1
|
Cîrciumaru A, Kisten Y, Hansson M, Mathsson-Alm L, Joshua V, Wähämaa H, Loberg Haarhaus M, Lindqvist J, Padyukov L, Catrina SB, Fei G, Vivar N, Rezaei H, af Klint E, Antovic A, Réthi B, Catrina AI, Hensvold A. Identification of early risk factors for anti-citrullinated-protein-antibody positive rheumatoid arthritis-a prospective cohort study. Rheumatology (Oxford) 2024; 63:3164-3171. [PMID: 38457608 PMCID: PMC11534094 DOI: 10.1093/rheumatology/keae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Individuals positive for anti-cyclic-peptide-antibodies (anti-CCP) and musculoskeletal complaints (MSK-C) are at risk for developing rheumatoid arthritis (RA). In this study we aimed to investigate factors involved in arthritis progression. METHODS Anti-CCP2-positive individuals with MSK-C referred to a rheumatologist were recruited. Individuals lacked arthritis at clinical and ultrasound examination and were followed for ≥3 years or until clinical arthritis diagnosis. Blood samples from inclusion were analysed for nine ACPA reactivities (citrullinated α-1-enolase, fibrinogen, filaggrin, histone, vimentin and tenascin peptides); 92 inflammation-associated proteins; and HLA-shared epitope alleles. Cox regression was applied to the data to identify independent predictors in a model. RESULTS Two hundred and sixty-seven individuals were included with median follow-up of 49 months (interquartile range [IQR]: 22-60); 101 (38%) developed arthritis after a median of 14 months (IQR: 6-27). The analysis identified that presence of at least one ACPA reactivity (hazard ratio [HR] 8.0; 95% CI: 2.9, 22), ultrasound-detected tenosynovitis (HR 3.4; 95% CI: 2.0, 6.0), IL-6 levels (HR 1.5; 95% CI: 1.2, 1.8) and IL-15 receptor α (IL-15Rα) levels (HR 0.6; 95% CI: 0.4, 0.9) are significant independent predictors for arthritis progression in a prediction model (Harrell's C 0.76 [s.e. 0.02], AUC 0.82 [95% CI: 0.76, 0.89], cross-validated AUC 0.70 [95% CI: 0.56, 0.85]). CONCLUSION We propose a high RA risk phase characterized by presence of ACPA reactivity, tenosynovitis, IL-6 and IL-15Rα and suggest that these factors need to be further investigated for their biological effects and clinical values, to identify individuals at particular low risk and high risk for arthritis progression.
Collapse
Affiliation(s)
- Alexandra Cîrciumaru
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Services, Region Stockholm
| | - Yogan Kisten
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Thermo Fisher Scientific, Uppsala, Sweden
| | | | - Vijay Joshua
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Wähämaa
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Malena Loberg Haarhaus
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital
| | - Joakim Lindqvist
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Guozhong Fei
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Services, Region Stockholm
- Swedish Medical Products Agency, Uppsala, Sweden
| | - Nancy Vivar
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital
| | - Hamed Rezaei
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital
| | - Erik af Klint
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital
| | - Aleksandra Antovic
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Services, Region Stockholm
- Department of Rheumatology, Karolinska University Hospital
| | - Bence Réthi
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Services, Region Stockholm
- Department of Rheumatology, Karolinska University Hospital
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Services, Region Stockholm
| |
Collapse
|
2
|
Zhang F, Zhang Y, Zhou J, Cai Y, Li Z, Sun J, Xie Z, Hao G. Metabolic effects of quercetin on inflammatory and autoimmune responses in rheumatoid arthritis are mediated through the inhibition of JAK1/STAT3/HIF-1α signaling. Mol Med 2024; 30:170. [PMID: 39390367 PMCID: PMC11468292 DOI: 10.1186/s10020-024-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis, a chronic autoimmune disease, is characterized by synovial hyperplasia and cartilage erosion. Here, we investigated the potential mechanism of action of quercetin, the main component of flavonoids, in treating rheumatoid arthritis. OBJECT To examine the anti-arthritic effects of quercetin and elucidate the specific mechanisms that differentiate its metabolic effects on autoimmune and inflammatory responses at the synovial cell level. METHODS We created a collagen-induced arthritis (CIA) model in Wistar rats, which were administered quercetin (50 or 100 mg/kg) continuously for four weeks via stomach perfusion. The arthritis score, histopathological staining, radiological assessment, and serum biochemical parameters were used to study the impact of quercetin on disease improvement. Additionally, immunofluorescence was employed to detect JAK1/STAT3/HIF-1α expression in rat joints. Moreover, the effects of quercetin (20, 40, and 80 µmol/L) on the properties and behavior of synovial fibroblasts were evaluated in an in vitro MH7A cell model using flow cytometry, CCK8, and transwell assays. Further, the mRNA expression levels of inflammatory cytokines IL1β, IL6, IL17, and TNFα were assessed by quantitative real-time PCR. Glucose, lactate, lactate dehydrogenase, pyruvate, pyruvate dehydrogenase, and adenosine triphosphate assay kits were employed to measure the metabolic effects of quercetin on synovial fibroblasts. Finally, immunoblotting was used to examine the impact of quercetin on the JAK1/STAT3/HIF-1α signaling pathway in synovial fibroblasts. RESULTS In vivo experiments confirmed the favorable effects of quercetin in CIA rats, including an improved arthritis score and reduced ankle bone destruction, in addition to a decrease in the pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in serum. Immunofluorescence verified that quercetin may ameliorate joint injury in rats with CIA by inhibiting JAK1/STAT3/HIF-1α signaling. Various in vitro experiments demonstrated that quercetin effectively inhibits IL-6-induced proliferation of MH7A cells and reduces their migratory and invasive behavior, while inducing apoptosis and reducing the expression of the pro-inflammatory cytokines IL1β, IL6, IL17, and TNFα at the mRNA level. Quercetin caused inhibition of glucose, lactate, lactate dehydrogenase, pyruvate, and adenosine triphosphate and increased pyruvate dehydrogenase expression in MH7A cells. It was further confirmed that quercetin may inhibit energy metabolism and inflammatory factor secretion in MH7A cells through JAK1/STAT3/HIF-1α signaling. CONCLUSIONS Quercetin's action on multiple target molecules and pathways makes it a promising treatment for cartilage injury in rheumatoid arthritis. By reducing joint inflammation, improving joint metabolic homeostasis, and decreasing immune system activation energy, quercetin inhibits the JAK1/STAT3/HIF-1α signaling pathway to improve disease status.
Collapse
Affiliation(s)
- FengQi Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - YiYang Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - JiaWang Zhou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ying Cai
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - ZhiYu Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhiJun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| | - GuiFeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
3
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
4
|
Wu H, Yuan H, Zhang J, He T, Deng Y, Chen Y, Zhang Y, Chen W, Wu C. Helicobacter pylori upregulates PAD4 expression via stabilising HIF-1α to exacerbate rheumatoid arthritis. Ann Rheum Dis 2024:ard-2023-225306. [PMID: 39107082 DOI: 10.1136/ard-2023-225306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Helicobacter pylori infection has been reported to aggravate rheumatoid arthritis (RA), but the relevant mechanism remains unclear. This study aimed to investigate the underlying pathogenic mechanism of H. pylori infection in the progression of RA. METHODS The Disease Activity Score (DAS-28) and serum anticitrullinated protein antibody (ACPA) levels were compared between H. pylori-negative and H. pylori-positive patients with RA. MH7A cells were stimulated with polyclonal ACPA purified from the peripheral blood of patients with RA. The citrullination levels were assessed by western blot in GES-1 cells and sera. ChIP, luciferase reporter assays, mass spectrometry and ELISA were applied to explore the molecular mechanism of H. pylori infection in RA progression. RESULTS The DAS-28 and ACPA levels of patients with RA in the H. pylori-positive group were significantly higher than those in the H. pylori-negative group. Polyclonal ACPA derived from H. pylori-positive patients promoted cell proliferation and induced secretion of IL-6 and IL-8. For the first time, we found that H. pylori infection induces cellular protein citrullination by upregulating protein arginine deiminase type 4 (PAD4). Furthermore, we confirmed a direct functional binding of hypoxia-inducible factor 1α on the PADI4 gene promoter. We demonstrated that PAD4 interacts with and citrullinates keratin 1 (K1), and serum and synovial fluid levels of anti-Cit-K1 antibody were markedly increased in H. pylori-infected patients with RA. CONCLUSION Our findings reveal a novel mechanism by which H. pylori infection contributes to RA progression. Therapeutic interventions targeting H. pylori may be a viable strategy for the management of RA.
Collapse
Affiliation(s)
- Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunqi Zhang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong, China
| | - Weisan Chen
- Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Peng T, Li B, Bi L, Zhang F. Iguratimod inhibits protein citrullination and inflammation by downregulating NBCe2 in patients with rheumatoid arthritis. Biomed Pharmacother 2024; 174:116551. [PMID: 38636399 DOI: 10.1016/j.biopha.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Bicarbonate has recently been identified as a crucial factor affecting peptidylarginine deiminase (PAD) activity; however, the mechanism underlying its role in rheumatoid arthritis (RA) remains unclear. Iguratimod (IGU), a small-molecule disease-modifying anti-rheumatic drug, requires further investigation. This study aimed to explore the mechanism by which bicarbonate affects citrullination and inflammation in RA and identify new targets for IGU. METHODS We enrolled 20 patients with RA in the study. Sodium bicarbonate cotransporter 2 (NBCe2) was detected in the peripheral blood neutrophils and peripheral blood mononuclear cells (PBMCs) of these patients. The effects of varying concentrations of IGU, methotrexate (MTX), dexamethasone (DXM), and S0859 (an NBCe2 inhibitor) on NBCe2, PAD2, PAD4, and citrullinated histone H3 (cit-H3) levels in, migration ability of, and cytokine production from neutrophils and PBMCs were examined. RESULTS Our findings showed that in patients with RA, citrullinated protein production by peripheral blood neutrophils instead of PBMCs, which showed higher NBCe2 expression levels, increased with an increase in the bicarbonate concentration. In addition, tumor necrosis factor-alpha (TNF-α) promoted NBCe2 expression in neutrophils from patients with RA. Furthermore, we revealed that the inhibitory effects of IGU on neutrophil NBCe2 and cit-H3 levels, degrees of inhibition of neutrophil and PBMC migration, and suppression of interleukin 6, TNF-α, and metalloproteinase-9 secretion from neutrophil-like differentiated HL-60 cells did not substantially differ from those of MTX, DXM, and S0859 at specific doses. CONCLUSIONS Bicarbonate promotes protein citrullination and inflammation in RA via NBCe2, and IGU can downregulate NBCe2.
Collapse
Affiliation(s)
- Tiane Peng
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bingtong Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangze Zhang
- Department of Gastroenterology/Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
7
|
Zhao H, Wang H, Qin Y, Ling S, Zhai H, Jin J, Fang L, Cao Z, Jin S, Yang X, Wang J. CCCTC-binding factor: the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 that upregulates the sialylation of anti-citrullinated protein antibodies in rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:826-836. [PMID: 37326830 DOI: 10.1093/rheumatology/kead282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION CCCTC-binding factor is the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.
Collapse
Affiliation(s)
- Heping Zhao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Qin
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haige Zhai
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayi Jin
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ling Fang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zelin Cao
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinyu Yang
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
9
|
Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. Int Immunopharmacol 2023; 121:110453. [PMID: 37331300 DOI: 10.1016/j.intimp.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.
Collapse
Affiliation(s)
- Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
10
|
Yoshida K, Ito H, Kurosaka D, Ikeda R, Noda K, Saito M, Kurosaka D. Autocitrullination confers monocyte chemotactic properties to peptidylarginine deiminase 4. Sci Rep 2023; 13:7528. [PMID: 37160933 PMCID: PMC10169855 DOI: 10.1038/s41598-023-34469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) contributes to the production of citrullinated proteins as autoantigens for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA). PAD4 can also self-deiminate via autocitrullination. However, the role of this process in RA pathogenesis has not been elucidated. This study aimed to clarify PAD4 function before and after autocitrullination and identify citrullinated PAD4 in the synovial fluid of patients with RA. The autocitrullination of recombinant human PAD4 (rhPAD4) was catalyzed in vitro and determined using anti-modified citrulline immunoblotting. Monocyte chemotaxis was evaluated using Boyden chambers, and citrullinated rhPAD4's ability to induce arthritis was assessed in a C57BL/6J mouse model. Citrullinated PAD4 levels were measured in the synovial fluid of patients with RA and osteoarthritis using a novel enzyme-linked immunosorbent assay. Chemotactic findings showed that citrullinated rhPAD4 recruited monocytes in vitro, whereas unmodified rhPAD4 did not. Compared to unmodified rhPAD4, citrullinated rhPAD4 induced greater inflammation in mouse joints through monocyte migration. More citrullinated PAD4 was found in the synovial fluid of patients with RA than in those with osteoarthritis. Citrullinated PAD4 was even detected in ACPA-negative patients with RA. The autocitrullination of PAD4 amplified inflammatory arthritis through monocyte recruitment, suggesting an ACPA-independent role of PAD4 in RA pathogenesis.
Collapse
Affiliation(s)
- Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Haruyasu Ito
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kentaro Noda
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
11
|
Hensvold A, Horuluoglu B, Sahlström P, Thyagarajan R, Diaz Boada JS, Hansson M, Mathsson-Alm L, Gerstner C, Sippl N, Israelsson L, Wedin R, Steen J, Klareskog L, Réthi B, Catrina AI, Diaz-Gallo LM, Malmström V, Grönwall C. The human bone marrow plasma cell compartment in rheumatoid arthritis - Clonal relationships and anti-citrulline autoantibody producing cells. J Autoimmun 2023; 136:103022. [PMID: 37001434 DOI: 10.1016/j.jaut.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
A majority of circulating IgG is produced by plasma cells residing in the bone marrow (BM). Long-lived BM plasma cells constitute our humoral immune memory and are essential for infection-specific immunity. They may also provide a reservoir of potentially pathogenic autoantibodies, including rheumatoid arthritis (RA)-associated anti-citrullinated protein autoantibodies (ACPA). Here we investigated paired human BM plasma cell and peripheral blood (PB) B-cell repertoires in seropositive RA, four ACPA+ RA patients and one ACPA- using two different single-cell approaches, flow cytometry sorting, and transcriptomics, followed by recombinant antibody generation. Immunoglobulin (Ig) analysis of >900 paired heavy-light chains from BM plasma cells identified by either surface CD138 expression or transcriptome profiles (including gene expression of MZB1, JCHAIN and XBP1) demonstrated differences in IgG/A repertoires and N-linked glycosylation between patients. For three patients, we identified clonotypes shared between BM plasma cells and PB memory B cells. Notably, four individuals displayed plasma cells with identical heavy chains but different light chains, which may indicate receptor revision or clonal convergence. ACPA-producing BM plasma cells were identified in two ACPA+ patients. Three of 44 recombinantly expressed monoclonal antibodies from ACPA+ RA BM plasma cells were CCP2+, specifically binding to citrullinated peptides. Out of these, two clones reacted with citrullinated histone-4 and activated neutrophils. In conclusion, single-cell investigation of B-cell repertoires in RA bone marrow provided new understanding of human plasma cells clonal relationships and demonstrated pathogenically relevant disease-associated autoantibody expression in long-lived plasma cells.
Collapse
Affiliation(s)
- Aase Hensvold
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Begum Horuluoglu
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Sahlström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Radha Thyagarajan
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Sebastian Diaz Boada
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina Gerstner
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Wedin
- Department of Trauma and Reparative Medicine, Karolinska University Hospital, and Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Johanna Steen
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Cîrciumaru A, Afonso MG, Wähämaa H, Krishnamurthy A, Hansson M, Mathsson-Alm L, Keszei M, Stålesen R, Ottosson L, de Vries C, Shelef MA, Malmström V, Klareskog L, Catrina AI, Grönwall C, Hensvold A, Réthi B. Anti-Citrullinated Protein Antibody Reactivity towards Neutrophil-Derived Antigens: Clonal Diversity and Inter-Individual Variation. Biomolecules 2023; 13:biom13040630. [PMID: 37189377 DOI: 10.3390/biom13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. Methods: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. Results: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. Conclusions: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.
Collapse
|
13
|
Wang Z, Wang J, Lan T, Zhang L, Yan Z, Zhang N, Xu Y, Tao Q. Role and mechanism of fibroblast-activated protein-α expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Front Immunol 2023; 14:1135384. [PMID: 37006278 PMCID: PMC10064071 DOI: 10.3389/fimmu.2023.1135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast-activated protein-α (FAP) is a type II integrated serine protease expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and stably overexpress FAP and play important roles in regulating the cellular immune, inflammatory, invasion, migration, proliferation, and angiogenesis responses in the synovial region. Overexpression of FAP is regulated by the initial inflammatory microenvironment of the disease and epigenetic signaling, which promotes RA development by regulating FLSs or affecting the signaling cross-linking FLSs with other cells at the local synovium and inflammatory stimulation. At present, several treatment options targeting FAP are in the process of development. This review discusses the basic features of FAP expressed on the surface of FLSs and its role in RA pathophysiology and advances in targeted therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Jinping Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Tianyi Lan
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Liubo Zhang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zeran Yan
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| |
Collapse
|
14
|
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, Itamoto A, Nishitani K, Yoshitomi H, Fujii T, Onishi A, Onizawa H, Murakami K, Tanaka M, Ito H, Seno H, Morinobu A, Matsuda S. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2023; 25:25. [PMID: 36804906 PMCID: PMC9936655 DOI: 10.1186/s13075-023-03007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Anti-citrullinated protein/peptide antibodies (ACPAs) are present in patients at onset and have important pathogenic roles during the course of rheumatoid arthritis (RA). The characteristics of several molecules recognized by ACPA have been studied in RA, but the positivity rate of autoantibodies against each antigen is not high, and the pathogenic mechanism of each antibody is not fully understood. We investigated the role of anti-citrullinated osteopontin (anti-cit-OPN) antibodies in RA pathogenesis. METHODS Enzyme-linked immunosorbent assays on RA patients' sera were used to detect autoantibodies against OPN. Fibroblast-like synoviocytes (FLS) isolated from RA patients were used to test the binding activity and inflammatory response of OPN mediated by anti-cit-OPN antibodies, and their effect was tested using an inflammatory arthritis mouse model immunized with cit-OPN. Anti-cit-OPN antibody positivity and clinical characteristics were investigated in the patients as well. RESULTS Using sera from 224 RA patients, anti-cit-OPN antibodies were positive in approximately 44% of RA patients, while approximately 78% of patients were positive for the cyclic citrullinated peptide (CCP2) assay. IgG from patients with anti-cit-OPN antibody increased the binding activity of OPN to FLSs, which further increased matrix metalloproteinase and interleukin-6 production in TNF-stimulated FLSs. Mice immunized with cit-OPN antibodies experienced severe arthritis. Anti-cit-OPN antibodies in RA patients decreased the drug survival rate of tumor necrosis factor (TNF) inhibitors, while it did not decrease that of CTLA4-Ig. CONCLUSIONS Anti-cit-OPN antibodies were detected in patients with RA. IgG from patients with anti-cit-OPN antibodies aggravated RA, and anti-cit-OPN antibody was a marker of reduced the survival rate of TNF inhibitors in RA patients.
Collapse
Affiliation(s)
- Akio Umemoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan. .,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Itamoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8501, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
15
|
Krishnamurthy A, Circiumaru A, Sun J, Kisten Y, Damberg P, Sakuraba K, Sandor K, Jarvoll P, Zhou T, Malmström V, Svensson CI, Hensvold A, Catrina AI, Klareskog L, Réthi B. Combination of Two Monoclonal Anti-Citrullinated Protein Antibodies Induced Tenosynovitis, Pain, and Bone Loss in Mice in a Peptidyl Arginine Deiminase-4-Dependent Manner. Arthritis Rheumatol 2023; 75:164-170. [PMID: 35930718 PMCID: PMC10108252 DOI: 10.1002/art.42320] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The appearance of anti-citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4). METHODS Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections. RESULTS The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4-/- mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced. CONCLUSION Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.
Collapse
Affiliation(s)
- Akilan Krishnamurthy
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Alexandra Circiumaru
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Jitong Sun
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Yogan Kisten
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Centre (KERIC)StockholmSweden
| | - Koji Sakuraba
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Katalin Sandor
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Patrik Jarvoll
- Karolinska Experimental Research and Imaging Centre (KERIC)StockholmSweden
| | - Tunhe Zhou
- Stockholm University Brain Imaging Centre (SUBIC), Stockholm UniversityStockholmSweden
| | - Vivianne Malmström
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Camilla I. Svensson
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Aase Hensvold
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Anca I. Catrina
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Lars Klareskog
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Bence Réthi
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
Kim Y, Kim GT. Positive Effects of Biologics on Osteoporosis in Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2023; 30:3-17. [PMID: 37476528 PMCID: PMC10351356 DOI: 10.4078/jrd.22.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 07/22/2023]
Abstract
Osteoporosis is a systemic skeletal disorder that causes vulnerability of bones to fracture owing to reduction in bone density and deterioration of the bone tissue microstructure. The prevalence of osteoporosis is higher in patients with autoimmune inflammatory rheumatic diseases, including rheumatoid arthritis (RA), than in those of the general population. In this autoimmune inflammatory rheumatic disease, in addition to known risk factors for osteoporosis, various factors such as chronic inflammation, autoantibodies, metabolic disorders, drugs, and decreased physical activity contribute to additional risk. In RA, disease-related inflammation plays an important role in local or systemic bone loss, and active treatment for inflammation can help prevent osteoporosis. In addition to conventional synthetic disease-modifying anti-rheumatic drugs that have been traditionally used for treatment of RA, biologic DMARDs and targeted synthetic DMARDs have been widely used. These agents can be employed more selectively and precisely based on disease pathogenesis. It has been reported that these drugs can inhibit bone loss by not only reducing inflammation in RA, but also by inhibiting bone resorption and promoting bone formation. In this review, the pathogenesis and research results of the increase in osteoporosis in RA are reviewed, and the effects of biological agents on osteoporosis are discussed.
Collapse
Affiliation(s)
- Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
17
|
Ospelt C. Site of invasion revisited: epigenetic drivers of joint destruction in RA. Ann Rheum Dis 2022; 82:734-739. [PMID: 36585124 DOI: 10.1136/ard-2022-222554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
New analytical methods and the increasing availability of synovial biopsies have recently provided unprecedented insights into synovial activation in general and synovial fibroblast (SF) biology in particular. In the course of this development, SFs have become one of the most rapidly evolving and exciting fields of rheumatoid arthritis (RA) research. While their active role in the invasion of RA synovium into cartilage has long been studied, recent studies have brought new aspects of their heterogeneity and propagation in RA. This review integrates old and new evidence to give an overview picture of the processes active at the sites of invasive synovial tissue growth in RA.
Collapse
Affiliation(s)
- Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Wu D, Luo Y, Li T, Zhao X, Lv T, Fang G, Ou P, Li H, Luo X, Huang A, Pang Y. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front Immunol 2022; 13:1051082. [PMID: 36618407 PMCID: PMC9817137 DOI: 10.3389/fimmu.2022.1051082] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
As a systemic autoimmune disease, rheumatoid arthritis (RA) usually causes damage not only to joints, but also to other tissues and organs including the heart, kidneys, lungs, digestive system, eyes, skin, and nervous system. Excessive complications are closely related to the prognosis of RA patients and even lead to increased mortality. This article summarizes the serious complications of RA, focusing on its incidence, pathogenesis, clinical features, and treatment methods, aiming to provide a reference for clinicians to better manage the complications of RA.
Collapse
Affiliation(s)
- Di Wu
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tong Li
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinyi Zhao
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ting Lv
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Gang Fang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peiqi Ou
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongyi Li
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaofan Luo
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - An Huang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: An Huang, ; Yuzhou Pang,
| | - Yuzhou Pang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: An Huang, ; Yuzhou Pang,
| |
Collapse
|
19
|
Sakuraba K, Krishnamurthy A, Sun J, Zheng X, Xu C, Peng B, Engström M, Jakobsson PJ, Wermeling F, Catrina S, Grönwall C, Catrina AI, Réthi B. Autoantibodies targeting malondialdehyde-modifications in rheumatoid arthritis regulate osteoclasts via inducing glycolysis and lipid biosynthesis. J Autoimmun 2022; 133:102903. [PMID: 36108504 DOI: 10.1016/j.jaut.2022.102903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Proteins subjected to post-translational modifications, such as citrullination, carbamylation, acetylation or malondialdehyde (MDA)-modification are targeted by autoantibodies in seropositive rheumatoid arthritis (RA). Epidemiological and experimental studies have both suggested the pathogenicity of such humoral autoimmunity, however, molecular mechanisms triggered by anti-modified protein antibodies have remained to be identified. Here we describe in detail the pathways induced by anti-MDA modified protein antibodies that were obtained from synovial B cells of RA patients and that possessed robust osteoclast stimulatory potential and induced bone erosion in vivo. Anti-MDA antibodies boosted glycolysis in developing osteoclasts via an FcγRI, HIF-1α and MYC-dependent mechanism and subsequently increased oxidative phosphorylation. Osteoclast development required robust phosphoglyceride and triacylglyceride biosynthesis, which was also enhanced by anti-MDA by modulating citrate production and expression of the glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate acyltransferase 2 (GPAT2) genes. In summary, we described novel metabolic pathways instrumental for osteoclast differentiation, which were targeted by anti-MDA antibodies, accelerating bone erosion, a central component of RA pathogenesis.
Collapse
Affiliation(s)
- Koji Sakuraba
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Orthopedic Surgery and Rheumatology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akilan Krishnamurthy
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jitong Sun
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Cheng Xu
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Bing Peng
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Engström
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Wang T, Rui J, Shan W, Xue F, Feng D, Dong L, Mao J, Shu Y, Mao C, Wang X. Imbalance of Th17, Treg, and helper innate lymphoid cell in the peripheral blood of patients with rheumatoid arthritis. Clin Rheumatol 2022; 41:3837-3849. [PMID: 35925523 PMCID: PMC9652246 DOI: 10.1007/s10067-022-06315-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease involving a variety of immune cells, including adaptive T and B cells and innate lymphoid cells (ILCs). Understanding the pathogenic role of these immune cells in RA provides new insights into the intervention and treatment of RA. METHODS A total of 86 patients with RA (RA group) and 50 healthy controls (HC) were included in the study. The immune cells of CD4+, CD19+ B, NK, Th17, Treg, ILCs, and their subsets (i.e., ILC1s, ILC2s, and ILC3s) were characterized in peripheral blood mononuclear cells by flow cytometry. Cytokines (i.e., IFN-γ, IL-4, IL-10, IL-17A, IL-22, and IL-33) in sera were detected using ELISA. The above immune cells and cytokines were analyzed in patients with different disease activity status and positive ( +) or negative ( -) rheumatoid factor (RF)/anti-citrullinated protein antibodies (ACPA). RESULTS Patients with RA had higher percentages of CD4+ T, CD19+ B, Th17, ILC2s, and ILC3s and lower percentages of Treg and ILC1s than HC. Patients with RA had elevated levels of IFN-γ, IL-4, IL-17A, and IL-22 and decreased level of IL-10. Compared with HC, patients with high disease activity had higher percentages of Th17, ILC2s, and ILC3s; lower percentages of ILC1s; and lower level of IL-10. The percentage of Treg cells in remission, low, moderate, and high disease activities decreased, whereas the level of IL-17A increased compared with HC. Furthermore, RF+ or ACPA+ patients exhibited elevated percentages of CD19+ B, ILC2s, and ILC3s and had decreased percentage of ILC1s and Treg cells than HC. The percentage of Th17 cells increased in RF-/ACPA- and RF+/ACPA+ patients. However, the above immune cells between RF or ACPA positive and negative patients were not significantly different. CONCLUSION Th17, Treg, and ILC subset dysregulations are present in patients with RA but may not be associated with conventionally defined seropositive RF and ACPA. Key Points • Th17, Treg, and ILC subset dysregulations are present in patients with RA but may reflect inflammation rather than specific diseases and stages. • No difference for the distribution of Th17, Treg, and ILC subsets between RF+ and RF- patients and between ACPA+ and ACPA- patients. The screening spectrum of RF and ACPA serology should be expanded to elucidate the role of immune cells in RA pathogenesis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jinbing Rui
- Department of Rheumatology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yang Shu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
21
|
Turcinov S, Af Klint E, Van Schoubroeck B, Kouwenhoven A, Mia S, Chemin K, Wils H, Van Hove C, De Bondt A, Keustermans K, Van Houdt J, Reumers J, Felix N, Rao NL, Peeters P, Stevenaert F, Klareskog L, McKinnon M, Baker D, Suri A, Malmström V. Diversity and Clonality of T Cell Receptor Repertoire and Antigen Specificities in Small Joints of Early Rheumatoid Arthritis. Arthritis Rheumatol 2022; 75:673-684. [PMID: 36409582 DOI: 10.1002/art.42407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/17/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE CD4+ T cells are implicated in rheumatoid arthritis (RA) pathology from the strong association between RA and certain HLA class II gene variants. This study was undertaken to examine the synovial T cell receptor (TCR) repertoire, T cell phenotypes, and T cell specificities in small joints of RA patients at time of diagnosis before therapeutic intervention. METHODS Sixteen patients, of whom 11 patients were anti-citrullinated protein antibody (ACPA)-positive and 5 patients were ACPA-, underwent ultrasound-guided synovial biopsy of a small joint (n = 13) or arthroscopic synovial biopsy of a large joint (n = 3), followed by direct sorting of single T cells for paired sequencing of the αβ TCR together with flow cytometry analysis. TCRs from expanded CD4+ T cell clones of 4 patients carrying an HLA-DRB1*04:01 allele were artificially reexpressed to study antigen specificity. RESULTS T cell analysis demonstrated CD4+ dominance and the presence of peripheral helper T-like cells in both patient groups. We identified >4,000 unique TCR sequences, as well as 225 clonal expansions. Additionally, T cells with double α-chains were a recurring feature. We identified a biased gene usage of the Vβ chain segment TRBV20-1 in CD4+ cells from ACPA+ patients. In vitro stimulation of T cell lines expressing selected TCRs with an extensive panel of citrullinated and viral peptides identified several different virus-specific TCRs (e.g., human cytomegalovirus and human herpesvirus 2). Still, the majority of clones remained orphans with unknown specificity. CONCLUSION Minimally invasive biopsies of the RA synovium allow for single-cell TCR sequencing and phenotyping. Clonally expanded, viral-reactive T cells account for part of the diverse CD4+ T cell repertoire. TRBV20-1 bias in ACPA+ patients suggests recognition of common antigens.
Collapse
Affiliation(s)
- Sara Turcinov
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, and Theme of Inflammation and Ageing, Medical Unit Gastro, Derma, Rheuma, Karolinska University Hospital, Solna, Sweden
| | - Erik Af Klint
- Theme of Inflammation and Ageing, Medical Unit Gastro, Derma, Rheuma, Karolinska University Hospital, Solna, Sweden
| | | | | | - Sohel Mia
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - An De Bondt
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Joke Reumers
- Janssen Research and Development, Beerse, Belgium
| | - Nathan Felix
- Janssen Research and Development, Spring House, Pennsylvania
| | - Navin L Rao
- Janssen Research and Development, Horsham, Pennsylvania
| | | | | | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | | | - Daniel Baker
- Janssen Research and Development, Spring House, Pennsylvania
| | - Anish Suri
- Janssen Research and Development, Beerse, Belgium
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| |
Collapse
|
22
|
O’Neil LJ, Meng X, Mcfadyen C, Fritzler MJ, El-Gabalawy HS. Serum proteomic networks associate with pre-clinical rheumatoid arthritis autoantibodies and longitudinal outcomes. Front Immunol 2022; 13:958145. [PMID: 36159862 PMCID: PMC9492875 DOI: 10.3389/fimmu.2022.958145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives The development of autoantibody directed towards citrullinated proteins (ACPA) are predictive of RA in at-risk individuals. The biological events that underpin loss of immune tolerance and progression into inflammatory arthritis are not known. We sought to identify serum proteomic alterations that drive autoantibody formation, persistence and progression into inflammatory arthritis in a cohort of first-degree relatives (FDR) of RA patients. Methods We studied baseline serum samples from a cohort of Indigenous FDR (n = 147) and quantified serum proteins using a 48-plex platform. Longitudinal outcomes were defined on the basis of ACPA status and progression into inflammatory arthritis (IA). K-means clustering, differential expression, and principal components analyze group differences. A co-expression module analysis was used to identify enriched networks. Random forest was used to classify ACPA positive samples, while network analysis was used to understand underlying biological processes based on protein expression. Results We defined 6 proteomic clusters, with enrichment of ACPA positive samples in one of the clusters. 23 of 24 differentially expressed proteins in ACPA positive samples were upregulated. A co-expression network was enriched in ACPA positive sera and individuals who progressed into IA. Random Forest achieved an area under the curve of 0.767 to classify ACPA positive sera in a test dataset. Network analysis revealed upregulation of JAK-STAT signalling as being activated in those at highest risk to develop future IA. Conclusions The serum proteome provides a rich dataset to understand biological processes in ACPA seropositive individuals. A combination of serum biomarkers, including ACPA, may predict future arthritis onset in at-risk individuals.
Collapse
Affiliation(s)
- Liam J. O’Neil
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
- *Correspondence: Liam J. O’Neil,
| | - Xiaobo Meng
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | - Caitlin Mcfadyen
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | | | - Hani S. El-Gabalawy
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Ospelt C. A common activator of tissue-remodeling fibroblasts across tissues. Nat Immunol 2022; 23:1295-1296. [PMID: 36008725 DOI: 10.1038/s41590-022-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Jurczak A, Delay L, Barbier J, Simon N, Krock E, Sandor K, Agalave NM, Rudjito R, Wigerblad G, Rogóż K, Briat A, Miot-Noirault E, Martinez-Martinez A, Brömme D, Grönwall C, Malmström V, Klareskog L, Khoury S, Ferreira T, Labrum B, Deval E, Jiménez-Andrade JM, Marchand F, Svensson CI. Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3-dependent sensitization. Pain 2022; 163:1542-1559. [PMID: 34924556 PMCID: PMC9341234 DOI: 10.1097/j.pain.0000000000002543] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lauriane Delay
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarzyna Rogóż
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Briat
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Dieter Brömme
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Spiro Khoury
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Bonnie Labrum
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Emmanuel Deval
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Juan Miguel Jiménez-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Soós B, Szentpétery Á, Raterman HG, Lems WF, Bhattoa HP, Szekanecz Z. Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2022; 18:249-257. [PMID: 35273387 DOI: 10.1038/s41584-022-00764-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
Generalized bone loss (osteoporosis) and fragility fractures can occur in rheumatic and musculoskeletal diseases including rheumatoid arthritis and spondyloarthritis (SpA; including ankylosing spondylitis and psoriatic arthritis). In addition, rheumatoid arthritis can involve localized, periarticular bone erosion and, in SpA, local (pathological) bone formation can occur. The RANK-RANKL-osteoprotegerin axis and the Wnt-β-catenin signalling pathway (along with its inhibitors sclerostin and Dickkopf 1) have been implicated in inflammatory bone loss and formation, respectively. Targeted therapies including biologic DMARDs and Janus kinase (JAK) inhibitors can stabilize bone turnover and inhibit radiographic joint damage, and potentially also prevent generalized bone loss. Targeted therapies interfere at various points in the mechanisms of local and generalized bone changes in systemic rheumatic diseases, and they effect biomarkers of bone resorption and formation, bone mass and risk of fragility fractures. Studies on the effects of targeted therapies on rates of fragility fracture are scarce. The efficacy of biologic DMARDs for arresting bone formation in axial SpA is debated. Improved understanding of the most relevant therapeutic targets and identification of important targeted therapies could lead to the preservation of bone in inflammatory rheumatic and musculoskeletal diseases.
Collapse
Affiliation(s)
- Boglárka Soós
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szentpétery
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Medical Sciences, Rheumatology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Willem F Lems
- Amsterdam Rheumatology and Immunology Centre, Amsterdam, Netherlands
| | - Harjit P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
26
|
Molecular Dynamics Study of Citrullinated Proteins Associated with the Development of Rheumatoid Arthritis. Proteomes 2022; 10:proteomes10010008. [PMID: 35225987 PMCID: PMC8884019 DOI: 10.3390/proteomes10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Biological activity regulation by protein post-translational modification (PTM) is critical for cell function, development, differentiation, and survival. Dysregulation of PTM proteins is present in various pathological conditions, including rheumatoid arthritis (RA). RA is a systemic autoimmune disease that primarily affects joints, and there are three main types of protein PTMs associated with the development of this disease, namely, glycosylation, citrullination, and carbamylation. Glycosylation is important for the processing and presentation of antigen fragments on the cell surface and can modulate immunoglobulin activity. The citrullination of autoantigens is closely associated with RA, as evidenced by the presence of antibodies specific to citrullinated proteins in the serum of patients. Carbamylation and dysregulation have recently been associated with RA development in humans.In this study, we performed an overview analysis of proteins with post-translational modifications associated with the development of RA adverted in peer-reviewed scientific papers for the past 20 years. As a result of the search, a list of target proteins and corresponding amino acid sequences with PTM in RA was formed. Structural characteristics of the listed modified proteins were extracted from the Protein Data Bank. Then, molecular dynamics experiments of intact protein structures and corresponding structures with PTMs were performed regarding structures in the list announced in the ProtDB service. This study aimed to conduct a molecular dynamics study of intact proteins and proteins, including post-translational modification and protein citrullination, likely associated with RA development. We observed another exhibition of the fundamental physics concept, symmetry, at the submolecular level, unveiled as the autonomous repetitions of outside the protein structural motif performance globule corresponding to those in the whole protein molecule.
Collapse
|
27
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
29
|
Stromal cell regulation of inflammatory responses. Curr Opin Immunol 2021; 74:92-99. [PMID: 34847474 DOI: 10.1016/j.coi.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022]
Abstract
In the last fifteen years it has become apparent that tissue-resident mesenchymal cells such as fibroblasts, which are the structural elements of all organs, play a cardinal role in the pathology of immune-mediated inflammatory diseases. We now know that all fibroblasts originate from universal pan-organ cellular ancestors and that they are diversified into more specific subsets according to the functional needs of their home tissue-and its activation state. In arthritis, a plethora of activated joint-resident and migrating fibroblast types have been recently described that are central for pathogenesis and persistence of inflammatory joint-disease. Here we provide a current overview on the multiple inflammatory and immune-related functions of fibroblasts and how they could be curbed to induce long-lasting abatement of disease.
Collapse
|
30
|
Dissecting the Molecular Mechanism of Wang-Bi Capsule in the Treatment of Experimental Rheumatoid Arthritis Based on Synovial Tissue Proteomic Analysis. J Immunol Res 2021; 2021:5539008. [PMID: 34708132 PMCID: PMC8545597 DOI: 10.1155/2021/5539008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Wang-Bi capsule (WB) is a traditional Chinese medicine formula and has been applied for rheumatoid arthritis (RA) treatment for many years. However, its underlying molecular mechanisms still remain unclear. In this study, collagen-induced arthritis (CIA) rats were used to observe the therapeutic effect of WB used at different time points, and the proteomic analysis of synovial tissue was applied to reveal its basic molecular mechanisms. The results demonstrated that WB not only effectively ameliorated the symptoms and synovitis, but also downregulated the serum levels of inflammatory cytokines/chemokines in CIA rats. Furthermore, the proteomic analysis of synovial tissue showed that WB could regulate several signaling pathways associated with inflammation or cell migration, such as “IL-1 signaling,” “IL-8 signaling,” and “CXCR4 signaling.” The expression levels of proteins including matrix metalloproteinase 3 (MMP3), MMP19, lipopolysaccharide-binding protein (LBP), serine/threonine kinase interleukin-1 receptor-associated kinase 4 (IRAK4), and actin-related protein 2/3 complex subunit 5 (ARPC5) in these pathways were downregulated significantly by WB when compared with the model group. In sum, this study indicated that WB had obvious inhibitory effects on synovitis of CIA rats, and the mechanisms of which may be involved in downregulating the expression levels of several key proteins including MMP3, MMP19, LBP, IRAK4, and ARPC5.
Collapse
|
31
|
Chatzidionysiou K, Circiumaru A, Rethi B, Joshua V, Engstrom M, Hensvold A, Af Klint E, Catrina A. Tocilizumab decreases T cells but not macrophages in the synovium of patients with rheumatoid arthritis while it increases the levels of serum interleukin-6 and RANKL. RMD Open 2021; 7:rmdopen-2021-001662. [PMID: 34112702 PMCID: PMC8194335 DOI: 10.1136/rmdopen-2021-001662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Our knowledge about the effect of tocilizumab (TCZ) on the synovium in rheumatoid arthritis (RA) is limited. The aim of this study was to investigate the effect of TCZ on citrullination and on inflammation in the synovial tissue and in the peripheral blood. METHODS 15 patients with RA underwent synovial biopsy before and 8 weeks after TCZ initiation. Clinical evaluation was performed at baseline and at 8 weeks. Using immunohistochemistry, we evaluated the expression of CD68, CD3, CD20, osteoprotegerin (OPG) and receptor activator for nuclear factor-κB ligand (RANKL) before and after treatment with TCZ. We also analysed the expression of protein arginine deiminase (PAD)-2 and PAD-4 enzymes in the synovial tissue and protein citrullination patterns with the help of anticitrullinated protein antibody (ACPA) clones 1325:04C03 and 1325:01B09. Serum levels of interleukin-6 (IL-6), IL-8, RANKL, OPG and C-terminal crosslinked telopeptide type II collagen were measured by ELISA. Paired-wise Wilcoxon signed-rank test was used to compare median values before and after treatment. RESULTS Disease activity in patients was reduced from baseline to 8 weeks. Although PAD-2 and PAD-4 expressions remained unchanged after TCZ treatment, the binding of one ACPA clone decreased in the synovial tissue. TCZ did not affect the number of CD68+ macrophages or CD20+ B cells but induced significant decrease in the number of CD3+ T cells. RANKL and OPG expression remained unchanged in the synovial tissue. A significant increase in the levels of IL-6 and RANKL was observed in the serum. This increase was statistically significant in patients who responded to TCZ (achieving Clinical Disease Activity Index low disease activity or remission) but not in non-responders. CONCLUSIONS TCZ reduced synovial T-cell counts but not macrophages. A significant increase of serum IL-6 was observed in responders.
Collapse
Affiliation(s)
- Katerina Chatzidionysiou
- Rheumatology Unit, Department of Gastroentorogy, Dematology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden .,Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Alexandra Circiumaru
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Centrum for Rheumatology, Academic Specialist Centrum, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Vijay Joshua
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Marianne Engstrom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Aase Hensvold
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Centrum for Rheumatology, Academic Specialist Centrum, Stockholm, Sweden
| | - Erik Af Klint
- Rheumatology Unit, Department of Gastroentorogy, Dematology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Department of Gastroentorogy, Dematology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Wu X, Liu Y, Jin S, Wang M, Jiao Y, Yang B, Lu X, Ji X, Fei Y, Yang H, Zhao L, Chen H, Zhang Y, Li H, Lipsky PE, Tsokos GC, Bai F, Zhang X. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat Commun 2021; 12:4977. [PMID: 34404786 PMCID: PMC8371160 DOI: 10.1038/s41467-021-25246-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The presence or absence of anti-citrullinated peptide antibodies (ACPA) and associated disparities in patients with rheumatoid arthritis (RA) implies disease heterogeneity with unknown diverse immunopathological mechanisms. Here we profile CD45+ hematopoietic cells from peripheral blood or synovial tissues from both ACPA+ and ACPA- RA patients by single-cell RNA sequencing and identify subsets of immune cells that contribute to the pathogenesis of RA subtypes. We find several synovial immune cell abnormalities, including up-regulation of CCL13, CCL18 and MMP3 in myeloid cell subsets of ACPA- RA compared with ACPA+ RA. Also evident is a lack of HLA-DRB5 expression and lower expression of cytotoxic and exhaustion related genes in the synovial tissues of patients with ACPA- RA. Furthermore, the HLA-DR15 haplotype (DRB1/DRB5) conveys an increased risk of developing active disease in ACPA+ RA in a large cohort of patients with treatment-naive RA. Immunohistochemical staining shows increased infiltration of CCL13 and CCL18-expressing immune cells in synovial tissues of ACPA- RA. Collectively, our data provide evidence of the differential involvement of cellular and molecular pathways involved in the pathogenesis of seropositive and seronegative RA subtypes and reveal the importance of precision therapy based on ACPA status. Patients with rheumatoid arthritis are commonly stratified by ACPA serology, with positivity being associated with more severe disease and joint destruction. Here the authors present a single cell RNA sequencing resource comparing peripheral blood and synovial tissue cells from patients with ACPA+ versus ACPA- rheumatoid arthritis.
Collapse
Affiliation(s)
- Xunyao Wu
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Jiao
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ji
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Yaran Zhang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China. .,Center for Translational Cancer Research, First Hospital, Peking University, Beijing, China. .,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Hensvold A, Klareskog L. Towards prevention of autoimmune diseases: The example of rheumatoid arthritis. Eur J Immunol 2021; 51:1921-1933. [PMID: 34110013 DOI: 10.1002/eji.202048952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Prevention is the ultimate aim for clinicians and scientists concerned with severe diseases, like many immune-mediated conditions. Here, we describe recent progress in the understanding of etiology and molecular pathogenesis of rheumatoid arthritis (RA), which make this disease a potential prototype for prevention that may include both public health measures and targeted and personalized approaches that we call "personalized prevention." Critical components of this knowledge are (i) better understanding of the dynamics of the RA-associated autoimmunity that may begin many years before onset of joint inflammation; (ii) insights into how this immunity may be triggered at mucosal surfaces after distinct environmental challenges; (iii) better understanding of which features of the pre-existing immunity may cause symptoms that precede joint inflammation and predict a high risk for imminent arthritis development; and (iv) how molecular events occurring before onset of inflammation might be targeted by existing or future therapies, ultimately by specific targeting of Major histocompatibility complex (MHC) class II restricted and RA-specific immunity. Our main conclusion is that studies and interventions in the phase of autoimmunity preceding RA offer new opportunities to prevent the disease and thereby also understand the molecular pathogenesis of its different variants.
Collapse
Affiliation(s)
- Aase Hensvold
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden.,Rheumatology Section, Theme inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Grönwall C, Liljefors L, Bang H, Hensvold AH, Hansson M, Mathsson-Alm L, Israelsson L, Joshua V, Svärd A, Stålesen R, Titcombe PJ, Steen J, Piccoli L, Sherina N, Clavel C, Svenungsson E, Gunnarsson I, Saevarsdottir S, Kastbom A, Serre G, Alfredsson L, Malmström V, Rönnelid J, Catrina AI, Lundberg K, Klareskog L. A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis. Front Immunol 2021; 12:627986. [PMID: 34093522 PMCID: PMC8173192 DOI: 10.3389/fimmu.2021.627986] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Seropositive rheumatoid arthritis (RA) is characterized by the presence of rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) with different fine-specificities. Yet, other serum anti-modified protein autoantibodies (AMPA), e.g. anti-carbamylated (Carb), -acetylated (KAc), and malondialdehyde acetaldehyde (MAA) modified protein antibodies, have been described. In this comprehensive study, we analyze 30 different IgG and IgA AMPA reactivities to Cit, Carb, KAc, and MAA antigens detected by ELISA and autoantigen arrays in N=1985 newly diagnosed RA patients. Association with patient characteristics such as smoking and disease activity were explored. Carb and KAc reactivities by different assays were primarily seen in patients also positive for anti-citrulline reactivity. Modified vimentin (mod-Vim) peptides were used for direct comparison of different AMPA reactivities, revealing that IgA AMPA recognizing mod-Vim was mainly detected in subsets of patients with high IgG anti-Cit-Vim levels and a history of smoking. IgG reactivity to acetylation was mainly detected in a subset of patients with Cit and Carb reactivity. Anti-acetylated histone reactivity was RA-specific and associated with high anti-CCP2 IgG levels, multiple ACPA fine-specificities, and smoking status. This reactivity was also found to be present in CCP2+ RA-risk individuals without arthritis. Our data further demonstrate that IgG autoreactivity to MAA was increased in RA compared to controls with highest levels in CCP2+ RA, but was not RA-specific, and showed low correlation with other AMPA. Anti-MAA was instead associated with disease activity and was not significantly increased in CCP2+ individuals at risk of RA. Notably, RA patients could be subdivided into four different subsets based on their AMPA IgG and IgA reactivity profiles. Our serology results were complemented by screening of monoclonal antibodies derived from single B cells from RA patients for the same antigens as the RA cohort. Certain CCP2+ clones had Carb or Carb+KAc+ multireactivity, while such reactivities were not found in CCP2- clones. We conclude that autoantibodies exhibiting different patterns of ACPA fine-specificities as well as Carb and KAc reactivity are present in RA and may be derived from multireactive B-cell clones. Carb and KAc could be considered reactivities within the "Cit-umbrella" similar to ACPA fine-specificities, while MAA reactivity is distinctly different.
Collapse
Affiliation(s)
- Caroline Grönwall
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Liljefors
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Aase H. Hensvold
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Immuno Diagnostics Division, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijay Joshua
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Svärd
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Clinical Research Dalarna, Uppsala University, Uppsala, Sweden
| | - Ragnhild Stålesen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip J. Titcombe
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- The Center for Immunology and Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Johanna Steen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Natalia Sherina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Cyril Clavel
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Elisabet Svenungsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Guy Serre
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm Health Region, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anca I. Catrina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Dickkopf-1 perpetuated synovial fibroblast activation and synovial angiogenesis in rheumatoid arthritis. Clin Rheumatol 2021; 40:4279-4288. [PMID: 34013491 DOI: 10.1007/s10067-021-05766-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Dickkopf-1 (Dkk-1), a regulatory molecule of the Wnt pathway, is elevated and leads to bone resorption in patients with RA. This study is aimed to investigate the contribution of Dkk-1 to synovial inflammation and synovial fibroblast-mediated angiogenesis in RA. METHODS The expression of Dkk-1 in RA synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF) was detected by real-time PCR and ELISA, respectively. RASF were stimulated with different pro-inflammatory factors. The expression of angiogenic factors, pro-inflammatory cytokines, and MMPs in RASF was analyzed by real-time PCR when Dkk-1 was inhibited or overexpressed. Meanwhile, the concentrations of MCP-1, IL-6, IL-8, and MMP-3 in the cell culture supernatant were assessed by ELISA. The effects of Dkk-1 on the MAPK signaling pathway were evaluated by western blot. Matrigel tube formation assay was employed to reveal the direct and indirect effects of Dkk-1 on synovial angiogenesis. RESULTS Dkk-1 expression was elevated in synovial fluids and synovial fibroblasts of RA patients. Treatment with various pro-inflammatory cytokines significantly promoted DKK-1 expression in RASF. The production of potent angiogenic factors, pro-inflammatory cytokines, and MMPs in RASF was elevated, whereas the reverse results were found in the inhibitor groups. Silenced Dkk-1expression in RASF dampened capillary tube organization in both direct and indirect manners, resulting in restrained ERK, JNK, and p38 signaling pathway activation. CONCLUSION We concluded that Dkk-1 exacerbated the inflammation, cartilage erosion, and angiogenesis mediated by synovial fibroblasts in RA. Modulation of DKK-1 expression may facilitate development of novel strategies to control RA. Key points • Dkk-1 expression was elevated in synovial fluids and synovial fibroblasts of RA patients. • Treatment with various pro-inflammatory cytokines significantly promoted DKK-1 expression. • Silenced Dkk-1expression in RASF dampened capillary tube organization.
Collapse
|
37
|
Lim JJ, Jones CM, Loh TJ, Ting YT, Zareie P, Loh KL, Felix NJ, Suri A, McKinnon M, Stevenaert F, Sharma RK, Klareskog L, Malmström V, Baker DG, Purcell AW, Reid HH, La Gruta NL, Rossjohn J. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Sci Immunol 2021; 6:6/58/eabe0896. [PMID: 33863750 DOI: 10.1126/sciimmunol.abe0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Individuals expressing HLA-DR4 bearing the shared susceptibility epitope (SE) have an increased risk of developing rheumatoid arthritis (RA). Posttranslational modification of self-proteins via citrullination leads to the formation of neoantigens that can be presented by HLA-DR4 SE allomorphs. However, in T cell-mediated autoimmunity, the interplay between the HLA molecule, posttranslationally modified epitope(s), and the responding T cell repertoire remains unclear. In HLA-DR4 transgenic mice, we show that immunization with a Fibβ-74cit69-81 peptide led to a population of HLA-DR4Fibβ-74cit69-81 tetramer+ T cells that exhibited biased T cell receptor (TCR) β chain usage, which was attributable to selective clonal expansion from the preimmune repertoire. Crystal structures of pre- and postimmune TCRs showed that the SE of HLA-DR4 represented a main TCR contact zone. Immunization with a double citrullinated epitope (Fibβ-72,74cit69-81) altered the responding HLA-DR4 tetramer+ T cell repertoire, which was due to the P2-citrulline residue interacting with the TCR itself. We show that the SE of HLA-DR4 has dual functionality, namely, presentation and a direct TCR recognition determinant. Analogous biased TCR β chain usage toward the Fibβ-74cit69-81 peptide was observed in healthy HLA-DR4+ individuals and patients with HLA-DR4+ RA, thereby suggesting a link to human RA.
Collapse
Affiliation(s)
- Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yi Tian Ting
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pirooz Zareie
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Khai L Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nathan J Felix
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | - Anish Suri
- Janssen Research & Development, Turnhoutseweg 30, BE-2340, Beerse, Belgium
| | - Murray McKinnon
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | | | - Ravi K Sharma
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Daniel G Baker
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
38
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
39
|
Sun M, Rethi B, Krishnamurthy A, Joshua V, Wähämaa H, Catrina SB, Catrina A. An Image-based Dynamic High-throughput Analysis of Adherent Cell Migration. Bio Protoc 2021; 11:e3957. [PMID: 33855109 DOI: 10.21769/bioprotoc.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/02/2022] Open
Abstract
In this protocol, we describe a method to monitor cell migration by live-cell imaging of adherent cells. Scratching assay is a common method to investigate cell migration or wound healing capacity. However, achieving homogenous scratching, finding the optimal time window for end-point analysis and performing an objective image analysis imply, even for practiced and adept experimenters, a high chance for variability and limited reproducibility. Therefore, our protocol implemented the assessment for cell mobility by using homogenous wound making, sequential imaging and automated image analysis. Cells were cultured in 96-well plates, and after attachment, homogeneous linear scratches were made using the IncuCyte ® WoundMaker. The treatments were added directly to wells and images were captured every 2 hours automatically. Thereafter, the images were processed by defining a scratching mask and a cell confluence mask using a software algorithm. Data analysis was performed using the IncuCyte ® Cell Migration Analysis Software. Thus, our protocol allows a time-lapse analysis of treatment effects on cell migration in a highly reliable, reproducible and re-analyzable manner.
Collapse
Affiliation(s)
- Meng Sun
- Rheumatology Unit, Department of Medicine, Karolinska Insititutet, Stockholm, Sweden
| | - Bence Rethi
- Rheumatology Unit, Department of Medicine, Karolinska Insititutet, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Rheumatology Unit, Department of Medicine, Karolinska Insititutet, Stockholm, Sweden
| | - Vijay Joshua
- Rheumatology Unit, Department of Medicine, Karolinska Insititutet, Stockholm, Sweden
| | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Karolinska Insititutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Center for Rheumatology, Academic Specialist Centre, Stockholm, Sweden
| |
Collapse
|
40
|
Toes RE, Raza K. The autoimmune response as a potential target for tolerance induction before the development of rheumatoid arthritis. THE LANCET. RHEUMATOLOGY 2021; 3:e214-e223. [PMID: 38279384 DOI: 10.1016/s2665-9913(20)30445-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2024]
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that affects the synovial joints. Although treatment options and efficacy have increased substantially in the past two decades, the disease cannot be cured or prevented. Therefore, rheumatoid arthritis still has a considerable effect on the quality of life of patients, not only because life-long medication is often required, but also because residual disease activity leads to progressive loss of function in the musculoskeletal system and extra-articular morbidity. Key future goals in the management of rheumatoid arthritis are the ability to induce long-lasting drug-free remission in patients with the disease (ie, to achieve a cure), and to prevent disease before it emerges. To reach these goals, it is pivotal to understand the autoimmune response underlying rheumatoid arthritis pathogenesis and to develop ways to permanently silence it (ie, to induce tolerance). For preventive studies, the identification of markers (clinical, immunological, and biological) predictive of future disease is crucial, as prevention of disease will not be feasible without the ability to identify relevant at-risk target populations. In this Series paper, we review the autoimmune response underlying rheumatoid arthritis, how rheumatoid arthritis-specific autoimmunity develops and evolves during the transition from health to disease, and how tolerance studies could be designed to achieve prevention or cure of the disease.
Collapse
Affiliation(s)
- Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis and MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| |
Collapse
|
41
|
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021; 7:e001228. [PMID: 33771834 PMCID: PMC8006837 DOI: 10.1136/rmdopen-2020-001228] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Epidemiological findings suggest a potential role for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) pathogenesis. ACPA-positive RA is associated with unique genetical and environmental risk factors, in contrast to seronegative RA. ACPA-positive healthy individuals are at risk of developing RA and can develop joint pain and bone loss already before disease onset. ACPA injection triggered bone loss and pain-like behaviour in mice and, in the presence of additional arthritis inducers, exacerbated joint inflammation. In cell culture experiments, ACPAs could bind to and modulate a variety of cellular targets, such as macrophages, osteoclasts, synovial fibroblasts, neutrophil granulocytes, mast cells, dendritic cells and platelets, further underlying a potential role for these autoantibodies in triggering pathogenic pathways and providing clues for their mechanisms of action. Patient-derived ACPA clones have been characterised by unique cellular effects and multiple ways to act on the target cells. ACPAs might directly induce stimulatory signals by ligating key citrullinated cell surface molecules or, alternatively, act as immune complexes on Fc receptors and potentially other molecules that recognise carbohydrate moieties. On the contrary to experimentally manufactured ACPA clones, patient-derived ACPAs are highly promiscuous and cross-reactive, suggesting a simultaneous binding to a range of functionally relevant and irrelevant targets. Moreover, several ACPA clones recognise carbamylated or acetylated targets as well. These features complicate the identification and description of ACPA-induced pathogenic mechanisms. In the current review, we summarise recent data on the functional properties of patient-derived ACPAs and present mechanistic models on how these antibodies might contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Anca Catrina
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
The prospects for targeting FcR as a novel therapeutic strategy in rheumatoid arthritis. Biochem Pharmacol 2020; 183:114360. [PMID: 33301760 DOI: 10.1016/j.bcp.2020.114360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial membrane hyperplasia, infiltration of inflammatory cells and bone tissue destruction. Although there have been many measures taken for RA therapy in recent years, they are not sufficiently safe or effective. Thus, it is very important to develop new drugs and slow down damage to other healthy organs in the case of RA. Lately, immunoglobulin Fc receptors (FcRs), such as the IgG Fc receptor (FcγR), IgA Fc receptor (FcαR), and IgD Fc receptor (FcδR), have been found to be involved in inducing or suppressing arthritis. FcRs interacting with immune complexes (ICs) are a key factor in the etiopathogenesis of RA. Therefore, an increasing number of methodsfor the targeted treatment of RA with FcRs are emerging, such as recombinant soluble FcγRs, recombinant multimeric Fc fragments and monoclonal antibodies, and have been demonstrated to significantly improve RA symptoms. Simultaneously, certain kinases involved in the downstream signaling of FcRs can also be a target for the treatment of RA, such as Syk and Btk inhibitors. An overview of these FcRs is provided in this review, including a description of FcR-related functions, signaling pathways, and potential FcR-targeting molecules for RA therapy. To date, the initial results of those developed FcR-targeting molecules have been promising. With this, FcRs might offer a better alternative to RA medication. Additionally, further pharmacological characterization and a better understanding of the unique mechanisms of FcR-targeting molecules are necessary.
Collapse
|
43
|
Sahlström P, Hansson M, Steen J, Amara K, Titcombe PJ, Forsström B, Stålesen R, Israelsson L, Piccoli L, Lundberg K, Klareskog L, Mueller DL, Catrina AI, Skriner K, Malmström V, Grönwall C. Different Hierarchies of Anti–Modified Protein Autoantibody Reactivities in Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:1643-1657. [DOI: 10.1002/art.41385] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Peter Sahlström
- Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden, and Charité Universitätsmedizin Berlin Germany
| | - Monika Hansson
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Johanna Steen
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Khaled Amara
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Philip J. Titcombe
- Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden, and University of Minnesota Medical School Minneapolis
| | | | - Ragnhild Stålesen
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Lena Israelsson
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine Università della Svizzera italiana Bellinzona Switzerland
| | - Karin Lundberg
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Lars Klareskog
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | | | - Anca I. Catrina
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | | | | | - Caroline Grönwall
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
44
|
Qin G, Lin X, Liang P, Li Y, Zhou C, Kutty SN, Rikard H. [Strong inflammation is essential for expression of articular cartilage-specific citrullinated antigens]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1081-1089. [PMID: 32895186 DOI: 10.12122/j.issn.1673-4254.2020.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression of citrullinated epitopes in articular cartilage protein and whether its expression is sufficient to induce anti-citrullinated protein antibody (ACPA) response in mice. METHODS The experimental group was treated with different concentrations of lipopolysaccharide (LPS), heat-inactivated bacteria (Escherichia coli and Staphylococcus aureus) or specific monoclonal antibody against type Ⅱ collagen to induce citrullination of articular cartilage protein, with PBS as the control. Immunohistochemistry with the monoclonal antibody ACC4 (IgG1) that specifically binds to the citrullinated epitope of cartilage protein was performed for detecting the expression of citrullinated protein, with ACC1 (IgG2a) as a positive control antibody and L243 (IgG2a) and Hy2.15 (IgG1) as the negative isotype control. In the in vivo experiment, SD rats were subjected to injection of different doses of LPS in the right knee (with PBS as the controls in the left knee), and 3 days later frozen sections were prepared for immunohistochemical detection of the expression of citrullinated protein. Models of collagen-induced arthritis (CIA) established in different mouse strains were observed for incidence and severity of CIA. Serum samples collected from these models and the sera from rheumatoid arthritis patients were examined for anti-citrullinated protein antibody, and immunohistochemistry was performed to detect the expression of citrullinated protein in the cartilage of the mouse. RESULTS The citrullinated CII epitope-specific antibody ACC4 did not bind to articular cartilage tissues with different treatments as compared with the positive control antibody ACC1. The ACC4 antibody and the antibodies from patients with rheumatoid arthritis with high titers of anti-citrullinated protein antibody were capable of binding to the synovial tissue around the articular cartilage of the CIA. Luminex analysis showed that the anti-citrullinated protein antibody was lowly expressed in mouse serum, but the anti-type Ⅱ collagen triple helix structure peptide antibody exhibited strong reactivity. CONCLUSIONS Mild acute inflammatory response is not enough to cause citrullination of articular cartilage protein, and the expression of specific epitope requires a high-intensity inflammatory response. Inflammatory articular cartilage protein can express citrullinated epitopes in type Ⅱ collagen-induced arthritis in mice, but the expression of citrullinated epitopes is not sufficient to induce an immune response to anti-citrullinated antibodies. Stronger stimulation signals are required to induce an immune response for producing anti-citrullinated protein antibodies.
Collapse
Affiliation(s)
- Guicheng Qin
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyin Lin
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peibin Liang
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanpeng Li
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Selva Nandakumar Kutty
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Holmdahl Rikard
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
45
|
Wang J, Tie N, Li H, Kang X. Inhibitory Effect of Tetramerized Single-Chain Variable Fragment of Anti-Cyclic Citrullinated Peptide Antibodies on the Proliferation, Activation, and Secretion of Cytokines of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis In Vitro Co-Culture System. Inflammation 2020; 43:2245-2255. [PMID: 32737657 DOI: 10.1007/s10753-020-01292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tetramerized single-chain variable fragment (ScFv) of anti-cyclic citrullinated peptide (TeAb-CCP) is a constructed tetramerized ScFv of anti-cyclic citrullinated peptide (CCP) antibodies with p53 tetrameric domain, aim to investigate its effect on fibroblast-like synoviocytes (FLSs) proliferation, migration, invasion, and production of inflammatory mediators in the in vitro co-culture system of peripheral mononuclear cells (PBMCs) and FLSs. TeAb-CCP was constructed by modifying a monovalent ScFv antibody to CCP with p53 tetrameric domain to improve its affinity. FLSs were isolated and cultured from rheumatoid arthritis (RA) patients and control subjects. A co-culture system of peripheral mononuclear cells (PBMCs) and FLSs was used. FLSs proliferation, migration, and invasion were measured by MTT, scratch test, and Transwell chamber. Supernatants were measured for cytokines, chemokines, metalloproteinases, and anti-CCP antibodies by Luminex liquid phase protein chip and ELISA. TeAb-CCP significantly inhibited FLSs proliferation in a dose-dependent mode, with maximal action at concentration of 100 μg/ml on the 7th day in the co-culture system with PBMCs and FLSs, but not the same with only FLSs. TeAb-CCP significantly suppressed FLSs migration and invasive ability compared with the controls. Significantly lower levels of interleukin (IL)-6, IL-8, RANKL, protein arginine deiminase (PAD)-2, PAD4, metalloproteinase (MMP)-1 and MMP-3 and anti-CCP antibodies were found in co-culture supernatant of TeAb-CCP group. In contrast, transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinases-2 (TIMP-2) was significantly increased in the TeAb-CCP group. No significant difference of IL-1a, IL-10, IL-17, TNFα, VEGF, and FGF was found between two groups. As a blocking antibody, TeAb-CCP can significantly inhibit PBMCs of RA to produce pro-inflammatory mediators, and furthermore, inhibit the proliferation, activation, migration, and invasion of FLSs in vitro. In turn, it is suggested that citrullinated modified self-epitopes may be a new target for RA therapy.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Boissier MC, Biton J, Semerano L, Decker P, Bessis N. Origins of rheumatoid arthritis. Joint Bone Spine 2020; 87:301-306. [DOI: 10.1016/j.jbspin.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
47
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
48
|
Klareskog L, Rönnelid J, Saevarsdottir S, Padyukov L, Alfredsson L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J Intern Med 2020; 287:514-533. [PMID: 32176395 DOI: 10.1111/joim.13058] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The current review uses rheumatoid arthritis (RA) as a prominent example for how studies on the interplay between environmental and genetic factors in defined subsets of a disease can be used to formulate aetiological hypotheses that subsequently can be tested for causality using molecular and functional studies. Major discussed findings are that exposures to airways from many different noxious agents including cigarette smoke, silica dust and more interact with major susceptibility genes, mainly HLA-DR genetic variants in triggering antigen-specific immune reactions specific for RA. We also discuss how several other environmental and lifestyle factors, including microbial, neural and metabolic factors, can influence risk for RA in ways that are different in different subsets of RA.The description of these processes in RA provides the best example so far in any immune-mediated disease of how triggering of immunity at one anatomical site in the context of known environmental and genetic factors subsequently can lead to symptoms that precede the classical inflammatory disease symptoms and later contribute also to the classical RA joint inflammation. The findings referred to in the review have led to a change of paradigms for very early therapy and prevention of RA and to efforts towards what we have named 'personalized prevention'. We believe that the progress described here for RA will be of relevance for research and practice also in other immune-mediated diseases.
Collapse
Affiliation(s)
- L Klareskog
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - L Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:3830212. [PMID: 32256192 PMCID: PMC7103059 DOI: 10.1155/2020/3830212] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune syndrome associated with several genetic, epigenetic, and environmental factors affecting the articular joints contributing to cartilage and bone damage. Although etiology of this disease is not clear, several immune pathways, involving immune (T cells, B cells, dendritic cells, macrophages, and neutrophils) and nonimmune (fibroblasts and chondrocytes) cells, participate in the secretion of many proinflammatory cytokines, chemokines, proteases (MMPs, ADAMTS), and other matrix lysing enzymes that could disturb the immune balance leading to cartilage and bone damage. The presence of autoantibodies preceding the clinical onset of arthritis and the induction of bone erosion early in the disease course clearly suggest that initiation events damaging the cartilage and bone start very early during the autoimmune phase of the arthritis development. During this process, several signaling molecules (RANKL-RANK, NF-κB, MAPK, NFATc1, and Src kinase) are activated in the osteoclasts, cells responsible for bone resorption. Hence, comprehensive knowledge on pathogenesis is a prerequisite for prevention and development of targeted clinical treatment for RA patients that can restore the immune balance improving clinical therapy.
Collapse
|
50
|
Abstract
Rheumatoid arthritis is a heterogeneous disease, which can be, based on data combining genetic risk factors and autoantibodies, sub-classified into ACPA-positive and -negative RA. Presence of ACPA and RF as well as rising CRP-levels in some patients years before onset of clinical symptoms indicate that relevant immune responses for RA development are initiated very early. ACPA are highly specific for RA, whereas RF can also be found among healthy (elderly) individuals and patients with other autoimmune diseases or infection. The most important genetic risk factor for RA development, the shared epitope alleles, resides in the MHC class II region. Shared epitope alleles, however, only predispose to the development of ACPA-positive RA. Smoking is thus far the most important environmental risk factor associated with the development of RA. Studies on synovitis have shown the importance not only of adaptive but also of innate immune responses. In summary of the various results from immunological changes in blood and synovial tissue, the extension of the immune response from a diffuse myeloid to a lympho-myeloid inflammation appears to be associated with a more successful therapeutic response to biologics. With respect to advances in synovitis research, new targets for treatment against pathological subsets of immune cells or fibroblasts are already on the horizon. However, alternative strategies involving the microbiome may play an important role as well and research in this field is growing rapidly.
Collapse
|