrations significantly downregulated their gene expression already after 16 h of treatment (p < 0.05). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly reduced the release of active TGFβ1 after 24 h of treatment (p < 0.05 vs. untreated cells). CONCLUSIONS In cultured MDMs from SSc-ILD pts, nintedanib seems to downregulate the profibrotic M2 phenotype through the significant reduction of gene expression and protein synthesis of M2 cell surface markers, together with the significant reduction of TGFβ1 release, and notably MerTK, a tyrosine kinase receptor involved in lung fibrosis.
Collapse
Affiliation(s)
- Stefano Soldano
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre, Ghent, Belgium
| | - Paola Montagna
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Cere
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
14
|
Zeng C, Wang Q, Liu X, Wang K, Wang C, Ju X, Wang T, Zhou Q, Fu X, Yu J, Wang Y. Localized Administration of Bcar3 siRNA via Nano-Self-Assembly to Treat Idiopathic Pulmonary Fibrosis by Disrupting Macrophage-Fibroblast Crosstalk. Int J Nanomedicine 2024; 19:1827-1842. [PMID: 38414524 PMCID: PMC10898485 DOI: 10.2147/ijn.s444470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease characterized by chronic lung injury leading to macrophage infiltration and fibroblast activation. However, there is no effective therapeutic strategy targeting the crucial crosstalk between macrophages and fibroblasts to halt IPF progression. Methods Studies were conducted in IPF patients and fibrotic mice models to elucidate the role of Bcar3 in the pathogenesis of pulmonary fibrosis. The effect of Bcar3 on macrophage polarization, fibroblast activation, and related signaling pathways were next investigated to unravel the underlying mechanisms. Results Our study elucidates a marked increase in Bcar3 expression in lung tissues from IPF patients and fibrotic mice, recording 1.7 and 7.8-fold increases compared to control subjects, respectively. Additionally, Bcar3 was found to significantly enhance macrophage activation and fibroblast differentiation, observable in both in vivo and in vitro settings. Mechanistically, the upregulation of Bcar3 in macrophages was reliant on Stat6, while in fibroblasts, it depended on TGFβR1/Smad3. Furthermore, Bcar3 augmented IL-4/Stat6 pathway in macrophages and TGF-β/Smad3 pathway in fibroblasts, supporting a synergistic activation loop that expedited lung fibrogenesis. Notably, intratracheal injection of liposomes containing Bcar3 siRNA precisely delivered gene therapeutics to lung macrophages and fibroblasts, effectively reducing Bcar3 expression to 59% of baseline levels. Importantly, this intervention protected mice from lung fibrosis induced by either FITC or bleomycin, as well as human precision-cut lung slices against TGF-β1 stimulation. Conclusion Our study underscores the pivotal role of Bcar3 in orchestrating the macrophage-fibroblast crosstalk during pulmonary fibrosis progression. Targeting Bcar3 emerges as a novel therapeutic avenue to halt IPF progression and enhance patient prognosis.
Collapse
Affiliation(s)
- Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Qi Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xuhan Liu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Tianlai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Qing Zhou
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
15
|
Creyns B, MacKenzie B, Sa Y, Coelho AL, Christensen D, Parimon T, Windsor B, Hogaboam CM. Caveolin scaffolding domain (CSD) peptide LTI-2355 modulates the phagocytic and synthetic activity of lung derived myeloid cells in Idiopathic Pulmonary Fibrosis (IPF) and Post-acute sequelae of COVID-fibrosis (PASC-F). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569608. [PMID: 38654821 PMCID: PMC11037873 DOI: 10.1101/2023.12.01.569608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rationale The role of the innate immune system in Idiopathic Pulmonary Fibrosis (IPF) remains poorly understood. However, a functional myeloid compartment is required to remove dying cells and cellular debris, and to mediate innate immune responses against pathogens. Aberrant macrophage activity has been described in patients with Post-acute sequelae of COVID fibrosis (PASC-F). Therefore, we examined the functional and synthetic properties of myeloid cells isolated from normal donor lung and lung explant tissue from both IPF and PASC-F patients and explored the effect of LTI-2355, a Caveolin Scaffolding Domain (CSD) peptide, on these cells. Methods & Results CD45 + myeloid cells isolated from lung explant tissue from IPF and PASC-F patients exhibited an impaired capacity to clear autologous dead cells and cellular debris. Uptake of pathogen-coated bioparticles was impaired in myeloid cells from both fibrotic patient groups independent of type of pathogen highlighting a cell intrinsic functional impairment. LTI-2355 improved the phagocytic activity of both IPF and PASC-F myeloid cells, and this improvement was paired with decreased pro-inflammatory and pro-fibrotic synthetic activity. LTI-2355 was also shown to primarily target CD206-expressing IPF and PASC-F myeloid cells. Conclusions Primary myeloid cells from IPF and PASC-F patients exhibit dysfunctional phagocytic and synthetic properties that are reversed by LTI-2355. Thus, these studies highlight an additional mechanism of action of a CSD peptide in the treatment of IPF and progressive fibrotic lung disease.
Collapse
|
16
|
Ghorbani R, Hosseinzadeh S, Azari A, Taghipour N, Soleimani M, Rahimpour A, Abbaszadeh HA. The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders. Curr Stem Cell Res Ther 2024; 19:351-366. [PMID: 37073662 DOI: 10.2174/1574888x18666230418121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Azari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Yan J, Feng G, Yang Y, Zhao X, Ma L, Guo H, Chen X, Wang H, Chen Z, Jin Q. Nintedanib ameliorates osteoarthritis in mice by inhibiting synovial inflammation and fibrosis caused by M1 polarization of synovial macrophages via the MAPK/PI3K-AKT pathway. FASEB J 2023; 37:e23177. [PMID: 37688589 DOI: 10.1096/fj.202300944rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Synovial inflammation and fibrosis are important pathological changes associated with osteoarthritis (OA). Herein, we investigated if nintedanib, a drug specific for pulmonary fibrosis, plays a positive role in osteoarthritic synovial inflammation and fibrosis. We assessed the effect of nintedanib on osteoarthritic synovial inflammation and fibrosis in a mouse model of OA created by destabilization of the medial meniscus and a macrophage M1 polarization model created by stimulating RAW264.7 cells with lipopolysaccharide. Histological staining showed that daily gavage administration of nintedanib significantly alleviated articular cartilage degeneration, reduced the OARSI score, upregulated matrix metalloproteinase-13 and downregulated collagen II expression, and significantly reduced the synovial score and synovial fibrosis in a mouse OA model. In addition, immunofluorescence staining showed that nintedanib significantly decreased the number of M1 macrophages in the synovium of a mouse model of OA. In vitro results showed that nintedanib downregulated the phosphorylation levels of ERK, JNK, p38, PI3K, and AKT while inhibiting the expression of macrophage M1 polarization marker proteins (CD86, CD80, and iNOS). In conclusion, this study suggests that nintedanib is a potential candidate for OA treatment. The mechanisms of action of nintedanib include the inhibition of M1 polarization in OA synovial macrophages via the MAPK/PI3K-AKT pathway, inhibition of synovial inflammation and fibrosis, and reduction of articular cartilage degeneration.
Collapse
Affiliation(s)
- Jiangbo Yan
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Gangning Feng
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Yong Yang
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xin Zhao
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xiaolei Chen
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Hui Wang
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Zhirong Chen
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Qunhua Jin
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
19
|
Mattoo H, Bangari DS, Cummings S, Humulock Z, Habiel D, Xu EY, Pate N, Resnick R, Savova V, Qian G, Beil C, Rao E, Nestle FO, Bryce PJ, Subramaniam A. Molecular Features and Stages of Pulmonary Fibrosis Driven by Type 2 Inflammation. Am J Respir Cell Mol Biol 2023; 69:404-421. [PMID: 37369139 DOI: 10.1165/rcmb.2022-0301oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/27/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic sclerosis (SSc) is a progressive, multiorgan disease with limited treatment options. Although a recent proof-of-concept study using romilkimab or SAR156597, a bispecific IL-4/IL-13 antibody, suggests a direct role of these cytokines in the pathophysiology of SSc, their contributions to the balance between inflammation and fibrosis are unclear. Here, we determine the roles of type 2 inflammation in fibrogenesis using FRA2-Tg (Fos-related antigen 2-overexpressing transgenic) mice, which develop spontaneous, age-dependent progressive lung fibrosis. We defined the molecular signatures of inflammation and fibrosis at three key stages in disease progression, corresponding to preonset, inflammatory dominant, and fibrosis dominant biology, and revealed an early increase in cytokine-cytokine receptor interactions and antigen-processing and presentation pathways followed by enhanced Th2- and M2 macrophage-driven type 2 responses. This type 2 inflammation progressed to extensive fibrotic pathology by 14-18 weeks of age, with these gene signatures overlapping significantly with those seen in the lungs of patients with SSc with interstitial lung disease (ILD). These changes were also evident in the histopathology, which showed perivascular and peribronchiolar inflammation with prominent eosinophilia and accumulation of profibrotic M2-like macrophages followed by rapid progression to fibrosis with thickened alveolar walls with multifocal fibrotic bands and signs of interstitial pneumonia. Critically, treatment with a bispecific antibody targeting IL-4 and IL-13 during the inflammatory phase abrogated the Th2 and M2 responses and led to near-complete abrogation of lung fibrosis. These data recapitulate important features of fibrotic progression in the lungs of patients with SSc-ILD and enhance our understanding of the progressive pathobiology of SSc. This study also further establishes FRA2-Tg mice as a valuable tool for testing future therapeutic agents in SSc-ILD.
Collapse
Affiliation(s)
| | | | - Sheila Cummings
- Discovery Pathology, Translational In Vivo Models Platform, and
| | | | - David Habiel
- Immunology and Inflammation Research Therapeutic Area
| | - Ethan Y Xu
- Precision Medicine and Computational Biology
- Aspen Neuroscience, San Diego, California
| | - Nathan Pate
- Discovery Pathology, Translational In Vivo Models Platform, and
| | | | | | - George Qian
- Immunology and Inflammation Research Therapeutic Area
| | | | - Ercole Rao
- Biologics Research, Sanofi, Frankfurt, Germany; and
| | | | - Paul J Bryce
- Immunology and Inflammation Research Therapeutic Area
| | | |
Collapse
|
20
|
Suzuki M, Ototake Y, Akita A, Asami M, Ikeda N, Watanabe T, Kanaoka M, Yamaguchi Y. Periostin-An inducer of pro-fibrotic phenotype in monocytes and monocyte-derived macrophages in systemic sclerosis. PLoS One 2023; 18:e0281881. [PMID: 37531393 PMCID: PMC10395906 DOI: 10.1371/journal.pone.0281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 08/04/2023] Open
Abstract
Enhanced circulating blood periostin levels positively correlate with disease severity in patients with systemic sclerosis (SSc). Monocytes/macrophages are predominantly associated with the pathogenesis of SSc, but the effect of periostin on immune cells, particularly monocytes and macrophages, still remains to be elucidated. We examined the effect of periostin on monocytes and monocyte-derived macrophages (MDM) in the pathogenesis of SSc. The modified Rodnan total skin thickness score in patients with dcSSc was positively correlated with the proportion of CD80-CD206+ M2 cells. The proportion of M2 macrophages was significantly reduced in rPn-stimulated MDMs of HCs compared to that of SSc patients. The mRNA expression of pro-fibrotic cytokines, chemokines, and ECM proteins was significantly upregulated in rPn-stimulated monocytes and MDMs as compared to that of control monocytes and MDMs. A similar trend was observed for protein expression in the respective MDMs. In addition, the ratio of migrated cells was significantly higher in rPn-stimulated as compared to control monocytes. These results suggest that periostin promotes inflammation and fibrosis in the pathogenesis of SSc by possible modulation of monocytes/macrophages.
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
21
|
Tseng CC, Sung YW, Chen KY, Wang PY, Yen CY, Sung WY, Wu CC, Ou TT, Tsai WC, Liao WT, Chen CJ, Lee SC, Chang SJ, Yen JH. The Role of Macrophages in Connective Tissue Disease-Associated Interstitial Lung Disease: Focusing on Molecular Mechanisms and Potential Treatment Strategies. Int J Mol Sci 2023; 24:11995. [PMID: 37569370 PMCID: PMC10419312 DOI: 10.3390/ijms241511995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pin-Yi Wang
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Yi Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
22
|
Ninagawa K, Kato M, Tsuneta S, Ishizaka S, Ujiie H, Hisada R, Kono M, Fujieda Y, Ito YM, Atsumi T. Beneficial effects of nintedanib on cardiomyopathy in patients with systemic sclerosis: a pilot study. Rheumatology (Oxford) 2023; 62:2550-2555. [PMID: 36458921 DOI: 10.1093/rheumatology/keac674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES Nintedanib is an inhibitor of tyrosine kinases that has been shown to slow the progression of interstitial lung disease (ILD), including ILD associated with SSc. The aim of this study was to explore the effect of nintedanib on cardiomyopathy associated with systemic sclerosis (SSc). METHODS Twenty consecutively hospitalized patients with SSc-ILD were enrolled and prospectively followed. The rate of change at 6 months in cardiac magnetic resonance (CMR) parametric mapping, including myocardial extracellular volume, was primarily evaluated. Other endpoints included changes in CMR functional parameters, echocardiographic parameters, modified Rodnan skin score, serum biomarkers and pulmonary function test. RESULTS Nintedanib was administered in 10 patients, whereas the other 10 were treated without nintedanib or watched, according to ILD severity and progression. Baseline values of CMR parametric mapping were not different between the two groups. The rate of change at 6 months in myocardial extracellular volume was highly different, almost divergent, between the nintedanib group and the control group (-1.62% vs +2.00%, P = 0.0001). Among other endpoints, the change in right ventricular ejection fraction was significantly different between the two groups (P = 0.02), with a preferential change in the nintedanib group. CONCLUSION Our data indicate beneficial signals of nintedanib on cardiomyopathy associated with SSc. The anti-fibrotic effect of nintedanib might not be limited to the lung.
Collapse
Affiliation(s)
- Keita Ninagawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satonori Tsuneta
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Suguru Ishizaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
25
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
26
|
Bruni C, Campochiaro C, de Vries-Bouwstra JK. Interstitial Lung Disease: How Should Therapeutics Be Implemented? Rheum Dis Clin North Am 2023; 49:279-293. [PMID: 37028835 DOI: 10.1016/j.rdc.2023.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Systemic sclerosis-interstitial lung disease (SSc-ILD) is a major complication of SSc resulting in important morbidity and mortality. Next to cyclophosphamide and mycophenolate mofetil, tocilizumab and nintedanib have proven efficacy in the treatment of SSc-ILD. The highly variable course of SSc-ILD, the complexity in determining and predicting the progression of SSc-ILD, and the diversity of treatment options for SSc-ILD, pose many challenges for everyday clinical practice. In this review, currently available evidence for monitoring and treatment of SSc-ILD is summarized and areas where additional evidence is highly desirable are discussed.
Collapse
Affiliation(s)
- Cosimo Bruni
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 24, Zurich 8006, Switzerland; Division of Rheumatology, Department of Experimental Medicine, Careggi University Hospital - University of Florence, Florence, Italy.
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Via Olgettina 60, Milan, Italy. https://twitter.com/CampochiaroCor
| | - Jeska K de Vries-Bouwstra
- Department of Rheumatology, Leiden University Hospital, Postal Zone C1-R, PO Box 9600, Leiden 2300 RC, the Netherlands
| |
Collapse
|
27
|
Löfdahl A, Nybom A, Wigén J, Dellgren G, Brunnström H, Wenglén C, Westergren-Thorsson G. Pulmonary 5-HT 2B receptor expression in fibrotic interstitial lung diseases. Acta Histochem 2023; 125:152024. [PMID: 36958084 DOI: 10.1016/j.acthis.2023.152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary fibrosis is a severe condition in interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-ILD, where the underlying mechanism is not well defined and with no curative treatments available. Serotonin (5-HT) signaling via the 5-HT2B receptor has been recognized as a promising preclinical target for fibrosis. Despite this, the involvement of the 5-HT2B receptor in fibrotic ILD is widely unexplored. This work highlights the spatial pulmonary distribution of the 5-HT2B receptor in patients with IPF and systemic sclerosis-ILD. We show that the 5-HT2B receptor is located in typical pathological structures e.g. honeycomb cysts and weakly in fibroblast foci. Together with immunohistochemistry and immunofluorescence stainings of patient derived distal lung tissues, we identified cell targets for 5-HT2B receptor interference in type II alveolar epithelial cells, endothelial cells and M2 macrophages. Our results emphasize the role of 5-HT2B receptor as a target in lung fibrosis, warranting further consideration in targeting fibrotic ILDs.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | | | | |
Collapse
|
28
|
Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease. Biochem Pharmacol 2023; 211:115501. [PMID: 36921632 DOI: 10.1016/j.bcp.2023.115501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1" and "M2," and it is well described that "M2" or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.
Collapse
|
29
|
Effects of Ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 2023; 116:109723. [PMID: 36696855 DOI: 10.1016/j.intimp.2023.109723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-β. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-β-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.
Collapse
|
30
|
Gurusamy M, Nasseri S, Rampa DR, Feng H, Lee D, Pekcec A, Doods H, Wu D. Triple-tyrosine kinase inhibition by BIBF1000 attenuates airway and pulmonary arterial remodeling following chronic allergen challenges in mice. Eur J Med Res 2023; 28:71. [PMID: 36755351 PMCID: PMC9909896 DOI: 10.1186/s40001-023-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges. METHODS Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 μl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis. RESULTS Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1β, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation. CONCLUSIONS The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.
Collapse
Affiliation(s)
- Malarvizhi Gurusamy
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Saeed Nasseri
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.411701.20000 0004 0417 4622Present Address: Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Dileep Reddy Rampa
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Huiying Feng
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.410396.90000 0004 0430 4458Department of Research, Mount Sinai Medical Center, Miami Beach, FL USA
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.
| | - Anton Pekcec
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
31
|
Campochiaro C, De Luca G, Lazzaroni MG, Armentaro G, Spinella A, Vigone B, Ruaro B, Stanziola A, Benfaremo D, De Lorenzis E, Moccaldi B, Bosello SL, Cuomo G, Beretta L, Zanatta E, Giuggioli D, Del Papa N, Airo P, Confalonieri M, Moroncini G, Dagna L, Matucci-Cerinic M. Real-life efficacy and safety of nintedanib in systemic sclerosis-interstitial lung disease: data from an Italian multicentre study. RMD Open 2023; 9:rmdopen-2022-002850. [PMID: 36813476 PMCID: PMC9950968 DOI: 10.1136/rmdopen-2022-002850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Nintedanib (NTD) has been shown to be effective in systemic sclerosis (SSc)-interstitial lung disease (ILD). Here we describe the efficacy and safety of NTD in a real-life setting. METHODS Patients with SSc-ILD treated with NTD were retrospectively evaluated at 12 months prior to NTD introduction; at baseline and at 12 months after NTD introduction. The following parameters were recorded: SSc clinical features, NTD tolerability, pulmonary function tests and modified Rodnan skin score (mRSS). RESULTS 90 patients with SSc-ILD (65% female, mean age 57.6±13.4 years, mean disease duration 8.8±7.6 years) were identified. The majority were positive for anti-topoisomerase I (75%) and 77 (85%) patients were on immunosuppressants. A significant decline in %predicted forced vital capacity (%pFVC) in the 12 months prior to NTD introduction was observed in 60%. At 12 months after NTD introduction, follow-up data were available for 40 (44%) patients and they showed a stabilisation in %pFVC (64±14 to 62±19, p=0.416). The percentage of patients with significant lung progression at 12 months was significantly lower compared with the previous 12 months (60% vs 17.5%, p=0.007). No significant mRSS change was observed. Gastrointestinal (GI) side effects were recorded in 35 (39%) patients. After a mean time of 3.6±3.1 months, NTD was maintained after dose adjustment in 23 (25%) patients. In nine (10%) patients, NTD was stopped after a median time of 4.5 (1-6) months. During the follow-up, four patients died. CONCLUSIONS In a real-life clinical scenario, NTD, in combination with immunosuppressants, may stabilise lung function. GI side effects are frequent and NTD dose adjustment may be necessary to retain the drug in patients with SSc-ILD.
Collapse
Affiliation(s)
- Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS Ospedale San Raffaele, Milan, Italy .,Vita-Salute San Raffaele University, Milan, Italy
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria-Grazia Lazzaroni
- Rheumatology and Clinical Immunology, Azienda Ospedaliera Spedali Civili di Brescia, Brescia, Italy
| | | | - Amelia Spinella
- Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Vigone
- Scleroderma Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Ruaro
- Unit of Respiratory Medicine, Ospedale di Cattinara, Trieste, Italy
| | - Anna Stanziola
- Unit of Respiratory Medicine, Federico II University Hospital, Naples, Italy
| | - Devis Benfaremo
- Clinica Medica, Polytechnic University of Marche, Ancona, Italy
| | - Enrico De Lorenzis
- Rheumatology, Catholic University of the Sacred Heart Faculty of Medicine and Surgery, Rome, Italy
| | | | - Silvia Laura Bosello
- Rheumatology, Catholic University of the Sacred Heart Faculty of Medicine and Surgery, Rome, Italy
| | - Giovanna Cuomo
- Precision Medicine, Universita degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lorenzo Beretta
- Scleroderma Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Dilia Giuggioli
- Rheumatology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Paolo Airo
- Rheumatology and Clinical Immunology, Azienda Ospedaliera Spedali Civili di Brescia, Brescia, Italy
| | | | | | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1080310. [PMID: 36865559 PMCID: PMC9974150 DOI: 10.3389/fimmu.2023.1080310] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The macrophage is an essential part of the innate immune system and also serves as the bridge between innate immunity and adaptive immune response. As the initiator and executor of the adaptive immune response, macrophage plays an important role in various physiological processes such as immune tolerance, fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic cells. Consequently, macrophage dysfunction is a vital cause of the occurrence and development of autoimmune diseases. In this review, we mainly discuss the functions of macrophages in autoimmune diseases, especially in systemic lupus erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1 diabetes (T1D), providing references for the treatment and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
33
|
Mäki-Opas I, Hämäläinen M, Moilanen E, Scotece M. TRPA1 as a potential factor and drug target in scleroderma: dermal fibrosis and alternative macrophage activation are attenuated in TRPA1-deficient mice in bleomycin-induced experimental model of scleroderma. Arthritis Res Ther 2023; 25:12. [PMID: 36698198 PMCID: PMC9875496 DOI: 10.1186/s13075-023-02994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere, Finland.
| | - Mari Hämäläinen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Morena Scotece
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland ,grid.428472.f0000 0004 1794 2467Current affiliation: Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
34
|
Cao X, Li T, Tian Y, Tian Y, Gao C, Zhang D, Song Y. BIBF1120 Protects against Diabetic Retinopathy through Neovascularization-Related Molecules and the MAPK Signaling Pathway. J Ophthalmol 2023; 2023:7355039. [PMID: 37152616 PMCID: PMC10162879 DOI: 10.1155/2023/7355039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the microvascular complications of diabetes mellitus and a major pathological feature of neovascular DR. These patients potentially experience vision impairment and blindness. Platelet-derived growth factor receptor β (PDGFRβ), fibroblast growth factor receptor 1 (FGFR1), and vascular endothelial growth factor receptor 2 (VEGFR2) are implicated in the DR pathogenesis. Nintedanib (BIBF1120) is an oral selective dual receptor tyrosine kinase (RTK) inhibitor of VEGFR2, FGFR1, and PDGFRβ. In this study, intravitreal injection of BIBF1120 blocked the phosphorylation of VEGFR2, FGFR1, PDGFRβ, and MAPK signaling pathway proteins in a streptozotocin (STZ)-induced diabetic retinopathy mouse model. In in vitro cell experiments, BIBF1120 did not change cellular activity under normal conditions, while it further suppressed the tube formation, migration, and proliferation of high glucose-induced human retinal microvascular endothelial cells (HRMECs). Additionally, BIBF1120 blocked the phosphorylation of p38, JNK, and ERK1/2 in high glucose-treating HRMECs. Our results indicate that the BIBF1120 treatment can be a novel potential drug to protect against DR.
Collapse
Affiliation(s)
- Xin Cao
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Tao Li
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Yongshen Tian
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Yajing Tian
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Chuang Gao
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Dongmei Zhang
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Yu Song
- Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| |
Collapse
|
35
|
Alonso-Pérez J, Carrasco-Rozas A, Borrell-Pages M, Fernández-Simón E, Piñol-Jurado P, Badimon L, Wollin L, Lleixà C, Gallardo E, Olivé M, Díaz-Manera J, Suárez-Calvet X. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022; 10:2629. [PMID: 36289891 PMCID: PMC9599168 DOI: 10.3390/biomedicines10102629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Patricia Piñol-Jurado
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lutz Wollin
- Boehringer Ingelheim, 88400 Biberach, Germany
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Montse Olivé
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
36
|
Mauer J, Kuckhahn A, Ramsperger-Gleixner M, Ensminger SM, Distler JH, Weyand M, Heim C. Nintedanib reduces alloimmune-induced chronic airway changes in murine tracheal allografts. Transpl Immunol 2022; 73:101608. [DOI: 10.1016/j.trim.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 01/01/2023]
|
37
|
Hou Z, Su X, Han G, Xue R, Chen Y, Chen Y, Wang H, Yang B, Liang Y, Ji S. JAK1/2 Inhibitor Baricitinib Improves Skin Fibrosis and Digital Ulcers in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:859330. [PMID: 35733864 PMCID: PMC9208297 DOI: 10.3389/fmed.2022.859330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 01/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare disabling connective tissue disease with few available treatment options. Diffuse cutaneous systemic sclerosis (dcSSc) is associated with high mortality. A previous experiment has shown that JAK2 inhibitor can significantly improve skin fibrosis in bleomycin (BLM)-induced murine model, including reducing dermal thickening and collagen accumulation. We aimed to describe the efficacy of oral JAK1/2 inhibitor baricitinib in SSc patients, especially focusing on skin fibrosis and microvascular manifestations. Methods We described the different effects of oral selective JAK1, JAK2, or JAK3 inhibitor treatment in a BLM-induced skin fibrosis mouse model. Furthermore, 10 adult patients with dcSSc were treated with baricitinib. We assessed the changes in modified rodman skin score (mRSS) and digital ulcer net burden at week 12 and 24 from baseline. We also compared the absolute changes in scores on the Scleroderma Health Assessment Questionnaire (SHAQ) and a total score on the St. George's Respiratory Questionnaire (SGRQ) over a 24-week period. Results In the experimental mouse model of skin fibrosis, a JAK1 and JAK2 inhibitor ameliorated skin fibrosis, and a JAK2 inhibitor had the most obvious effect. Treatment with the JAK2 inhibitor also blunted the capillary rarefaction. We demonstrated that skin fibrosis and digital ulcers were significantly relieved in 10 SSc patients treated with baricitinib. The mRSS significantly improved at week 12 from baseline, with a mean change in mRSS of -8.3 [95% confidence interval (CI), -12.03 to -4.574; p = 0.0007] and improved greater at week 24 to -11.67 (95% CI, -16.84 to -6.496; p = 0.0008). Among the four patients with digital ulcers (DU), three were completely healed at week 24, the number of ulcers in another patient was significantly reduced, and there was no patient with new ulcers. Only one adverse event (AE) of herpes zoster was observed. Conclusions Our results indicate that selective JAK1 and JAK2 inhibitor alleviates skin fibrosis, and oral JAK1/2 inhibitor baricitinib is a potentially effective treatment for dcSSc patients with skin fibrosis and DU. Baricitinib was well-tolerated by most patients in this study. Additional large clinical trials are needed to confirm our pilot findings. Chinese Clinical Trial Registry Number ChiCTR2000030995.
Collapse
Affiliation(s)
- Zhanying Hou
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuehan Su
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangming Han
- Department of Rheumatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ruzeng Xue
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huan Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Yunsheng Liang
| | - Suyun Ji
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,Suyun Ji
| |
Collapse
|
38
|
Matteson EL, Kelly C, Distler JHW, Hoffmann-Vold AM, Seibold JR, Mittoo S, Dellaripa PF, Aringer M, Pope J, Distler O, James A, Schlenker-Herceg R, Stowasser S, Quaresma M, Flaherty KR. Nintedanib in Patients With Autoimmune Disease-Related Progressive Fibrosing Interstitial Lung Diseases: Subgroup Analysis of the INBUILD Trial. Arthritis Rheumatol 2022; 74:1039-1047. [PMID: 35199968 PMCID: PMC9321107 DOI: 10.1002/art.42075] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Objective To analyze the efficacy and safety of nintedanib in patients with fibrosing autoimmune disease–related interstitial lung diseases (ILDs) with a progressive phenotype. Methods The INBUILD trial enrolled patients with a fibrosing ILD other than idiopathic pulmonary fibrosis, with diffuse fibrosing lung disease of >10% extent on high‐resolution computed tomography, forced vital capacity percent predicted (FVC%) ≥45%, and diffusing capacity of the lungs for carbon monoxide percent predicted ≥30% to <80%. Patients fulfilled protocol‐defined criteria for progression of ILD within the 24 months before screening, despite management deemed appropriate in clinical practice. Subjects were randomized to receive nintedanib or placebo. We assessed the rate of decline in FVC (ml/year) and adverse events (AEs) over 52 weeks in the subgroup with autoimmune disease–related ILDs. Results Among 170 patients with autoimmune disease–related ILDs, the rate of decline in FVC over 52 weeks was −75.9 ml/year with nintedanib versus −178.6 ml/year with placebo (difference 102.7 ml/year [95% confidence interval 23.2, 182.2]; nominal P = 0.012). No heterogeneity was detected in the effect of nintedanib versus placebo across subgroups based on ILD diagnosis (P = 0.91). The most frequent AE was diarrhea, reported in 63.4% and 27.3% of subjects in the nintedanib and placebo groups, respectively. AEs led to permanent discontinuation of trial drug in 17.1% and 10.2% of subjects in the nintedanib and placebo groups, respectively. Conclusion In the INBUILD trial, nintedanib slowed the rate of decline in FVC in patients with progressive fibrosing autoimmune disease–related ILDs, with AEs that were manageable for most patients. Video Abstract
Collapse
Affiliation(s)
- Eric L Matteson
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Clive Kelly
- Newcastle University, Newcastle-upon-Tyne, UK
| | - Jörg H W Distler
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | - Janet Pope
- University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Manuel Quaresma
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | | |
Collapse
|
39
|
Liang M, Matteson EL, Abril A, Distler JH. The role of antifibrotics in the treatment of rheumatoid arthritis-associated interstitial lung disease. Ther Adv Musculoskelet Dis 2022; 14:1759720X221074457. [PMID: 35186127 PMCID: PMC8852164 DOI: 10.1177/1759720x221074457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The major pulmonary complication of rheumatoid arthritis (RA) is interstitial lung disease (ILD), which causes significant morbidity and mortality and influences the natural course of disease. Recent advances in the management of arthritis have improved patient outcomes. However, exceptionally high medical needs still remain for effective therapies for the patients with ILD in RA. Better understanding of the shared and distinct pathophysiology of fibrotic diseases led to the development of novel antifibrotic agents such as nintedanib and pirfenidone. The further stratification analysis of the phase III INBUILD trial demonstrated beneficial effects of nintedanib in RA-ILD with a progressive phenotype by reducing the rate of decline in forced vital capacity (FVC) over 52 weeks by 60%. Pirfenidone is another antifibrotic agent currently under phase II clinical study (TRAIL1) aiming to evaluate its effects for RA-ILD. This review provides an overview of state-of-the-art pathogenesis and the current therapeutic options for RA-ILD, with a focus on antifibrotic strategies.
Collapse
Affiliation(s)
- Minrui Liang
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eric L. Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andy Abril
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Jörg H.W. Distler
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
40
|
Liu J, Zhou L, Zhao F, Zhou C, Yang T, Xu Z, Wang X, Xu L, Xu Z, Ge Y, Wu R, Jia R. Therapeutic effect of adipose stromal vascular fraction spheroids for partial bladder outlet obstruction induced underactive bladder. Stem Cell Res Ther 2022; 13:68. [PMID: 35139904 PMCID: PMC8826668 DOI: 10.1186/s13287-022-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Underactive bladder (UAB) is a common clinical problem but related research is rarely explored. As there are currently no effective therapies, the administration of adipose stromal vascular fraction (ad-SVF) provides a new potential method to treat underactive bladder. METHODS Male Sprague-Dawley rats were induced by partial bladder outlet obstruction (PBOO) for four weeks and randomly divided into three groups: rats treated with PBS (Sham group); rats administrated with ad-SVF (ad-SVF group) and rats performed with ad-SVF spheroids (ad-SVFsp group). After four weeks, urodynamic studies were performed to evaluate bladder functions and all rats were sacrificed for further studies. RESULTS We observed that the bladder functions and symptoms of UAB were significantly improved in the ad-SVFsp group than that in the Sham group and ad-SVF group. Meanwhile, our data showed that ad-SVF spheroids could remarkably promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation in bladder tissue than that in the other two groups. Moreover, ad-SVF spheroids increased the expression levels of bFGF, HGF and VEGF-A than ad-SVF. IVIS Spectrum small-animal in vivo imaging system revealed that ad-SVF spheroids could increase the retention rate of transplanted cells in bladder tissue. CONCLUSIONS Ad-SVF spheroids improved functions and symptoms of bladder induced by PBOO, which contributes to promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation. Ad-SVF spheroids provide a potential treatment for the future patients with UAB.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zhongle Xu
- Department of Urology, Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, People's Republic of China
| | - Xinning Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
White ES, Thomas M, Stowasser S, Tetzlaff K. Challenges for Clinical Drug Development in Pulmonary Fibrosis. Front Pharmacol 2022; 13:823085. [PMID: 35173620 PMCID: PMC8841605 DOI: 10.3389/fphar.2022.823085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a pathologic process associated with scarring of the lung interstitium. Interstitial lung diseases (ILDs) encompass a large and heterogenous group of disorders, a number of which are characterized by progressive pulmonary fibrosis that leads to respiratory failure and death. Idiopathic pulmonary fibrosis (IPF) has been described as an archetype of progressive fibrosing ILD, and the development of pirfenidone and nintedanib has been a major breakthrough in the treatment of patients with this deadly disease. Both drugs principally target scar-forming fibroblasts and have been shown to significantly slow down the accelerated decline of lung function by approximately 50%. In addition, nintedanib has been approved for patients with other progressive fibrosing ILDs and systemic sclerosis-associated ILD. However, there is still no cure for pulmonary fibrosis and no meaningful improvement of symptoms or quality of life has been shown. Advancement in research, such as the advent of single cell sequencing technology, has identified additional pathologic cell populations beyond the fibroblast which could be targeted for therapeutic purposes. The preclinical and clinical development of novel drug candidates is hampered by profound challenges such as a lack of sensitive clinical outcomes or suitable biomarkers that would provide an early indication of patient benefit. With the availability of these anti-fibrotic treatments, it has become even more difficult to demonstrate added efficacy, in particular in short-term clinical studies. Patient heterogeneity and the paucity of biomarkers of disease activity further complicate clinical development. It is conceivable that future treatment of pulmonary fibrosis will need to embrace more precision in treating the right patient at the right time, explore novel measures of efficacy, and likely combine treatment options.
Collapse
Affiliation(s)
- Eric S. White
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Matthew Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
- Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Boleto G, Avouac J, Allanore Y. The role of antifibrotic therapies in the treatment of systemic sclerosis-associated interstitial lung disease. Ther Adv Musculoskelet Dis 2022; 14:1759720X211066686. [PMID: 35111241 PMCID: PMC8801639 DOI: 10.1177/1759720x211066686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune condition with complex pathogenesis characterized by a heterogeneous presentation and different disease courses. Fibrosis of multiple organs including the lungs favored by inflammation and vasculopathy is the hallmark of SSc. SSc-associated interstitial lung disease (SSc-ILD) is common and can be associated with poor outcomes, this complication being the leading cause of death in recent series. Because of its huge heterogeneity, SSc-ILD management can be very challenging. Immunosuppressive therapy has long been used to prevent SSc-ILD progression with modest effects in clinical trials. However, thanks to a better understating of SSc pathogenesis, innovative therapies including antifibrotics are increasingly being developed. The achievement of the Safety and Efficacy of Nintedanib in Systemic SClerosIS (SENSCIS) trial has led to the approval by drug agencies of the first antifibrotic drug for SSc-ILD. In parallel, other antifibrotics are being investigated as possible beneficial therapies in SSc-ILD. An important unmet need remains to clarify the positioning of the various strategies, such as the added value of combination of immunosuppressants and antifibrotic therapies in patients at high risk of progression. Indeed, irreversible lung injury or self-perpetuated progression highlights the concept of a window of opportunity in SSc-ILD patients. Herewith, we provide an overview of the most significant clinical trials with antifibrotic drugs developed in recent years for the management of SSc-ILD and a viewpoint about their positioning in treatment algorithms.
Collapse
Affiliation(s)
| | - Jérôme Avouac
- Department of Rheumatology, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Yannick Allanore
- Department of Rheumatology, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| |
Collapse
|
43
|
Laurent P, Lapoirie J, Leleu D, Levionnois E, Grenier C, Jurado‐Mestre B, Lazaro E, Duffau P, Richez C, Seneschal J, Pellegrin J, Constans J, Schaeverbeke T, Douchet I, Duluc D, Pradeu T, Chizzolini C, Blanco P, Truchetet M, Contin‐Bordes C. Interleukin‐1‐β‐Activated
Microvascular Endothelial Cells Promote
DC‐SIGN
+ Alternative Macrophages Associated with Skin Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2021; 74:1013-1026. [DOI: 10.1002/art.42061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Paôline Laurent
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | | | - Damien Leleu
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Emeline Levionnois
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Cyrielle Grenier
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Blanca Jurado‐Mestre
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Estibaliz Lazaro
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Pierre Duffau
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Christophe Richez
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | | | | | - Joel Constans
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | | | - Isabelle Douchet
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Dorothée Duluc
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Thomas Pradeu
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Carlo Chizzolini
- Pathology and Immunology, School of Medicine Geneva University Switzerland
| | - Patrick Blanco
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Marie‐Elise Truchetet
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Cécile Contin‐Bordes
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| |
Collapse
|
44
|
Miura Y, Ohkubo H, Niimi A, Kanazawa S. Suppression of epithelial abnormalities by nintedanib in induced-rheumatoid arthritis-associated interstitial lung disease mouse model. ERJ Open Res 2021; 7:00345-2021. [PMID: 34881329 PMCID: PMC8646002 DOI: 10.1183/23120541.00345-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is relevant for the prognosis in patients with RA. Nintedanib, which inhibits both receptor and non-receptor type tyrosine kinases, is an antifibrotic drug for the treatment of progressive fibrosing ILDs, such as idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Little is known about the effects of nintedanib on RA-ILD. We examined the characteristics of a novel induced RA-ILD (iRA-ILD) mouse model and the effects of nintedanib on the model. D1CC×D1BC mice are highly susceptible to arthritogenic antigens, such as bovine type II collagen, resulting in severe inflammatory arthritis. ILD develops after joint inflammation is alleviated. Serum surfactant protein D levels were monitored as an ILD marker. Nintedanib was orally administered to iRA-ILD mice for 2 months. The iRA-ILD model showed similar symptoms to those in patients with RA-ILD. The histopathological features of pulmonary disorder resembled nonspecific interstitial pneumonia, but with metaplastic epithelium. Histopathological analysis revealed that in addition to reducing fibrosis, nintedanib suppressed M2 macrophage polarisation and hyperplasia of Type 2 alveolar epithelial cells. The metaplastic epithelium acquired invasiveness because of the expression of E-cadherin, MMP7, Tgf-β, Col1a1, Padi2 and Padi4. Moreover, citrullinated peptides were detected in these invasive epithelial cells as well as in the bronchiolar epithelium. Administration of nintedanib reduced the expression of Pad4 and citrullinated peptides and eliminated invasive epithelial cells. The broad inhibitory effects of nintedanib on tyrosine kinases may contribute to the overall improvement in RA-ILD, including epithelial abnormalities associated with progressive lung fibrosis.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
45
|
The Therapeutic Effects of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells on Scleroderma. Tissue Eng Regen Med 2021; 19:141-150. [PMID: 34784013 PMCID: PMC8782977 DOI: 10.1007/s13770-021-00405-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Scleroderma is a multisystem disease in which tissue fibrosis is caused by inflammation and vascular damage. The mortality of scleroderma has remained high due to a lack of effective treatments. However, exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs)-Ex have been regarded as potential treatments for various autoimmune diseases, and may also act as candidates for treating scleroderma. Methods: Mice with scleroderma received a single 50 μg HUMSCs-Ex. HUMSCs-Ex was characterized using transmission electron microscopy, nanoparticle tracking analysis and nanoflow cytometry. The therapeutic efficacy was assessed using histopathology, immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay and western blot. Results: HUMSCs-Ex ameliorated the deposition of extracellular matrix and suppressed the epithelial-mesenchymal transition process, and the effects lasted at least three weeks. In addition, HUMSCs-Ex promoted M1 macrophage polarization and inhibited M2 macrophage polarization, leading to the restoration of the balance of M1/M2 macrophages. Conclusion: We investigated the potential antifibrotic and anti-inflammatory effects of HUMSCs-Ex in a bleomycin-induced mouse model of scleroderma. So HUMSCs-Ex could be considered as a candidate therapy for scleroderma. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00405-5.
Collapse
|
46
|
Zhang Z, Huang X, Yang J, Gu S, Zhao Y, Liu Y, Khoong Y, Wang S, Luo S, Zan T, Li G. Identification and functional analysis of a three-miRNA ceRNA network in hypertrophic scars. J Transl Med 2021; 19:451. [PMID: 34715879 PMCID: PMC8556926 DOI: 10.1186/s12967-021-03091-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hypertrophic scar (HTS) is a fibrotic disorder of skins and may have repercussions on the appearance as well as functions of patients. Recent studies related have shown that competitive endogenous RNA (ceRNA) networks centering around miRNAs may play an influential role in HTS formation. This study aimed to construct and validate a three-miRNA (miR-422a, miR-2116-3p, and miR-3187-3p) ceRNA network, and explore its potential functions. Methods Quantitative real‑time PCR (qRT‑PCR) was used to compare expression levels of miRNAs, lncRNAs, and genes between HTS and normal skin. Target lncRNAs and genes of each miRNA were predicted using starBase as well as TargetScan database to construct a distinct ceRNA network; overlapping target lncRNAs and genes of the three miRNAs were utilized to develop a three-miRNA ceRNA network. For every network, protein–protein interaction (PPI) network analysis was performed to identify its hub genes. For each network and its hub genes, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to explore their possible functions. Results MiR-422a, miR-2116-3p, and miR-3187-3p were all downregulated in HTS tissues and fibroblasts. MiR-422a-based ceRNA network consisted of 101 lncRNAs with 133 genes; miR-2116-3p-centered ceRNA network comprised 85 lncRNAs and 978 genes; miR-3187-3p-derived ceRNA network encompassed 84 lncRNAs as well as 1128 genes. The three-miRNA ceRNA network included 2 lncRNAs with 9 genes, where MAPK1, FOSL2, ABI2, KPNA6, CBL, lncRNA-KCNQ1OT1, and lncRNA-EBLN3P were upregulated. According to GO and KEGG analysis, these networks were consistently related to ubiquitination. Three ubiquitination-related genes (CBL, SMURF2, and USP4) were upregulated and negatively correlated with the expression levels of the three miRNAs in HTS tissues. Conclusions This study identified a three-miRNA ceRNA network, which might take part in HTS formation and correlate with ubiquitination.
Collapse
Affiliation(s)
- Zewei Zhang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Jiahao Yang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shuqi Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China.
| | - Guangshuai Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
47
|
Li X, Xi B, Miao Y, Ma X, Zhang J, Gao J, Wei W, Zhou H, Yang C. Nintedanib ameliorates imiquimod-induced psoriasis in mice by inhibiting NF-κB and VEGFR2 signaling. Int Immunopharmacol 2021; 100:108129. [PMID: 34547680 DOI: 10.1016/j.intimp.2021.108129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Psoriasis is a common chronic skin disorder characterized by keratinocyte hyperproliferation with altered differentiation accompanied by increased inflammation and angiogenesis. Nintedanib is a tyrosine kinase inhibitor that has anti-inflammatory, anti-angiogenesis, and anti-fibrotic effects. In this study, we explored the potential effects and mechanisms of nintedanib on psoriasis in vivo and in vitro. In vivo experiments showed that nintedanib effectively alleviated imiquimod-induced psoriasis-like skin lesions and reduced psoriasis severity index scores. For the mechanism research, we mainly focused on the abnormal phenotype of keratinocyte in the pathogenesis of psoriasis. We used HaCaT cells in the in vitro experiments and the result revealed that nintedanib restored keratinocyte homeostasis by downregulated the expression of proinflammatory factors, inhibited hyperproliferation, promoted apoptosis, maintained normal differentiation via regulating the NF-κB pathway. In addition, nintedanib regulated angiogenesis by inhibiting VEGFR2 activity. In summary, our study indicated that nintedanib is a promising candidate medication for psoriatic treatment.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Buri Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Jianwei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd., Tianjin 301700, People's Republic of China
| | - Wenguo Wei
- Department of Dermatology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| |
Collapse
|
48
|
Ravanetti F, Ferrini E, Ragionieri L, Khalajzeyqami Z, Nicastro M, Ridwan Y, Kleinjan A, Villetti G, Grandi A, Stellari FF. SSC-ILD mouse model induced by osmotic minipump delivered bleomycin: effect of Nintedanib. Sci Rep 2021; 11:18513. [PMID: 34531421 PMCID: PMC8445948 DOI: 10.1038/s41598-021-97728-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by an excessive production and accumulation of collagen in the skin and internal organs often associated with interstitial lung disease (ILD). Its pathogenetic mechanisms are unknown and the lack of animal models mimicking the features of the human disease is creating a gap between the selection of anti-fibrotic drug candidates and effective therapies. In this work, we intended to pharmacologically validate a SSc-ILD model based on 1 week infusion of bleomycin (BLM) by osmotic minipumps in C57/BL6 mice, since it will serve as a tool for secondary drug screening. Nintedanib (NINT) has been used as a reference compound to investigate antifibrotic activity either for lung or skin fibrosis. Longitudinal Micro-CT analysis highlighted a significant slowdown in lung fibrosis progression after NINT treatment, which was confirmed by histology. However, no significant effect was observed on lung hydroxyproline content, inflammatory infiltrate and skin lipoatrophy. The modest pharmacological effect reported here could reflect the clinical outcome, highlighting the reliability of this model to better profile potential clinical drug candidates. The integrative approach presented herein, which combines longitudinal assessments with endpoint analyses, could be harnessed in drug discovery to generate more reliable, reproducible and robust readouts.
Collapse
Affiliation(s)
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Zahra Khalajzeyqami
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maria Nicastro
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Yanto Ridwan
- Department of Molecular Genetics, Vascular Surgery and Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Kleinjan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Gino Villetti
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Andrea Grandi
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Franco Fabio Stellari
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy.
| |
Collapse
|
49
|
Cutolo M, Gotelli E, Montagna P, Tardito S, Paolino S, Pizzorni C, Sulli A, Smith V, Soldano S. Nintedanib downregulates the transition of cultured systemic sclerosis fibrocytes into myofibroblasts and their pro-fibrotic activity. Arthritis Res Ther 2021; 23:205. [PMID: 34344444 PMCID: PMC8330043 DOI: 10.1186/s13075-021-02555-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/11/2021] [Indexed: 01/04/2023] Open
Abstract
Background Circulating fibrocytes are an important source of fibroblasts and myofibroblasts, which are involved in fibrotic processes, including systemic sclerosis (SSc). The study aimed to investigate the effect of nintedanib (a tyrosine kinase inhibitor) in inhibiting the in vitro transition of circulating SSc fibrocytes into myofibroblasts and their pro-fibrotic activity. Methods Circulating fibrocytes were obtained from 18 SSc patients and 5 healthy subjects (HSs). Cultured SSc fibrocytes were maintained in growth medium (untreated cells) or treated with nintedanib 0.1 and 1 μM for 3 and 24 h. Fibroblast-specific protein-1 (S100A4) and α-smooth muscle actin (αSMA), as markers of fibroblast/myofibroblast phenotype, together with type I collagen (COL1) and fibronectin (FN), were investigated by qRT-PCR and Western blotting. Non-parametric tests were used for statistical analysis. Results Significantly elevated gene and protein expressions of αSMA, S100A4, COL1, and FN were observed in SSc fibrocytes compared to HS fibrocytes (gene: αSMA p < 0.001; others p < 0.0001; protein: all p < 0.05). Interestingly, an increased gene and protein expression of αSMA and S100A4 was found in fibrocytes from SSc patients positive for anti-Scl70 and with interstitial lung disease (ILD) (Scl70+ILD+) compared to Scl70−ILD− patients (S100A4: gene: p < 0.01; protein: p < 0.05), whereas no differences were observed for COL1 and FN. Nintedanib reduced gene and protein expression of αSMA, S100A4, COL1, and FN in SSc fibrocytes compared to untreated ones with different statistical significance. Noteworthy, nintedanib significantly downregulated gene and protein expression of αSMA, S100A4, COL1, and FN in Scl70+ILD+ fibrocytes (all p < 0.05), whereas only that of S100A4 and FN was significantly downregulated (p < 0.05) in Scl70−ILD− fibrocytes compared to the related untreated cells. Conclusions Nintedanib seems to downregulate in vitro the transition of fibrocytes into myofibroblasts and their pro-fibrotic activity, particularly in cells isolated from Scl70+ILD+ SSc patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02555-2.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Samuele Tardito
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
50
|
Ototake Y, Yamaguchi Y, Asami M, Komitsu N, Akita A, Watanabe T, Kanaoka M, Kurotaki D, Tamura T, Aihara M. Downregulated IRF8 in Monocytes and Macrophages of Patients with Systemic Sclerosis May Aggravate the Fibrotic Phenotype. J Invest Dermatol 2021; 141:1954-1963. [PMID: 33705797 DOI: 10.1016/j.jid.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Monocytes and macrophages may be involved in the pathogenesis of systemic sclerosis (SSc); however, the etiology and regulation of monocyte and macrophage function in SSc remain unknown. IRF8 is a transcriptional regulator that is essential for the differentiation and function of monocytes and macrophages and thus may be involved in the regulation of macrophage phenotypes in SSc fibrosis. In this study, we measured IRF8 levels in circulating monocytes of 26 patients with SSc (diffuse cutaneous SSc, n = 11; limited cutaneous SSc, n = 15) and 14 healthy controls. IRF8 levels were significantly suppressed in monocytes of patients with diffuse cutaneous SSc and correlated negatively with the modified Rodnan total skin thickness score. Next, we assessed expression levels of cell surface markers, cytokine profiles, and components of extracellular matrix in IRF8-silenced monocyte-derived macrophages. IRF8-silenced monocyte-derived macrophages displayed an M2 phenotype and significantly upregulated mRNA and protein levels of profibrotic factors and extracellular matrix components. Finally, we assessed skin fibrosis in myeloid cell-specific IRF8 conditional knockout (Irf8flox/flox; Lyz2Cre/+) mice and found upregulated mRNA levels of extracellular matrix components and increased bleomycin-induced skin fibrosis. In conclusion, altered IRF8 regulation in monocytes and macrophages may be involved in SSc pathogenesis.
Collapse
Affiliation(s)
- Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Komitsu
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|