1
|
McDougall JJ, McConnell M, Reid AR. Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation. Mol Pain 2021; 17:17448069211016141. [PMID: 34006144 PMCID: PMC8138287 DOI: 10.1177/17448069211016141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calpain I is a calcium-dependent cysteine protease which has dual effects
on tissue inflammation depending on its cellular location.
Intracellularly, calpain I has pro-inflammatory properties but becomes
anti-inflammatory when exteriorised into the extracellular space. In
this study, the effect of calpain I on joint pain was investigated
using the kaolin/carrageenan model of acute synovitis. Evoked pain
behaviour was determined by von Frey hair algesiometry and non-evoked
pain was measured using dynamic hindlimb weight bearing. Local
administration of calpain I reduced secondary allodynia in the acute
inflammation model and this effect was blocked by the cell impermeable
calpain inhibitor E-64c. Calpain I also blocked the algesic effect of
the protease activated receptor-2 (PAR-2) cleaving enzyme mast cell
tryptase. The cell permeable calpain blocker E-64d also produced
analgesia in arthritic joints. These data suggest that calpain I
produces disparate effects on joint pain viz.
analgesia when present extracellularly by disarming PAR-2, and
pro-algesic when the enzyme is inside the cell.
Collapse
Affiliation(s)
- Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Miranda McConnell
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allison R Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Wong VKW, Qiu C, Xu S, Law BYK, Zeng W, Wang H, Michelangeli F, Dias IRDSR, Qu YQ, Chan TW, Han Y, Zhang N, Mok SWF, Chen X, Yu L, Pan H, Hamdoun S, Efferth T, Yu WJ, Zhang W, Li Z, Xie Y, Luo R, Jiang Q, Liu L. Ca 2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol 2019; 176:2922-2944. [PMID: 31124139 PMCID: PMC6637043 DOI: 10.1111/bph.14718] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. EXPERIMENTAL APPROACH We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohistochemical and flow cytometric techniques. Anti-arthritic effects of celastrol, autophagy induction, and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes, using siRNA methods to study calmodulin, calpains, and calcineurin. KEY RESULTS Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via Ca2+ /calmodulin-dependent kinase kinase-β-AMP-activated protein kinase-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes down-regulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca2+ in celastrol-regulated gene expression. CONCLUSION AND IMPLICATIONS Celastrol triggered Ca2+ signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca2+ signalling.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Su‐Wei Xu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Basic MedicineZhuhai Health SchoolZhuhaiChina
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hui Wang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | | | | | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Tsz Wai Chan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Ni Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xi Chen
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lu Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Wen Jing Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yuesheng Xie
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Riqiang Luo
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Quan Jiang
- Department of Rheumatology, Guang‐An‐Men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
3
|
Barabás K, Bakos J, Zeitler Z, Bálint G, Nagy E, Lakatos T, Kékesi AK, Gáspár L, Szekanecz Z. Effects of laser treatment on the expression of cytosolic proteins in the synovium of patients with osteoarthritis. Lasers Surg Med 2014; 46:644-9. [PMID: 24909318 DOI: 10.1002/lsm.22268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low level laser therapy (LLLT) has been developed for non-invasive treatment of joint diseases. We have previously shown that LLLT influenced synovial protein expression in rheumatoid arthritis (RA). The aim of this study was to assess the effects of laser irradiation on osteoarthritic (OA) synovial protein expression. STUDY DESIGN/MATERIALS AND METHODS The synovial membrane samples removed from the knees of 6 OA patients were irradiated ex vivo using near infrared diode laser (807-811 nm; 25 J/cm(2) ). An untreated sample taken from the same patient served as control. Synovial protein separation and identification were performed by two-dimensional differential gel electrophoresis and mass spectrometry, respectively. RESULTS Eleven proteins showing altered expression due to laser irradiation were identified. There were three patients whose tissue samples demonstrated a significant increase (P < 0.05) in mitochondrial heat shock 60 kD protein 1 variant 1. The expression of the other proteins (calpain small subunit 1, tubulin alpha-1C and beta 2, vimentin variant 3, annexin A1, annexin A5, cofilin 1, transgelin, and collagen type VI alpha 2 chain precursor) significantly decreased (P < 0.05) compared to the control samples. CONCLUSIONS A single diode laser irradiation of the synovial samples of patients with osteoarthritis can statistically significantly alter the expression of some proteins in vitro. These findings provide some more evidence for biological efficacy of LLLT treatment, used for osteoarthritis.
Collapse
Affiliation(s)
- Klára Barabás
- Outpatient Clinic of Budavári Local Government, Unit of Rheumatology, Budapest, 1122, Hungary; National Institute of Rheumatology and Physiotherapy, Budapest, 1023, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Samarasinghe RM, Kanwar RK, Kumar K, Kanwar JR. Antiarthritic and chondroprotective activity of Lakshadi Guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers. Nanomedicine (Lond) 2014; 9:819-37. [DOI: 10.2217/nnm.13.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan–calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis. Materials & methods: Chondrocytes exposed to IL-1β and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induced arthritis. Results: C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1β-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan–calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines. Conclusion: The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013
Collapse
Affiliation(s)
- Rasika M Samarasinghe
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular & Medical Research (MMR) Strategic Research Centre, Faculty of Health, Technology Precinct (GTP), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular & Medical Research (MMR) Strategic Research Centre, Faculty of Health, Technology Precinct (GTP), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Kuldeep Kumar
- PG Scholars Post Graduate Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular & Medical Research (MMR) Strategic Research Centre, Faculty of Health, Technology Precinct (GTP), Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
5
|
Iguchi-Hashimoto M, Usui T, Yoshifuji H, Shimizu M, Kobayashi S, Ito Y, Murakami K, Shiomi A, Yukawa N, Kawabata D, Nojima T, Ohmura K, Fujii T, Mimori T. Overexpression of a minimal domain of calpastatin suppresses IL-6 production and Th17 development via reduced NF-κB and increased STAT5 signals. PLoS One 2011; 6:e27020. [PMID: 22046434 PMCID: PMC3203168 DOI: 10.1371/journal.pone.0027020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a candidate treatment for inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Mikiko Iguchi-Hashimoto
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Shimizu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shio Kobayashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoichiro Yukawa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Kawabata
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaki Nojima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 2009; 339:221-35. [PMID: 19915869 DOI: 10.1007/s00441-009-0887-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
The joint is a discrete unit that consists of cartilage, bone, tendon and ligaments. These tissues are all composed of an extracellular matrix made of collagens, proteoglycans and specialised glycoproteins that are actively synthesised, precisely assembled and subsequently degraded by the resident connective tissue cells. A balance is maintained between matrix synthesis and degradation in healthy adult tissues. Different classes of proteinases play a part in connective tissue turnover in which active proteinases can cleave matrix protein during resorption, although the proteinase that predominates varies between different tissues and diseases. The metalloproteinases are potent enzymes that, once activated, degrade connective tissue and are inhibited by tissue inhibitors of metalloproteinases (TIMPs); the balance between active matrix metalloproteinases and TIMPs determines, in many tissues, the extent of extracellular matrix degradation. The serine proteinases are involved in the initiation of activation cascades and some, such as elastase, can directly degrade the matrix. Cysteine proteinases are responsible for the breakdown of collagen in bone following the removal of the osteoid layer and the attachment of osteoclasts to the exposed bone surface. Various growth factors increase the synthesis of matrix and proteinase inhibitors, whereas cytokines (alone or in combination) can inhibit matrix synthesis and stimulate proteinase production and matrix destruction.
Collapse
|
7
|
Matsunaga T, Yamamoto G, Tachikawa T. Expression of typical calpains in mouse molar. Arch Oral Biol 2009; 54:885-92. [DOI: 10.1016/j.archoralbio.2009.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/03/2009] [Accepted: 07/16/2009] [Indexed: 12/15/2022]
|
8
|
Huser CAM, Davies ME. Calcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explants. ACTA ACUST UNITED AC 2007; 56:2322-34. [PMID: 17599752 DOI: 10.1002/art.22717] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Chondrocyte apoptosis is an important factor in the progression of osteoarthritis. This study aimed to elucidate the mechanisms involved upstream of caspase 9 activation and, in particular, calcium signaling and mitochondrial depolarization. METHODS Articular cartilage explants obtained from healthy horses were subjected to a single impact load (500-gm weight dropped from a height of 50 mm) and cultured in vitro for up to 48 hours. Chondrocyte death was quantified by the TUNEL method. Release of proteoglycans was determined by the dimethylmethylene blue assay. Weight change was measured, and mitochondrial depolarization was determined using JC-1 staining. To assess the role of calcium signaling in impact-induced chondrocyte death, explants were preincubated in culture medium containing various concentrations of calcium. Inhibitors were used to assess the role of individual signaling components in impact-induced chondrocyte death. RESULTS Calcium quenching, inhibitors of calpains, calcium/calmodulin-regulated kinase II (CaMKII), and mitochondrial depolarization reduced impact-induced chondrocyte death after 48 hours in culture. Transient mitochondrial depolarization was observed 3-6 hours following a single impact load. Mitochondrial depolarization was prevented by calcium quenching, inhibitors of calpain, CaMKII, permeability transition pore formation, ryanodine receptor, and the mitochondrial uniport transporter. Cathepsin B did not appear to be involved in impact-induced chondrocyte death. The calpain inhibitor prevented proteoglycan loss, but the percentage weight gain and proteoglycan loss were unaffected by all treatments used. CONCLUSION Following a single impact load, calcium is released from the endoplasmic reticulum via the ryanodine receptor and is taken up by the mitochondria via the uniport transporter, causing mitochondrial depolarization and caspase 9 activation. In addition, calpains and CaMKII play important roles in causing mitochondrial depolarization.
Collapse
|
9
|
Mewar D, Wilson AG. Autoantibodies in rheumatoid arthritis: a review. Biomed Pharmacother 2006; 60:648-55. [PMID: 17064873 DOI: 10.1016/j.biopha.2006.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 09/21/2006] [Indexed: 12/24/2022] Open
Abstract
Emerging insights into the importance of B cells in the pathogenesis of rheumatoid arthritis (RA) as highlighted by the efficacy of B cell depletion is one factor that has contributed to the upsurge of interest in the potential role of autoantibodies both as disease markers and with respect to a pathogenic role. Since the initial description of rheumatoid factor (RF), a large number of both disease-specific and non-specific autoantibodies have been described in patients with RA including antibodies to type II collagen (CII), immunoglobulin binding protein (BiP) and antibodies directed at citrullinated peptides (anti-CCP) and other citrullinated proteins such as vimentin (anti-Sa) . Despite some overlap the serological profile of RA does appear to be distinct from other diseases such as SLE . Although the precise mechanisms responsible for the formation of these antibodies have not been well defined their presence must reflect the interaction between T and B cells believed to be relevant to the pathogenesis of RA. The specificity of the association of such factors as anti-CCP and anti-BiP with RA may reflect unique pathogenic events leading to the processing and presentation of the "cryptic self" . Ease of measurement and stability make autoantibodies attractive diagnostic and prognostic markers particularly in early disease when it may be difficult to distinguish self-limiting synovitis from persistent disease . The purpose of this article is to provide an overview of the current state of knowledge of the spectrum of autoantibodies thus far characterised in individuals with rheumatoid arthritis, and discuss their diagnostic, prognostic and pathogenetic relevance.
Collapse
Affiliation(s)
- D Mewar
- School of Medicine and Biomedical Sciences, Beech Hill Rd, Sheffield S10 2RX, UK.
| | | |
Collapse
|
10
|
Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 2006; 20:983-1002. [PMID: 16980219 DOI: 10.1016/j.berh.2006.06.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cartilage and the underlying bone are destroyed in severe cases of arthritis preventing joints from functioning normally. Cartilage and bone collagen can be specifically cleaved by the collagenases, members of the matrix metalloproteinase family (MMPs), whilst cartilage aggrecan is degraded by members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin repeats) family of proteinases. Intracellular cysteine proteinases are involved in bone resorption by osteoclasts and the serine proteinases are involved in activating MMPs. Together, these enzymes act in concert during normal growth and development, especially within the growth plate; however they are also involved in tissue destruction during disease. Synthetic MMP inhibitors have been investigated as a means to block tissue destruction in arthritis but have been unsuccessful, although recent trials with doxycycline suggest this may block joint destruction in osteoarthritis. It is likely that combinations of therapy will be required to ensure that joint destruction is prevented in arthritis patients.
Collapse
Affiliation(s)
- Tim E Cawston
- Musculoskeletal Research Group, 4th Floor Cookson Building, The Medical School, University of Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
11
|
Wu M, Yu Z, Fan J, Caron A, Whiteway M, Shen SH. Functional dissection of human protease μ-calpain in cell migration using RNAi. FEBS Lett 2006; 580:3246-56. [PMID: 16697376 DOI: 10.1016/j.febslet.2006.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.
Collapse
Affiliation(s)
- Meiqun Wu
- Mammalian Cell Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Que., Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
12
|
Morita M, Banno Y, Dohjima T, Nozawa S, Fushimi K, Fan DG, Ohno T, Miyazawa K, Liu N, Shimizu K. μ-Calpain is involved in the regulation of TNF-α-induced matrix metalloproteinase-3 release in a rheumatoid synovial cell line. Biochem Biophys Res Commun 2006; 343:937-42. [PMID: 16574073 DOI: 10.1016/j.bbrc.2006.02.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Calpain is secreted by intra-articular synovial cells and degrades the main components of cartilage matrix proteins, proteoglycan, and collagen, causing cartilage destruction. Matrix metalloproteinase-3 (MMP-3) has also been detected in synovial fluid and serum, and is involved in the development and progression of rheumatoid arthritis by degradation of the extracellular matrix and cartilage destruction. To investigate the relationship between calpain and MMP-3 in rheumatic inflammation, we utilized the rheumatic synovial cell line, MH7A. Tumor necrosis factor (TNF-alpha) stimulation-induced increased expression of mu-calpain, m-calpain, and MMP-3 in these cells, as well as the release of calpain and MMP-3 into the culture medium. The calpain inhibitors, ALLN (calpain inhibitor I) and calpeptin, did not affect the intracellular expression of MMP-3, but reduced the secretion of MMP-3 in a concentration-dependent manner. Down-regulation of mu- but not m-calpain by small interfering RNAs abolished TNF-alpha-induced MMP-3 release from the synovial cells. These findings suggest that calpain, particularly mu-calpain, regulates MMP-3 release by rheumatic synovial cells, in addition to exerting its own degradative action on cartilage.
Collapse
Affiliation(s)
- Masaji Morita
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yoshifuji H, Umehara H, Maruyama H, Itoh M, Tanaka M, Kawabata D, Fujii T, Mimori T. Amelioration of experimental arthritis by a calpain-inhibitory compound: regulation of cytokine production by E-64-d in vivo and in vitro. Int Immunol 2005; 17:1327-36. [PMID: 16176933 DOI: 10.1093/intimm/dxh311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calpain, a calcium-dependent cysteine proteinase, has been reported to participate in the pathophysiology of rheumatoid arthritis (RA). The aim of this study is to investigate the therapeutic efficacy of calpain-inhibitory compounds in an animal model of RA and to clarify the underlying mechanisms in vivo and in vitro. Arthritis was induced in BALB/c mice with anti-type II collagen mAbs and LPS, and the mice were treated intra-peritoneally with a high dose (9 mg kg(-1) per day) or low dose (3 mg kg(-1) per day) of E-64-d (a membrane-permeable cysteine proteinase inhibitor) or control diluent. As a result, a high dose of E-64-d significantly alleviated the clinical arthritis and the histopathological findings, compared with the control diluent, although a low dose of E-64-d did not have a significant effect. Next, we evaluated the effects of E-64-d on cytokine mRNA expression at the inflamed joints by quantitative reverse transcription-PCR. High dose of E-64-d significantly decreased IL-6 and IL-1beta mRNA levels at the inflamed joints. The regulatory effects of E-64-d on cytokine production were also confirmed in vitro, using a synovial cell line (E11) and crude synoviocytes derived from RA patients. These results suggest the key roles of calpain in the pathophysiology of arthritis and that calpain-inhibitory compounds might be applicable to the treatment of arthritic diseases such as RA.
Collapse
Affiliation(s)
- Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Oshita H, Sandy J, Suzuki K, Akaike A, Bai Y, Sasaki T, Shimizu K. Mature bovine articular cartilage contains abundant aggrecan that is C-terminally truncated at Ala719-Ala720, a site which is readily cleaved by m-calpain. Biochem J 2005; 382:253-9. [PMID: 15175011 PMCID: PMC1133938 DOI: 10.1042/bj20040113] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/17/2004] [Accepted: 06/03/2004] [Indexed: 12/20/2022]
Abstract
Extracts of normal mature articular cartilage contain aggrecan molecules which bear the G1 domain (the N-terminal globular domain of aggrecan) and are C-terminally truncated by proteolysis at a number of sites. A proportion of these molecules are generated by an aggrecanase and/or matrix-metalloproteinase-mediated cleavage in the IGD (interglobular domain between the G1 and G2 domains of aggrecan). However, the proteinase(s) responsible for formation of the majority of the larger G1-G2 and glycosaminoglycan-bearing truncated species is (are) unknown. N-terminal sequencing of aggrecan core fragments generated by m-calpain digestion of bovine aggrecan has identified four novel cleavage sites: one within the CS (chondroitin sulphate)-1 domain (at one or more of the bonds Ser1229-Val1230, Ser1249-Val1250, Ser1287-Val1288, Gly1307-Val1308 and Ser1346-Val1347), two within the IGD (at bonds Ala474-Ala475 and Gly365-Gly366) and one within the KS (keratan sulphate) domain (at Ala719-Ala720). A new monoclonal antibody (SK-28) to the C-terminal neoepitope at M710VTQVGPGVA719 showed that aggrecan products generated by this cleavage are present in high abundance in mature bovine articular cartilage extracts. We conclude that m-calpain, or an unidentified proteinase with the capacity to cleave at the same site, is active during aggrecan biosynthesis/secretion by mature chondrocytes or in the matrix of mature bovine articular cartilage in vivo.
Collapse
Affiliation(s)
- Hidefumi Oshita
- *Department of Orthopaedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan
| | - John D. Sandy
- ‡Department of Pharmacology and Therapeutics, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, U.S.A
- §Shriners Hospital for Children, University of South Florida, 12502 Pine Drive, Tampa, FL 33612, U.S.A
- To whom correspondence should be sent, at the Shriners Hospital address (email )
| | - Kiichi Suzuki
- †Department of Orthopaedic Surgery, Nagahama Municipal Hospital, 313 Ohinuicho, Nagahama 526-8580, Japan
| | - Atsushi Akaike
- *Department of Orthopaedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan
| | - Yun Bai
- §Shriners Hospital for Children, University of South Florida, 12502 Pine Drive, Tampa, FL 33612, U.S.A
| | - Tomohiro Sasaki
- *Department of Orthopaedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan
| | - Katsuji Shimizu
- *Department of Orthopaedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan
| |
Collapse
|
15
|
Fushimi K, Nakashima S, Banno Y, Akaike A, Takigawa M, Shimizu K. Implication of prostaglandin E(2) in TNF-alpha-induced release of m-calpain from HCS-2/8 chondrocytes. Inhibition of m-calpain release by NSAIDs. Osteoarthritis Cartilage 2004; 12:895-903. [PMID: 15501405 DOI: 10.1016/j.joca.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 08/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Calpains are known as Ca(2+)-dependent intracellular neutral cysteine proteases. However, m-calpain is detected in synovial fluid of arthritic joints and is shown to possess the proteoglycanase activity in vitro. The mechanism of m-calpain release into the extracellular spaces during arthritis has not yet been well characterized. In the present study, we have analyzed m-calpain release from cultured chondrocytes stimulated by a proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). The effects of non-steroidal anti-inflammatory drugs (NSAIDs) on m-calpain release were also examined. METHODS Human chondrocytic HCS-2/8 cells were stimulated by TNF-alpha in the presence or absence of an NSAID. m-Calpain in the cells and culture medium was quantified by Western blot analysis using an anti-m-calpain antibody. Western blots were subjected to densitometric analysis and band intensities were determined. RESULTS TNF-alpha (10 ng/ml) stimulated m-calpain release with transient increase in cellular m-calpain in HCS-2/8 cells. NSAIDs examined (aspirin, loxoprofen-SRS, diclofenac sodium, indomethacin and NS398) inhibited m-calpain release and production of prostaglandin E(2) (PGE(2)) induced by 10 ng/ml TNF-alpha. Exogenously added PGE(2) accelerated the release of m-calpain in response to a lower concentration of TNF-alpha (1 ng/ml). AH6809, an EP1/2 antagonist, but not SC19220 (an EP1 antagonist), effectively inhibited TNF-alpha-induced m-calpain release. In contrast, butaprost, an EP2 agonist, accelerated release of m-calpain by 1 ng/ml TNF-alpha. CONCLUSIONS These results suggest that TNF-alpha stimulates upregulation and release of m-calpain in chondrocytic HCS-2/8 cells, and that stimulation of EP2-PGE(2) receptor by produced PGE(2) is deeply involved in this process.
Collapse
Affiliation(s)
- K Fushimi
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Whiteman M, Armstrong JS, Cheung NS, Siau JL, Rose P, Schantz JT, Jones DP, Halliwell B. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 2004; 18:1395-7. [PMID: 15240564 DOI: 10.1096/fj.03-1096fje] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chondrocyte cell death is a hallmark of inflammatory and degenerative joint diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA), but the molecular and cellular mechanisms involved have yet to be elucidated. Because 3-nitrotyrosine, a marker for reactive nitrogen species such as peroxynitrite, has been observed in OA and RA cartilage and has been associated with chondrocyte cell death, we investigated the mechanisms by which peroxynitrite induces cell death in human articular chondrocytes. The earliest biochemical event observed, subsequent to treatment with either peroxynitrite or the peroxynitrite generator SIN-1, was a rapid rise in intracellular calcium that lead to mitochondrial dysfunction and cell death. Although, chondrocyte death exhibited several classical hallmarks of apoptosis, including annexin V labeling, increased fraction of cells with subG1 DNA content and DNA condensation, we did not find evidence for caspase involvement either by Western blotting, fluorimetric assays, or caspase inhibition. Additionally, peroxynitrite did not inhibit cellular caspase activity. Furthermore, using other established assays of cell viability, including the MTT assay and release of lactate dehydrogenase, we found that the predominant mode of cell death involved calcium-dependent cysteine proteases, otherwise known as calpains. Our data show, for the first time, that peroxynitrite induces mitochondrial dysfunction in cells via a calcium-dependent process that leads to caspase-independent apoptosis mediated by calpains.
Collapse
Affiliation(s)
- Matthew Whiteman
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Dr., Republic of Singapore 117597.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
van Boekel MAM, Vossenaar ER, van den Hoogen FHJ, van Venrooij WJ. Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. ARTHRITIS RESEARCH 2001; 4:87-93. [PMID: 11879544 PMCID: PMC128920 DOI: 10.1186/ar395] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Revised: 10/05/2001] [Accepted: 10/09/2001] [Indexed: 11/10/2022]
Abstract
The diagnosis of rheumatoid arthritis (RA) is primarily based on clinical symptoms, so it is often difficult to diagnose RA in very early stages of the disease. A disease-specific autoantibody that could be used as a serological marker would therefore be very useful. Most autoimmune diseases are characterized by a polyclonal B-cell response targeting multiple autoantigens. These immune responses are often not specific for a single disease. In this review, the most important autoantibody/autoantigen systems associated with RA are described and their utility as a diagnostic and prognostic tool, including their specificity, sensitivity and practical application, is discussed. We conclude that, at present, the antibody response directed to citrullinated antigens has the most valuable diagnostic and prognostic potential for RA.
Collapse
Affiliation(s)
- Martinus A M van Boekel
- Department of Biochemistry, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Vittecoq O, Salle V, Jouen-Beades F, Krzanowska K, Ménard JF, Gayet A, Fardellone P, Tauveron P, Le Loët X, Tron F. Autoantibodies to the 27 C-terminal amino acids of calpastatin are detected in a restricted set of connective tissue diseases and may be useful for diagnosis of rheumatoid arthritis in community cases of very early arthritis. Rheumatology (Oxford) 2001; 40:1126-34. [PMID: 11600742 DOI: 10.1093/rheumatology/40.10.1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Calpastatin is the natural inhibitor of calpains, a protease that is overexpressed in rheumatoid synovial tissue and plays a key role in cartilage destruction. Autoantibodies to calpastatin (ACAST) were recently detected in rheumatoid arthritis (RA). Our aim was to determine their prevalence and their clinical significance. METHODS ACAST were detected in a solid-phase enzyme-linked immunosorbent assay (ELISA) using a synthetic peptide corresponding to the 27 C-terminal amino acids of calpastatin (CAST-C27) as the antigen. All sera reacting with this peptide also bound to purified erythrocyte calpastatin in an ELISA and/or an immunoblot assay. The frequencies and clinical significance of ACAST-C27 were assessed in sera from a well-documented population of 102 community-recruited patients (76 females; mean age 50 yr) with RA that had been evolving for <5 yr (median 2 yr) (group 1), 109 healthy blood donors, 289 patients with non-RA rheumatic disease and 88 community cases of very early (median 4 months) arthritis, i.e. 58 RA and 30 non-RA patients (group 2). RESULTS The sensitivity of ACAST-C27 for RA was 19.5% (20/102) in group 1 and 10.3% (6/58) in group 2. These antibodies were also found in patients with anti-double-stranded DNA-positive systemic lupus erythematosus (SLE) (15.5%) and patients with anti-Ro-positive Sjögren's syndrome (18.5%). However, they were not detected in cases of rheumatism resembling early RA, i.e. peripheral spondylarthropathies. ACAST-C27 were not detected in the 30 non-RA patients of group 2. They were predominantly of immunoglobulin isotype G3 and exclusively expressed lambda chains. Among ACAST-C27-positive sera, eight out of 20 (group 1) and four out of six (group 2) were negative for rheumatoid factor and anti-keratin antibodies/antiperinuclear factor. No relationship was found between ACAST-C27 and clinical, biological or radiological findings. CONCLUSION ACAST-C27 are detected only in a restricted set of connective tissue diseases and therefore appear to be specific for RA when antibodies that are usually associated with SLE or primary Sjögren's syndrome are negative. Because of their presence in community cases of very early RA, particularly in some seronegative forms, ACAST-C27 may be useful in discriminating recent-onset RA from the more common non-RA rheumatic diseases, such as spondylarthropathies.
Collapse
Affiliation(s)
- O Vittecoq
- Unité INSERM 519 et Institut Fédératif de Recherche Multidisciplinaire sur les Peptides (IFRMP 23), Faculté de Médecine et de Pharmacie, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
HAYMAN ALISONR, BUNE ALISONJ, COX TIMOTHYM. Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. J Anat 2000; 196 ( Pt 3):433-41. [PMID: 10853965 PMCID: PMC1468079 DOI: 10.1046/j.1469-7580.2000.19630433.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tartrate-resistant acid phosphatase (TRAP, Acp 5) is considered to be a marker of the osteoclast and studies using 'knockout' mice have demonstrated that TRAP is critical for normal development of the skeleton. To investigate the distribution of TRAP in the mammalian embryo, cryostat sections of 18 d murine fetuses were examined by in situ hybridisation, immunohistochemistry and histochemical reactions in situ. Abundant expression of TRAP mRNA was observed in the skin and epithelial surfaces of the tongue, oropharynx and gastrointestinal tract including the colon, as well as the thymus, ossifying skeleton and dental papillae. TRAP protein was identified at the same sites, but the level of expression in the different tissues did not always correlate with apparent enzyme activity. The findings indicate that abundant TRAP expression is not confined to osteoclasts in bone, but occurs in diverse tissues harbouring cells of bone marrow origin, including dendritic cells and other cells belonging to the osteoclast/macrophage lineage.
Collapse
Affiliation(s)
- ALISON R.
HAYMAN
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - ALISON J.
BUNE
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - TIMOTHY M.
COX
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Correspondence to Professor T. M. Cox, Department of Medicine, Box 157, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK. Tel.: +0044 1223 336864; fax: +0044 1223 336846; e-mail:
| |
Collapse
|
20
|
Sabino KC, Castro FA, Oliveira JC, Dalmau SR, Coelho MG. Successful treatment of collagen-induced arthritis in mice with a hydroalcohol extract of seeds of Pterodon pubescens. Phytother Res 1999; 13:613-5. [PMID: 10548757 DOI: 10.1002/(sici)1099-1573(199911)13:7<613::aid-ptr503>3.0.co;2-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antiarthritic effect of a hydroalcohol extract of Pterodon pubescens (HEPp) seeds was tested using collagen-induced arthritis (CIA) in DBA1/J mice treated with daily oral doses of HEPp in different schedules. The preventive treatment significantly reduced both the arthritic index (AI) and the CIA incidence. Using a therapeutic protocol, only the lower dose of HEPp induced a decrease in both parameters. These results provide a scientific foundation for the popular use of Pp seed infusions in rheumatoid arthritis (RA) treatment.
Collapse
Affiliation(s)
- K C Sabino
- Departamento de Bioquímica, Instituto de Biologia, Centro Biomédico, Universidade do Estado do Rio de Janeiro, 20511-013, Programa de Medicina Experimental, INCA, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
21
|
Ménard HA, el-Amine M. The calpain-calpastatin system in rheumatoid arthritis. IMMUNOLOGY TODAY 1996; 17:545-7. [PMID: 8991283 DOI: 10.1016/s0167-5699(96)30064-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H A Ménard
- Rheumatology Division, Faculty of Medicine, Université de Sherbrooke, Quebec, Canada
| | | |
Collapse
|
22
|
|
23
|
Wang KK, Yuen PW. Development and therapeutic potential of calpain inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 37:117-52. [PMID: 8891101 DOI: 10.1016/s1054-3589(08)60949-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K K Wang
- Department of Neuroscience Therapeutics Parke-Davis Pharmaceutical Research Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|