1
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Chen Y, Zhou J, Xu S, Nie J. Role of Interleukin-6 Family Cytokines in Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:239-253. [PMID: 37900004 PMCID: PMC10601952 DOI: 10.1159/000530288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 10/31/2023]
Abstract
Background Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Zhou
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihui Xu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Li S, Zhang Q, Huang Z, Chen F. Integrative analysis of multi-omics data to identify three immune-related genes in the formation and progression of intracranial aneurysms. Inflamm Res 2023; 72:1001-1019. [PMID: 37014439 DOI: 10.1007/s00011-023-01725-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE AND DESIGN The prevalence of intracranial aneurysms (IAs) has increased globally. We performed bioinformatics analysis to identify key biomarkers associated with IA formation. METHODS AND RESULTS We conducted a comprehensive analysis combined with multi-omics data and methods to identify immune-related genes (IRGs) and immunocytes involved in IAs. Functional enrichment analyses showed enhanced immune responses and suppressed organizations of extracellular matrix (ECM) during aneurysm progression. xCell analyses showed that the abundance of B cells, macrophages, mast cells, and monocytes significantly increased from levels in control to unruptured aneurysms and to ruptured aneurysms. Of 21 IRGs identified by overlapping, a three-gene (CXCR4, S100B, and OSM) model was constructed through LASSO logistic regression. The diagnostic ability of the three biomarkers in discriminating aneurysms from the control samples demonstrated a favorable diagnostic value. Among the three genes, OSM and CXCR4 were up-regulated and hypomethylated in IAs, while S100B was down-regulated and hypermethylated. The expression of the three IRGs was further validated by qRT-PCR and immunohistochemistry and mouse IA model using scRNA-seq analysis. CONCLUSION The present study demonstrated heightened immune response and suppressed ECM organization in aneurysm formation and rupture. The three-gene immune-related signature (CCR4, S100B, and OSM) model may facilitate IA diagnosis and prevention.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
5
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
6
|
Helicobacter pylori outer membrane vesicles induce expression and secretion of oncostatin M in AGS gastric cancer cells. Braz J Microbiol 2021; 52:1057-1066. [PMID: 33851342 DOI: 10.1007/s42770-021-00490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori, a human pathogen that colonizes the stomach of 50% of the world's population, is associated with gastritis, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. Diseases are characterized by severe inflammatory responses in the stomach that are induced by various chemokines and cytokines. Recently, oncostatin M (OSM), an IL-6 family cytokine, was detected in early gastric cancer biopsies. In this study, we showed that Helicobacter pylori induced secretion of OSM and overexpression of its type II receptor OSMRβ (OSM/OSMRβ) in a human gastric adenocarcinoma cell line (AGS) over 24 h of infection. Furthermore, we showed that the induction of OSM and OSMRβ was carried out by heat-sensitive Helicobacter pylori outer membrane vesicle (OMV) protein. Collectively, our results established, for the first time, a direct relation between Helicobacter pylori OMVs and the OSM/OSMRβ signaling axis.
Collapse
|
7
|
Li H, Feng C, Fan C, Yang Y, Yang X, Lu H, Lu Q, Zhu F, Xiang C, Zhang Z, He P, Zuo J, Tang W. Intervention of oncostatin M-driven mucosal inflammation by berberine exerts therapeutic property in chronic ulcerative colitis. Cell Death Dis 2020; 11:271. [PMID: 32332711 PMCID: PMC7181765 DOI: 10.1038/s41419-020-2470-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC) is a chronic and etiologically refractory inflammatory gut disorder. Although berberine, an isoquinoline alkaloid, has been revealed to exert protective effects on experimental colitis, the underlying molecular mechanism in chronic intestinal inflammation remains ill-defined. This study was designed to uncover the therapeutic efficacy and immunomodulatory role of berberine in chronic UC. Therapeutic effects of oral administration of berberine were investigated in dextran sodium sulfate (DSS)-induced murine chronic UC and the underlying mechanisms were further identified by si-OSMR transfection in human intestinal stromal cells. Berberine significantly attenuated the experimental symptoms and gut inflammation of chronic UC. Berberine treatment could also maintain the intestinal barrier function and rectify tissue fibrosis. In accordance with infiltrations of antigen-presenting cells (APCs), innate lymphoid cells (ILCs), and activated NK cells in colonic lamina propria, increased expression of OSM and OSMR were observed in the inflamed tissue of chronic UC, which were decreased following berberine treatment. Moreover, berberine inhibited the overactivation of human intestinal stromal cells through OSM-mediated JAK-STAT pathway, which was obviously blocked upon siRNA targeting OSMR. The research provided an infusive mechanism of berberine and illustrated that OSM and OSMR intervention might function as the potential target in chronic UC.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenghua Zhu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zongwang Zhang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Peilan He
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jianping Zuo
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China. .,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Ramirez R, Herrera AM, Ramirez J, Qian C, Melton DW, Shireman PK, Jin YF. Deriving a Boolean dynamics to reveal macrophage activation with in vitro temporal cytokine expression profiles. BMC Bioinformatics 2019; 20:725. [PMID: 31852428 PMCID: PMC6921543 DOI: 10.1186/s12859-019-3304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. RESULTS We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. CONCLUSION Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Allen Michael Herrera
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Chunjiang Qian
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - David W Melton
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Paula K Shireman
- Department of Surgery, Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
9
|
Oncostatin M reduces atherosclerosis development in APOE*3Leiden.CETP mice and is associated with increased survival probability in humans. PLoS One 2019; 14:e0221477. [PMID: 31461490 PMCID: PMC6713386 DOI: 10.1371/journal.pone.0221477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Objective Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and other chronic inflammatory diseases for which inhibitory antibodies are in development. However, to date no intervention studies with OSM have been performed, and its relation to coronary heart disease (CHD) has not been studied. Approach and results Gene expression analysis on human normal arteries (n = 10) and late stage/advanced carotid atherosclerotic arteries (n = 127) and in situ hybridization on early human plaques (n = 9) showed that OSM, and its receptors, OSM receptor (OSMR) and Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and atherosclerotic plaques. Chronic OSM administration in APOE*3Leiden.CETP mice (n = 15/group) increased plasma E-selectin levels and monocyte adhesion to the activated endothelium independently of cholesterol but reduced the amount of inflammatory Ly-6CHigh monocytes and atherosclerotic lesion size and severity. Using aptamer-based proteomics profiling assays high circulating OSM levels were shown to correlate with post incident CHD survival probability in the AGES‐Reykjavik study (n = 5457). Conclusions Chronic OSM administration in APOE*3Leiden.CETP mice reduced atherosclerosis development. In line, higher serum OSM levels were correlated with improved post incident CHD survival probability in patients, suggesting a protective cardiovascular effect.
Collapse
|
10
|
Oncostatin M exerts a protective effect against excessive scarring by counteracting the inductive effect of TGFβ1 on fibrosis markers. Sci Rep 2019; 9:2113. [PMID: 30765798 PMCID: PMC6376164 DOI: 10.1038/s41598-019-38572-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Wound healing is a complex physiological process that repairs a skin lesion and produces fibrous tissue. In some cases, this process can lead to hypertrophic scars (HS) or keloid scars (KS), for which the pathophysiology remains poorly understood. Previous studies have reported the presence of oncostatin M (OSM) during the wound healing process; however, the role of OSM in pathological scarring remains to be precisely elucidated. This study aims to analyse the presence and involvement of OSM in the pathological scarring process. It was conducted with 18 patients, including 9 patients with hypertrophic scarring and 9 patients with keloid scarring. Histological tissue analysis of HS and KS showed minor differences in the organization of the extracellular matrix, the inflammatory infiltrate and the keratinocyte phenotype. Transcriptomic analysis showed increased expression levels of fibronectin, collagen I, TGFβ1, β-defensin-2 and S100A7 in both pathological samples. OSM expression levels were greater in HS than in KS and control skin. In vitro, OSM inhibited TGFβ1-induced secretion of components of the extracellular matrix by normal and pathological fibroblasts. Overall, we suggest that OSM is involved in pathological wound healing processes by inhibiting the evolution of HS towards KS by controlling the fibrotic effect of TGFβ1.
Collapse
|
11
|
Abstract
Oncostain M, a member of the IL-6 family of cytokines, is produced by immune cells in response to infections and tissue injury. OSM has a broad, often context-dependent effect on various cellular processes including differentiation, hematopoiesis, cell proliferation, and cell survival. OSM signaling is initiated by binding to type I (LIFRβ/gp130) or type II (OSMRβ/gp130) receptor complexes and involves activation of Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase, and phosphatidylinositol-3-kinase. High levels of OSM have been detected in many chronic inflammatory conditions characterized by fibrosis, giving a rationale to target OSM for the treatment of these diseases. Here we discuss the current knowledge on the role of OSM in various stages of the fibrotic process including inflammation, vascular dysfunction, and activation of fibroblasts.
Collapse
Affiliation(s)
| | - Maria Trojanowska
- Corresponding Author: Maria Trojanowska, Boston University School of Medicine, 72 East Concord St, E-5, Boston, MA 02118, Tel.: 617-638-4318; Fax: 617-638-5226
| |
Collapse
|
12
|
Tvedt THA, Melve GK, Tsykunova G, Ahmed AB, Brenner AK, Bruserud Ø. Immunological Heterogeneity of Healthy Peripheral Blood Stem Cell Donors-Effects of Granulocyte Colony-Stimulating Factor on Inflammatory Responses. Int J Mol Sci 2018; 19:ijms19102886. [PMID: 30249022 PMCID: PMC6213426 DOI: 10.3390/ijms19102886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) contributes to the development of immune-mediated complications after allogeneic stem cell transplantation. However, systemic IL-6 levels also increase during granulocyte colony-stimulating factor (G-CSF) mobilization of hematopoietic stem cells in healthy donors, but it is not known whether this mobilization alters systemic levels of other IL-6 family cytokines/receptors and whether such effects differ between donors. We examined how G-CSF administration influenced C-reactive protein (CRP) levels (85 donors) and serum levels of IL-6 family cytokines/receptors (20 donors). G-CSF increased CRP levels especially in elderly donors with high pretherapy levels, but these preharvesting levels did not influence clinical outcomes (nonrelapse mortality, graft versus host disease). The increased IL-6 levels during G-CSF therapy normalized within 24 h after treatment. G-CSF administration did not alter serum levels of other IL-6-familly mediators. Oncostatin M, but not IL-6, showed a significant correlation with CRP levels during G-CSF therapy. Clustering analysis of mediator levels during G-CSF administration identified two donor subsets mainly characterized by high oncostatin M and IL-6 levels, respectively. Finally, G-CSF could increase IL-6 release by in vitro cultured monocytes, fibroblasts, and mesenchymal stem cells. In summary, G-CSF seems to induce an acute phase reaction with increased systemic IL-6 levels in healthy stem cell donors.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| | - Guro K Melve
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Galina Tsykunova
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Aymen Bushra Ahmed
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Annette K Brenner
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
13
|
Rodríguez TM, Saldías A, Irigo M, Zamora JV, Perone MJ, Dewey RA. Effect of TGF-β1 Stimulation on the Secretome of Human Adipose-Derived Mesenchymal Stromal Cells. Stem Cells Transl Med 2015; 4:894-8. [PMID: 26025982 DOI: 10.5966/sctm.2015-0012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue is an attractive source of mesenchymal stromal cells (MSCs) owing to the relative ease of obtaining large volumes with more MSC abundance compared with other sources. Increasing evidence supports the fact that trophic factors secreted by MSCs play a pivotal therapeutic role. Several strategies in regenerative medicine use MSCs, mainly exploiting their immunosuppressive effect and homing capacity to sites of damage. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that, depending on the cell niche, can display either anti-inflammatory or proinflammatory effects. TGF-β1 expression increases in various tissues with damage, especially when accompanied by inflammation. Thus, we analyzed the effect of TGF-β1 on the secretion by adipose-derived mesenchymal stromal cells (ASCs) of a panel of 80 cytokines/chemokines using an antibody array. To avoid a possible effect of fetal bovine serum (FBS) on ASCs secretion, we performed our analysis by culturing cells in FBS-free conditions, only supplemented with 0.1% of bovine serum albumin. We report the cytokine profile secreted by ASCs. We also found that TGF-β1 exposure modulates 8 chemokines and 18 cytokines, including TGF-β1 and -β2, and other important cytokines involved in immunosuppression, allergic responses, and bone resorption.
Collapse
Affiliation(s)
- Tania M Rodríguez
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro Saldías
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Marcelo Irigo
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jorge Velasco Zamora
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Marcelo J Perone
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ricardo A Dewey
- Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Chascomús, Argentina; Servicio de Cirugía Plástica, Estética y Reparadora, Hospital Italiano de La Plata, Buenos Aires, Argentina; Centro de Enfermedades Reumáticas/Fundación Articular, Quilmes, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|
14
|
Elks CM, Stephens JM. Oncostatin m modulation of lipid storage. BIOLOGY 2015; 4:151-60. [PMID: 25689119 PMCID: PMC4381222 DOI: 10.3390/biology4010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 02/02/2023]
Abstract
Oncostatin M (OSM) is a cytokine belonging to the gp130 family, whose members serve pleiotropic functions. However, several actions of OSM are unique from those of other gp130 cytokines, and these actions may have critical roles in inflammatory mechanisms influencing several metabolic and biological functions of insulin-sensitive tissues. In this review, the actions of OSM in adipose tissue and liver are discussed, with an emphasis on lipid metabolism.
Collapse
Affiliation(s)
- Carrie M Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Beigel F, Friedrich M, Probst C, Sotlar K, Göke B, Diegelmann J, Brand S. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLoS One 2014; 9:e93498. [PMID: 24710357 PMCID: PMC3977870 DOI: 10.1371/journal.pone.0093498] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.
Collapse
Affiliation(s)
- Florian Beigel
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Friedrich
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- Clinic for Preventive Dentistry and Parodontology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Corina Probst
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Diegelmann
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- Clinic for Preventive Dentistry and Parodontology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
16
|
Sanchez-Infantes D, White UA, Elks CM, Morrison RF, Gimble JM, Considine RV, Ferrante AW, Ravussin E, Stephens JM. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99:E217-25. [PMID: 24297795 PMCID: PMC3913819 DOI: 10.1210/jc.2013-3555] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-β, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue.
Collapse
Affiliation(s)
- David Sanchez-Infantes
- Pennington Biomedical Research Center (D.S.-I., U.A.W., C.M.E., J.M.G., E.R., J.M.S.) and Department of Biological Sciences (J.M.S.), Louisiana State University, Baton Rouge, Louisiana 70808; Department of Nutrition (R.F.M.), UNC-Greensboro, Greensboro, North Carolina 24702; Indiana University School of Medicine (R.V.C.), Indianapolis, Indiana 46202; Department of Medicine (A.W.F.), Columbia University, New York, New York 10032; and Endocrinology Department (D.S.-I.), St Joan de Deu, 08950 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dumas A, Lagarde S, Laflamme C, Pouliot M. Oncostatin M decreases interleukin-1 β secretion by human synovial fibroblasts and attenuates an acute inflammatory reaction in vivo. J Cell Mol Med 2012; 16:1274-85. [PMID: 21854541 PMCID: PMC3823080 DOI: 10.1111/j.1582-4934.2011.01412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the IL-6 family and displays both pro-inflammatory and anti-inflammatory activities. We studied the impact of OSM on the gene activation profile of human synovial cells, which play a central role in the progression of inflammatory responses in joints. In synovial cells stimulated with lipopolysaccharide and recombinant human granulocyte-macrophage colony-stimulating factor, recombinant human OSM and native OSM secreted by human granulocytes both reduced the gene expression and secretion of IL-1β and CXCL8, but increased that of IL-6 and CCL2. This impact on synovial cell activation was not obtained using IL-6 or leukaemia inhibitory factor. Signal transducer and activator of transcription-1 appeared to mediate the effects of OSM on stimulated human synovial fibroblasts. In the murine dorsal air pouch model of inflammation, OSM reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α in lining tissues, and their presence in the cavity. These results as a whole suggest an anti-inflammatory role for OSM, guiding inflammatory processes towards resolution.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ, and Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
18
|
Shin SH, Han SK, Jeong SH, Kim WK. Potential of oncostatin M to accelerate diabetic wound healing. Int Wound J 2012; 11:398-403. [PMID: 23116288 DOI: 10.1111/j.1742-481x.2012.01107.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oncostatin M (OSM) is a multifunctional cytokine found in a variety of pathologic conditions, which leads to excessive collagen deposition. Current studies demonstrate that OSM is also a mitogen for fibroblasts and has an anti-inflammatory action. It was therefore hypothesised that OSM may play an important role in healing of chronic wounds that usually involve decreased fibroblast function and persist in the inflammatory stage for a long time. In a previous in vitro study, the authors showed that OSM increased wound healing activities of diabetic dermal fibroblasts. However, wound healing in vivo is a complex process involving multiple factors. Thus, the purpose of this study was to evaluate the effect of OSM on diabetic wound healing in vivo. Five diabetic mice were used in this study. Four full-thickness round wounds were created on the back of each mouse (total 20 wounds). OSM was applied on the two left-side wounds (n = 10) and phosphate-buffered saline was applied on the two right-side wounds (n = 10). After 10 days, unhealed wound areas of the OSM and control groups were compared using the stereoimage optical topometer system. Also, epithelialisation, wound contraction and reduction in wound volume in each group were compared. The OSM-treated group showed superior results in all of the tested parameters. In particular, the unhealed wound area and the reduction in wound volume demonstrated statistically significant differences (P < 0·05). The results of this study indicate that topical application of OSM may have the potential to accelerate healing of diabetic wounds.
Collapse
Affiliation(s)
- Soo Hye Shin
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
19
|
Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S. Prostaglandin E₂ induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:2563-73. [PMID: 22844123 DOI: 10.4049/jimmunol.1102762] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monocytes and macrophages (m) are plastic cells whose functions are governed by microenvironmental cues. Wound fluid bathing the wound tissue reflects the wound microenvironment. Current literature on wound inflammation is primarily based on the study of blood monocyte-derived macrophages, cells that have never been exposed to the wound microenvironment. We sought to compare pair-matched monocyte-derived macrophages with m isolated from chronic wounds of patients. Oncostatin M (OSM) was differentially overexpressed in pair-matched wound m. Both PGE₂ and its metabolite 13,14-dihydro-15-keto-PGE₂ (PGE-M) were abundant in wound fluid and induced OSM in wound-site m. Consistently, induction of OSM mRNA was observed in m isolated from PGE₂-enriched polyvinyl alcohol sponges implanted in murine wounds. Treatment of human THP-1 cell-derived m with PGE₂ or PGE-M caused dose-dependent induction of OSM. Characterization of the signal transduction pathways demonstrated the involvement of EP4 receptor and cAMP signaling. In human m, PGE₂ phosphorylated Axl, a receptor tyrosine kinase (RTK). Axl phosphorylation was also induced by a cAMP analogue demonstrating interplay between the cAMP and RTK pathways. PGE₂-dependent Axl phosphorylation led to AP-1 transactivation, which is directly implicated in inducible expression of OSM. Treatment of human m or mice excisional wounds with recombinant OSM resulted in an anti-inflammatory response as manifested by attenuated expression of endotoxin-induced TNF-α and IL-1β. OSM treatment also improved wound closure during the early inflammatory phase of healing. In summary, this work recognizes PGE₂ in the wound fluid as a potent inducer of m OSM, a cytokine with an anti-inflammatory role in cutaneous wound healing.
Collapse
Affiliation(s)
- Kasturi Ganesh
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Clarkson RWE, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2003; 6:R92-109. [PMID: 14979921 PMCID: PMC400653 DOI: 10.1186/bcr754] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 11/15/2003] [Accepted: 11/21/2003] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION In order to gain a better understanding of the molecular processes that underlie apoptosis and tissue regression in mammary gland, we undertook a large-scale analysis of transcriptional changes during the mouse mammary pregnancy cycle, with emphasis on the transition from lactation to involution. METHOD Affymetrix microarrays, representing 8618 genes, were used to compare mammary tissue from 12 time points (one virgin, three gestation, three lactation and five involution stages). Six animals were used for each time point. Common patterns of gene expression across all time points were identified and related to biological function. RESULTS The majority of significantly induced genes in involution were also differentially regulated at earlier stages in the pregnancy cycle. This included a marked increase in inflammatory mediators during involution and at parturition, which correlated with leukaemia inhibitory factor-Stat3 (signal transducer and activator of signalling-3) signalling. Before involution, expected increases in cell proliferation, biosynthesis and metabolism-related genes were observed. During involution, the first 24 hours after weaning was characterized by a transient increase in expression of components of the death receptor pathways of apoptosis, inflammatory cytokines and acute phase response genes. After 24 hours, regulators of intrinsic apoptosis were induced in conjunction with markers of phagocyte activity, matrix proteases, suppressors of neutrophils and soluble components of specific and innate immunity. CONCLUSION We provide a resource of mouse mammary gene expression data for download or online analysis. Here we highlight the sequential induction of distinct apoptosis pathways in involution and the stimulation of immunomodulatory signals, which probably suppress the potentially damaging effects of a cellular inflammatory response while maintaining an appropriate antimicrobial and phagocytic environment.
Collapse
|
21
|
Abstract
Oncostatin-M (OSM), a pluripotent cytokine of the interleukin-6 (IL-6) family, is produced in a number of inflammatory conditions. Known sources of OSM include monocytes-macrophages and T-cells. Here we present microglia, the resident macrophages of the brain, as a source of OSM in the CNS. In this context, we describe a novel inducer of OSM, prostaglandin E(2) (PGE(2)). PGE(2) induces OSM expression in microglia, monocytes, and macrophages of human and murine origin. PGE(2) induction of OSM is mimicked by cholera toxin, an activator of stimulatory G (G(s))-proteins; by forskolin, an activator of adenylate cyclase; and by the cAMP analog, dibutyryl-cAMP. PGE(2) induction of OSM gene expression is inhibited by the adenylate cyclase inhibitor 2',5'-dideoxyadenosine, by the protein kinase A (PKA) inhibitor H-89, and by a dominant-negative PKA construct. These data indicate that PGE(2) signals via G(s)-protein-coupled receptor(s), adenylate cyclase, and PKA to induce OSM expression. Accordingly, other activators of cAMP signaling such as norepinephrine and PGE(1) induce OSM. The ability of PGE(2) to induce OSM expression was tested under more physiological conditions, using cocultures of astrocytes and monocytes. Treatment of the cocultures with IL-1beta or tumor necrosis factor-alpha (TNF-alpha) results in production of PGE(2) and OSM. PGE(2) produced in the cocultures is responsible for OSM induction, because pretreatment with indomethacin, an inhibitor of prostaglandin synthesis, as well as depletion of PGE(2), abrogate OSM expression induced by IL-1beta or TNF-alpha. These data suggest that in the CNS, OSM may be produced through collaboration of astrocytes and macrophages-microglia.
Collapse
|