1
|
Yassin SH, Wagner NE, Khuu T, Schmidt R, Igelman AD, Marra M, Schwartz H, Walker E, Nagiel A, Yang P, Everett LA, Pennesi ME, Borooah S. Refractive Error in Inherited Retinal Disease. Am J Ophthalmol 2024; 269:381-392. [PMID: 39303928 DOI: 10.1016/j.ajo.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Inherited retinal dystrophies (IRDs) lead to significant vision impairment. Refractive errors (REs) are also associated with vision impairment and an increased risk of ocular comorbidities and may compound impairment caused by IRDs. Identifying the pattern of RE in IRDs may assist in better management of patients with IRD and provide insights into understanding genetic associations with RE. The aim of this study was to investigate the patterns of RE in patients with IRD from three academic ophthalmology referral centers. DESIGN Retrospective multicenter cohort study. METHODS Chart review of clinically and molecularly confirmed IRD cases seen at the University of California San Diego, Oregon Health and Science University, and Children's Hospital Los Angeles. Data retrieved included patient demographics, disease phenotype, genotype, best-corrected visual acuity, objective, and/or subjective refraction. RESULTS A total of 1942 patients' notes were reviewed. Of these, 634 patients (1255 eyes) had refractive data. For genes associated with myopia, NYX (n = 14 [1%]) was associated with the highest spherical equivalent RE of myopia (mean -9.26 diopters [D] [95% CI -11.867 to -6.651], P < .001) followed by IMPG2 (n = 16 [1.1%]) (mean -4.062 D [95% CI -6.254 to -1.871], P = .002), then RPGR (n = 104 [7.2%]) (mean -2.664 D [95% CI -3.618 to -1.710], P = .016) and for genes associated with hyperopia, BEST1 (n = 38 [2.6%]) had the highest spherical equivalent RE for hyperopia (mean 2.996 D [95% CI 1.830-4.162], P < .001) followed by RS1 (n = 26 [1.8%]) (mean 2.562 D [95% CI 1.454-3.671], P < .001), then CNGA3 (n = 28 [1.9%]) (mean 0.603 D [95% CI -0.48 to 1.686], P = .009). Overall, patients with IRD were significantly more myopic than age-matched control participants. CONCLUSION By combining genetic testing with refraction data from a large cohort of patients, we identify IRD genes associated with myopia and hyperopia. However, we find that the pattern of ametropia varies widely not only by gene but also within a gene cohort. The genes identified to be associated with RE are candidates for further in-depth investigation to understand their functional role in RE.
Collapse
Affiliation(s)
- Shaden H Yassin
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Naomi E Wagner
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Thomas Khuu
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Ryan Schmidt
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Austin D Igelman
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Molly Marra
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Hilary Schwartz
- The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California; Roski Eye Institute (H.S., A.N.), Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Evan Walker
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Aaron Nagiel
- The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California; Roski Eye Institute (H.S., A.N.), Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paul Yang
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Lesley A Everett
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Mark E Pennesi
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon; Retina Foundation (M.E.P.), Dallas, Texas; The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Shyamanga Borooah
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California.
| |
Collapse
|
2
|
Georgiou M, Robson AG, Uwaydat SH, Ji MH, Shakarchi AF, Pontikos N, Mahroo OA, Cheetham ME, Webster AR, Hardcastle AJ, Michaelides M. RP2-Associated X-linked Retinopathy: Clinical Findings, Molecular Genetics, and Natural History in a Large Cohort of Female Carriers. Am J Ophthalmol 2024; 261:112-120. [PMID: 37977507 PMCID: PMC11139645 DOI: 10.1016/j.ajo.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE RP2-associated retinopathy typically causes severe early onset retinitis pigmentosa (RP) in affected males. However, there is a scarcity of reports describing the clinical phenotype of female carriers. We tested the hypothesis that RP2 variants manifest in female carriers with a range of functional and anatomic characteristics. DESIGN Retrospective case series. METHODS Females with disease-causing variants in RP2 were identified from investigation of pedigrees affected by RP2 retinopathy. All case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence imaging, optical coherence tomography (OCT)), and electrophysiology were reviewed. RESULTS Forty pedigrees were investigated. Twenty-nine pedigrees had obligate carriers or molecularly confirmed female members with recorded relevant history and/or examination. For 8 pedigrees, data were available only from history, with patients reporting affected female relatives with RP in 4 cases and unaffected female relatives in the other 4 cases. Twenty-seven females from 21 pedigrees were examined by a retinal genetics specialist. Twenty-three patients (85%) reported no complaints and had normal vision and 4 patients had RP-associated complaints (15%). Eight patients had normal fundus examination (30%), 10 had a tapetal-like reflex (TLR; 37%), 5 had scattered peripheral pigmentation (19%), and the 4 symptomatic patients had fundus findings compatible with RP (15%). All asymptomatic patients with normal fundus, TLR, or asymptomatic pigmentary changes had a continuous ellipsoid zone on OCT when available. The electroretinograms revealed mild to severe photoreceptor dysfunction in 9 of 11 subjects, often asymmetrical, including 5 with pattern electroretinogram evidence of symmetrical (n = 4) or unilateral (n = 1 subject) macular dysfunction. CONCLUSIONS Most carriers were asymptomatic, exhibiting subclinical characteristics such as TLR and pigmentary changes. However, female carriers of RP2 variants can manifest RP. Family history of affected females with RP does not exclude X-linked disease. The phenotypic spectrum as described herein has prognostic and counselling implications for RP2 carriers and patients.
Collapse
Affiliation(s)
- Michalis Georgiou
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom; Jones Eye Institute (M.G., S.H.U., M.H.J., A.F.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anthony G Robson
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Sami H Uwaydat
- Jones Eye Institute (M.G., S.H.U., M.H.J., A.F.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marco H Ji
- Jones Eye Institute (M.G., S.H.U., M.H.J., A.F.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ahmed F Shakarchi
- Jones Eye Institute (M.G., S.H.U., M.H.J., A.F.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nikolas Pontikos
- University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Michael E Cheetham
- University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Andrew R Webster
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Alison J Hardcastle
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom
| | - Michel Michaelides
- From the Moorfields Eye Hospital (M.G., A.G.R., N.P., O.A.M., A.R.W., M.M.), London, United Kingdeom; University College London Institute of Ophthalmology (M.G., A.G.R., N.P., O.A.M., M.E.C., A.R.W., A.J.H., M.M.), University College London, London, United Kingdom.
| |
Collapse
|
3
|
Wang SW, Igarashi-Yokoi T, Mochida S, Fujinami K, Ohno-Matsui K. PREVALENCE AND CLINICAL FEATURES OF RADIAL FUNDUS AUTOFLUORESCENCE IN HIGH MYOPIC WOMEN. Retina 2024; 44:446-454. [PMID: 37948743 DOI: 10.1097/iae.0000000000003981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To determine the prevalence and characteristics of radial fundus autofluorescence (FAF) in highly myopic women. METHODS This was a retrospective, observational case study to determine the prevalence of radial FAF in the ultra-widefield FAF images in women. The clinical characteristics of these patients were evaluated. RESULTS Fifteen of 1,935 (0.78%) highly myopic women were found to have radial FAF. Their mean age was 36.6 ± 25.6 years, and their mean best-corrected visual acuity was 0.3 ± 0.42 logMAR units. The mean axial length (AL) was 28.8 ± 2.8 mm. Among the 15 cases, eight did not have pigmentary changes and seven had pigmentary changes in the ultra-widefield FAF images. The women with the pigmentary changes were significantly older ( P = 0.021), had poorer BCVA ( P = 0.001), and had longer ALs ( P = 0.002). The visual fields and electroretinograms were worse in the eyes with pigmentary changes. CONCLUSION The prevalence of radial FAF was 0.78% in women with high myopia. These patients might have mutations in the RPGR or RP2 genes and can develop high myopia and retinitis pigmentosa. Ultra-widefield FAF images should be examined in all highly myopic patients for early detection of radial FAF, and myopia prevention and genetic counseling for possible genetic therapy are recommended.
Collapse
Affiliation(s)
- Shih-Wen Wang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taiwan, ROC
| | - Tae Igarashi-Yokoi
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Mochida
- Department of Ophthalmology, Tokyo Metropolitan Ohkubo Hospital, Tokyo, Japan; and
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Lam BL, Scholl HPN, Doub D, Sperling M, Hashim M, Li N. A SYSTEMATIC LITERATURE REVIEW OF DISEASE PROGRESSION REPORTED IN RPGR -ASSOCIATED X-LINKED RETINITIS PIGMENTOSA. Retina 2024; 44:1-9. [PMID: 37683184 DOI: 10.1097/iae.0000000000003920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
PURPOSE Retinitis pigmentosa GTPase regulator-associated X-linked retinitis pigmentosa ( RPGR -associated XLRP) is a rare and severe form of retinitis pigmentosa, resulting in progressive visual impairment; however, disease progression data are limited. A systematic literature review was conducted to assess available data on disease progression in RPGR -associated XLRP. METHODS PubMed, Embase, and select congress abstracts were evaluated through June 2022. Eligible studies included results specific to RPGR -associated XLRP or populations with ≥80% of patients with retinitis pigmentosa carrying disease-causing RPGR variants. End points of interest included visual acuity, visual field, ellipsoid zone width, progression to blindness, and patient-reported outcomes. RESULTS Fourteen studies met ≥1 end point of interest. Progressive declines in visual acuity, visual field, and ellipsoid zone width were reported across studies. Nearly all publications reported annual declines in visual acuity (3.5%-8.2%). Annual visual field declines ranged from 4.2% to 13.3%. Changes in retinal structure were also observed (ellipsoid zone width changes: -177 to -830 µ m/year). Most studies measured blindness using visual acuity; visual field-based definitions resulted in blindness by age ∼25 years. Patient-reported outcome data were limited. CONCLUSION Published evidence shows that patients with RPGR -associated XLRP experience progressive decline in visual acuity, visual field, and ellipsoid zone width, eventually resulting in blindness. Additional longitudinal data with standardized end points and expanded collection of patient-reported outcomes are needed to assess visual decline in RPGR -associated XLRP.
Collapse
Affiliation(s)
- Byron L Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Daneal Doub
- Lumanity Communications Inc., Yardley, Pennsylvania; and
| | | | | | - Nan Li
- Janssen Global Services, LLC, Raritan, New Jersey
| |
Collapse
|
5
|
Awadh Hashem S, Georgiou M, Ali RR, Michaelides M. RPGR-Related Retinopathy: Clinical Features, Molecular Genetics, and Gene Replacement Therapy. Cold Spring Harb Perspect Med 2023; 13:a041280. [PMID: 37188525 PMCID: PMC10626266 DOI: 10.1101/cshperspect.a041280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Retinitis pigmentosa GTPase regulator (RPGR) gene variants are the predominant cause of X-linked retinitis pigmentosa (XLRP) and a common cause of cone-rod dystrophy (CORD). XLRP presents as early as the first decade of life, with impaired night vision and constriction of peripheral visual field and rapid progression, eventually leading to blindness. In this review, we present RPGR gene structure and function, molecular genetics, animal models, RPGR-associated phenotypes and highlight emerging potential treatments such as gene-replacement therapy.
Collapse
Affiliation(s)
- Shaima Awadh Hashem
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Centre for Cell and Gene Therapy, King's College London, London WC2R 2LS, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| |
Collapse
|
6
|
Benson MD, Mukherjee S, Agather AR, Blain D, Cunningham D, Mays R, Sun X, Li T, Hufnagel RB, Brooks BP, Huryn LA, Zein WM, Cukras CA. RPGR: Deep Phenotyping and Genetic Characterization With Findings Specific to the 3'-end of ORF15. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37695603 PMCID: PMC10501488 DOI: 10.1167/iovs.64.12.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose To describe a group of patients with retinitis pigmentosa GTPase regulator (RPGR)-related retinopathy with a tapetal-like retinal sheen and corresponding changes in the reflectivity of the ellipsoid zone on optical coherence tomography (OCT) imaging. Methods A retrospective case series of 66 patients with a disease-causing variant in RPGR was performed. An expert examiner, masked to patient demographics, clinical evaluations, and specific RPGR variant, analyzed color fundus photographs for the presence of a tapetal-like retinal sheen and assessed OCT images for the presence of an abnormally broad hyper-reflective band in the outer retina. Longitudinal reflectivity profiles were generated and compared with healthy controls. Results Twelve patients (18.2%) had a retinal sheen on color images that cosegregated with an abnormally broad hyper-reflective ellipsoid zone band on OCT imaging. Three-fourths of these patients were male, had a cone-rod dystrophy, and had pathogenic RPGR variants located toward the 3'-end of ORF15. This group had a different longitudinal reflectivity profile signature compared with controls. After a period of prolonged dark adaptation, the abnormal hyper-reflective band on OCT became less apparent, and the outer retinal layers adopted a more normal appearance. Conclusions RPGR-related retinopathy should be considered for males presenting with retinal sheen, abnormal ellipsoid zone hyper-reflectivity, and cone or cone-rod dysfunction on ERG, and pursued with molecular testing. Our results have implications for understanding the role of the C-terminal domain encoded by RPGR ORF15 in the phototransduction cascade. Further, the findings may be important to incorporate into both inclusion criteria and outcome measure developments in future RPGR-related cone or cone-rod dystrophy clinical trials.
Collapse
Affiliation(s)
- Matthew D. Benson
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Souvick Mukherjee
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Aime R. Agather
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Delphine Blain
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Denise Cunningham
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert Mays
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xun Sun
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiansen Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P. Brooks
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wadih M. Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Gocuk SA, Jolly JK, Edwards TL, Ayton LN. Female carriers of X-linked inherited retinal diseases - Genetics, diagnosis, and potential therapies. Prog Retin Eye Res 2023; 96:101190. [PMID: 37406879 DOI: 10.1016/j.preteyeres.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of heterogeneous conditions that cause progressive vision loss, typically due to monogenic mutations. Female carriers of X-linked IRDs have a single copy of the disease-causing gene, and therefore, may exhibit variable clinical signs that vary from near normal retina to severe disease and vision loss. The relationships between individual genetic mutations and disease severity in X-linked carriers requires further study. This review summarises the current literature surrounding the spectrum of disease seen in female carriers of choroideremia and X-linked retinitis pigmentosa. Various classification systems are contrasted to accurately grade retinal disease. Furthermore, genetic mechanisms at the early embryonic stage are explored to potentially explain the variability of disease seen in female carriers. Future research in this area will provide insight into the association between genotype and retinal phenotypes of female carriers, which will guide in the management of these patients. This review acknowledges the importance of identifying which patients may be at high risk of developing severe symptoms, and therefore should be considered for emerging treatments, such as retinal gene therapy.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
9
|
Georgiou M, Robson AG, Jovanovic K, Guimarães TACD, Ali N, Pontikos N, Uwaydat SH, Mahroo OA, Cheetham ME, Webster AR, Hardcastle AJ, Michaelides M. RP2-Associated X-linked Retinopathy: Clinical Findings, Molecular Genetics, and Natural History. Ophthalmology 2023; 130:413-422. [PMID: 36423731 PMCID: PMC10567581 DOI: 10.1016/j.ophtha.2022.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To review and describe in detail the clinical course, functional and anatomic characteristics of RP2-associated retinal degeneration. DESIGN Retrospective case series. PARTICIPANTS Male participants with disease-causing variants in the RP2 gene. METHODS Review of all case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence [FAF] imaging, OCT), and electrophysiology assessment. MAIN OUTCOME MEASURES Molecular genetic testing, clinical findings including best-corrected visual acuity (BCVA), qualitative and quantitative retinal imaging analysis, and electrophysiology parameters. RESULTS Fifty-four molecularly confirmed patients were identified from 38 pedigrees. Twenty-eight disease-causing variants were identified, with 20 not previously clinically characterized. Fifty-three patients (98.1%) presented with retinitis pigmentosa. The mean age of onset (range ± standard deviation [SD]) was 9.6 years (1-57 ± 9.2 years). Forty-four patients (91.7%) had childhood-onset disease, with mean age of onset of 7.6 years. The most common first symptom was night blindness (68.8%). Mean BCVA (range ± SD) was 0.91 logarithm of the minimum angle of resolution (logMAR) (0-2.7 ± 0.80) and 0.94 logMAR (0-2.7 ± 0.78) for right and left eyes, respectively. On the basis of the World Health Organization visual impairment criteria, 18 patients (34%) had low vision. The majority (17/22) showed electroretinogram (ERG) evidence of a rod-cone dystrophy. Pattern ERG P50 was undetectable in all but 2 patients. A range of FAF findings was observed, from normal to advanced atrophy. There were no statistically significant differences between right and left eyes for ellipsoid zone width (EZW) and outer nuclear layer (ONL) thickness. The mean annual rate of EZW loss was 219 μm/year, and the mean annual decrease in ONL thickness was 4.93 μm/year. No patient with childhood-onset disease had an identifiable ellipsoid zone (EZ) after the age of 26 years at baseline or follow-up. Four patients had adulthood-onset disease and a less severe phenotype. CONCLUSIONS This study details the clinical phenotype of RP2 retinopathy in a large cohort. The majority presented with early-onset severe retinal degeneration, with early macular involvement and complete loss of the foveal photoreceptor layer by the third decade of life. Full-field ERGs revealed rod-cone dystrophy in the vast majority, but with generalized (peripheral) cone system involvement of widely varying severity in the first 2 decades of life. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Katarina Jovanovic
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Naser Ali
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sami H Uwaydat
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alison J Hardcastle
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
11
|
Saeed OB, Traboulsi EI, Coussa RG. Profiling of visual acuity and genotype correlations in RP2 patients: a cross-sectional comparative meta-analysis between carrier females and affected males. Eye (Lond) 2023; 37:350-355. [PMID: 35094030 PMCID: PMC9873705 DOI: 10.1038/s41433-022-01954-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND X-linked retinitis pigmentosa (XLRP) is the most severe form of retinitis pigmentosa (RP) and accounts for 15-20% of all RP cases. In this study, we investigated the progression of visual acuity loss across age groups in female carriers and compared it to affected males. METHODS A PubMed literature search was conducted, and RP2 cases were included based on specific inclusion criteria. Visual acuity (VA), refractive error spherical equivalent (SE), and retinal findings were recorded. Cross-sectional analyses investigated the relationship between VA and age in carrier females and affected males. Genotype-phenotype VA correlations were studied using t-tests. RESULTS 35 carrier females and 28 affected males with confirmed RP2 mutations were collected from 13 studies. The mean age and logMAR VA of carrier females were 44.2 ± 17.4 years, and 0.5 ± 0.5, respectively. 78.8% of carrier females showed abnormal XLRP-related fundus findings and had significantly reduced VA compared to those with normal fundi (0.6 ± 0.5 vs. 0.1 ± 0.1; p = 0.03). Compared to affected males, no statistical correlation was found between logMAR VA and advancing age in carrier females (p = 0.75). Statistically significant linear correlations were found between logMAR VA and SE in each of carrier females (p = 0.01). There were no observed differences in logMAR VA based on mutation type (p = 0.97) or mutation location (p = 0.83). Anisometropia was observed in 38% of carrier females and 68% of affected males; these prevalence numbers are statistically significant between the two groups (1.7 ± 0.3 vs. 3.9 ± 10.9 dioptres; p = 0.03). CONCLUSIONS RP2 carrier females generally maintain good VA throughout their lifetime, as opposed to affected males, whose vision progressively declines. Our study provides important VA prognostic data that is crucial for patient counseling.
Collapse
Affiliation(s)
| | - Elias I Traboulsi
- Cleveland Clinic, Cole Eye Institute, Center for Genetic Eye Diseases, Cleveland, OH, USA
| | - Razek Georges Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Fundus Photography Methodologies to Assess RP Patients. Methods Mol Biol 2022; 2560:81-90. [PMID: 36481885 DOI: 10.1007/978-1-0716-2651-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of fundus photography and imaging has improved our ability to diagnose and monitor inherited retinal degenerations. Nowadays, color fundus photography has become a staple in evaluating patients with retinitis pigmentosa (RP). Other important multimodal forms of fundus photography used today include red-free fundus photography, short-wavelength autofluorescence, and near-infrared autofluorescence. These photography methodologies provide valuable information on the natural history of disease progression, which in turn can lead to the identification of viable outcome measurements for current and future therapeutic trials. Further advances and developments in the field of fundus imaging will help in our understanding of RP and allied disorders.
Collapse
|
13
|
Retinitis Pigmentosa'nın Genetik ve Klinik Değerlendirilmesi. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The aim of this study was to evaluate the most common underlying genetic and clinical etiologies of retinitis pigmentosa (RP) disease in our geographical area.
Material and Method: In our archive, there are about 3000 patients who applied to our clinic between the years 2015-2021. The files of approximately 700 patients with a definitive genetic diagnosis were retrospectively scanned. A definitive genetic diagnosis was made in 22 of these patients. During our research, we collected some clinical parameters including the prenatal, natal, and postnatal history of the patients, history of surgery and seizures, and family history. In family history, we did a detailed pedigree with at least 3 generational analyses, questioned parental kinship, looked for similar members in families, and identified inheritance patterns of their disorder. We draw 3 generations pedigree and we collected peripheral venous blood samples from patients and sent them to a commercial lab for gene panels or WES. After obtaining the definitive genetic diagnosis of all patients, we compiled a table with the other parameters we questioned.
Results: As a result of our WES analysis in patients 1 and 2, homozygous c.1331_1332 dupAG/p. Thr445ArgfsTer10 Class 2 variant was detected in the POC1B gene of patient #2.In the RP panel 1 reports of patients 3 and 4, the genomic alteration of c.2254dupA (p.Ser752Lysfs*14) was detected in exon 15 of the ABCA4 (NM_000350) gene. Patient 5, EYS c.4964T>C heterozygous. Patient 6. SEMA4A C.1168A>G (heterozygous). Patient 7, SEMA4A C.1168A>G (heterozygous), RP1 c.5402C>T (heterozygous), CGNB1 c.1382C>T (heterozygous).Patient #8, . Heterozygous variation of p.Thr390Ala (c.1168A>G) in the SEMA4A gene is present.As a result of our WES analysis, a homozygous c.2021C>A/p.Pro674His Class 2 variant was detected in the RPGRIP1 gene of patient #9. Heterozygous c.119-2A>C Class 1 mutation was detected in the NR2E3 gene of patient 10. Homozygous c.271C>T/p.Gln91* Class 1 mutation was detected in the MFRP gene in patient 11. Patient #12 was diagnosed at the age of 7-8 years. When we look at the exome sequencing results, a homozygous mutation in the CNGB1 gene c.413-1G> of patient 13 was detected. Heterozygous p.Ser361Tyr (c.1082C>A) change detected in the ABCA4 gene of patient #14 was detected. The heterozygous p.Glu150Lys (c.448G>A) change detected in the RHO gene of patient #15 was pathogenic according to ClinVar database and in silico analysis. rated as. Prediagnosis was Bardet-Biedle Syndrome in patient 16. P.Gly244Asp change was detected in RPE65 gene of patients 17 and 18. Automated DNA sequencing of patient #19 and patient #20 results in a homozygous sequence variation in the coding sequence of the NR2E3 genes, a homozygous CGG>CAG nucleotide substitution, and an amino acid replacement of Arg311Gln. Heterozygous mutation was detected in the same gene region in patient 21 (fathers). Variation in NR2E3 is the most likely cause of these patients' eye condition, as it is a complete genotype and is strongly associated with RP in many published families. Genetic results on an allele of the BBS1 gene of patient 22 (chr11:66.278.121-66.291.364 (13.2kb)/ISCN: seq [GRCH37]11q13.2(66.278).121-66.291.364)x1). The other allele has a heterozygous point mutation (c.1424dupT p.Ser476fs-rs886039798).
Conclusıons: As determined in our study, the disease can be encountered with many different genetic etiologies. In this regard, patients undergoing genetic testing should be carefully examined for both SNP (single nucleotide polymorphism) and CNV (copy number variation).In addition, before genetic tests are performed, it should be well determined whether there is an isolated RP or an accompanying RP. In this respect, patients should be evaluated by making a detailed anamnesis and physical examination and drawing a pedigree containing at least 3 generations. Therefore, it was concluded that accompanying abnormalities should also be examined in the evaluation of retinitis pigmentosa anomalies.
Collapse
|
14
|
Proteomic Analysis of Retinal Mitochondria-Associated ER Membranes Identified Novel Proteins of Retinal Degeneration in Long-Term Diabetes. Cells 2022; 11:cells11182819. [PMID: 36139394 PMCID: PMC9497316 DOI: 10.3390/cells11182819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is the physical contact site between the ER and the mitochondria and plays a vital role in the regulation of calcium signaling, bioenergetics, and inflammation. Disturbances in these processes and dysregulation of the ER and mitochondrial homeostasis contribute to the pathogenesis of diabetic retinopathy (DR). However, few studies have examined the impact of diabetes on the retinal MAM and its implication in DR pathogenesis. In the present study, we investigated the proteomic changes in retinal MAM from Long Evans rats with streptozotocin-induced long-term Type 1 diabetes. Furthermore, we performed in-depth bioinformatic analysis to identify key MAM proteins and pathways that are potentially implicated in retinal inflammation, angiogenesis, and neurodegeneration. A total of 2664 unique proteins were quantified using IonStar proteomics-pipeline in rat retinal MAM, among which 179 proteins showed significant changes in diabetes. Functional annotation revealed that the 179 proteins are involved in important biological processes such as cell survival, inflammatory response, and cellular maintenance, as well as multiple disease-relevant signaling pathways, e.g., integrin signaling, leukocyte extravasation, PPAR, PTEN, and RhoGDI signaling. Our study provides comprehensive information on MAM protein changes in diabetic retinas, which is helpful for understanding the mechanisms of metabolic dysfunction and retinal cell injury in DR.
Collapse
|
15
|
Oikonomopoulou Z, Shulman S, Mets M, Katz B. Chronic Granulomatous Disease: an Updated Experience, with Emphasis on Newly Recognized Features. J Clin Immunol 2022; 42:1411-1419. [PMID: 35696001 PMCID: PMC9674739 DOI: 10.1007/s10875-022-01294-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Purpose Chronic granulomatous disease (CGD) is an uncommon, inborn error of immunity. We updated our large, single-center US experience with CGD and describe some newly recognized features. Methods We retrospectively reviewed 26 patients seen from November 2013 to December 2019. Serious infections required intravenous antibiotics or hospitalization. Results There were 21 males and 5 females. The most frequent infectious agents at presentation were aspergillus (4), serratia (4), burkholderia (2), Staphylococcus aureus (2), and klebsiella (2). The most common serious infections at presentation were pneumonia (6), lymphadenitis (6), and skin abscess (3). Our serious infection rate was 0.2 per patient-year from December 2013 through November 2019, down from 0.62 per patient-year from the previous study period (March 1985–November 2013). In the last 6 years, four patients were evaluated for human stem cell transplantation, two were successfully transplanted, and we had no deaths. Several patients had unusual infections or autoimmune manifestations of disease, such as pneumocystis pneumonia, basidiomycete/phellinus fungal pneumonia, and retinitis pigmentosa. We included one carrier female with unfavorable Lyonization in our cohort. Conclusion We update of a large US single-center experience with CGD and describe some recently identified features of the illness.
Collapse
Affiliation(s)
- Zacharoula Oikonomopoulou
- Division of Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave., Box 20, Chicago, IL, 60611, USA
| | - Stanford Shulman
- Division of Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave., Box 20, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Marilyn Mets
- Division of Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave., Box 20, Chicago, IL, 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Ben Katz
- Division of Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave., Box 20, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
16
|
Yang J, Zhou L, Ouyang J, Xiao X, Sun W, Li S, Zhang Q. Genotype-Phenotype Analysis of RPGR Variations: Reporting of 62 Chinese Families and a Literature Review. Front Genet 2021; 12:600210. [PMID: 34745198 PMCID: PMC8565807 DOI: 10.3389/fgene.2021.600210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of which female carriers are also frequently affected. The aim of the current study was to explore the RPGR variation spectrum and associated phenotype based on the data from our lab and previous studies. Methods Variants in RPGR were selected from exome sequencing data of 7,092 probands with different eye conditions. The probands and their available family members underwent comprehensive ocular examinations. Similar data were collected from previous reports through searches in PubMed, Web of Science, and Google Scholar. Systematic analyses of genotypes, phenotypes and their correlations were performed. Results A total of 46 likely pathogenic variants, including nine missense and one in-frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants, including 491 (83.9%) truncation variants, were identified from the literature. Systematic analysis of variants from our in-house dataset, literature, and gnomAD suggested that most of the pathogenic variants of RPGR were truncation variants while pathogenic missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic variations were present between males and female carriers, including more severe refractive error but better best corrected visual acuity (BCVA) in female carriers than those in males. The male patients showed a significant reduction of BCVA with increase of age and males with exon1-14 variants presented a better BCVA than those with ORF15 variants. For female carriers, the BCVA also showed significant reduction with increase of age, but BCVA in females with exon1-14 variants was not significant difference compared with those with ORF15 variants. Conclusion Most pathogenic variants of RPGR are truncations. Missense and in-frame variants located outside of the RCC1-like domain might be benign and the pathogenicity criteria for these variants should be considered with greater caution. The BCVA and refractive error are different between males and female carriers. Increase of age and location of variants in ORF15 contribute to the reduction of BCVA in males. These results are valuable for understanding genotypes and phenotypes of RPGR.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Dowd-Schoeman TJ, Rosenbloom J, Ameri H. Patterns of Autofluorescence in Common Genotypes of Retinitis Pigmentosa. Ophthalmic Surg Lasers Imaging Retina 2021; 52:426-431. [PMID: 34410191 DOI: 10.3928/23258160-20210727-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To investigate whether different forms of retinitis pigmentosa (RP) could be distinguished from one another using fundus autofluorescence (FAF) imaging. PATIENTS AND METHODS The National Institutes of Health EyeGene database was used to gather FAF images from 31 patients with RP, which were separated into 11 groups based on the RP-associated gene that was mutated. Investigators reviewed the images for patterns of autofluorescence (AF) and recorded qualitative observations. RESULTS Four patterns of AF were noted within the macula, including central foveal hyper AF, a perifoveal hyper AF ring, a macular hyper AF ring, and a bull's-eye pattern of AF. Four patterns of AF were noted outside of the macula, including a mid-peripheral hyper AF ring, extramacular spots of hyper AF, patches of hypo AF, and diffuse hypo AF in the periphery. Double hyper AF rings were present in RHO, RPGR, USH2A, and NR2E3-linked RP. CONCLUSIONS Similar patterns of AF were seen in different forms of RP, and AF failed to distinguish different genotypes. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:426-431.].
Collapse
|
18
|
Chivers M, Li N, Pan F, Wieffer H, Slowik R, Leartsakulpanitch J. The Burden of X-Linked Retinitis Pigmentosa on Patients and Society: A Narrative Literature Review. CLINICOECONOMICS AND OUTCOMES RESEARCH 2021; 13:565-572. [PMID: 34188501 PMCID: PMC8236258 DOI: 10.2147/ceor.s297287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
X-linked retinitis pigmentosa (XLRP) is a severe form of retinitis pigmentosa (RP), a rare, inherited retinal degenerative disorder, that causes blindness. The aim of this literature review was to identify what is currently known about the burden of XLRP. Literature databases were searched for articles describing the clinical, humanistic, or economic burden of XLRP or RP in the US, Japan, France, Germany, Italy, Spain, and the UK, published in English between 2014 and 2019; gray literature and cited references were reviewed. Literature describing XLRP is limited as this is an ultra-rare condition; findings relating to burden of RP have been reported with interpretation of how burden differs for XLRP. In XLRP, night blindness usually presents in the first decade of life, followed by loss of peripheral and then central vision; legal blindness is reported at a median of 45 years in affected males (vs median 70 years for RP). There is limited evidence of humanistic or economic burden specific to XLRP; one study identified greater vision-related activity limitations in patients with XLRP compared with the wider RP population. Qualitative studies describe increased humanistic burden for people living with RP; difficulty undertaking everyday tasks (driving, hobbies, reading), psychosocial burden and barriers to work and career. People described the emotional impact of dealing with progression of RP, ongoing social and physical challenges, and the impact of RP on relationships. The economic burden of RP is associated with lost productivity, greater healthcare costs and increasing requirement for formal and informal care. In summary, XLRP remains an untreatable condition that can impact people from childhood. The humanistic burden of RP has been shown to increase as the disease progresses; hence, in XLRP the earlier onset and earlier progression to blindness during prime working years may mean a comparatively greater lifetime burden of disease.
Collapse
Affiliation(s)
| | - Nan Li
- Janssen Global Services,LLC, Raritan, NJ, 08869, USA
| | - Feng Pan
- Janssen Global Services,LLC, Raritan, NJ, 08869, USA
| | | | - Rafal Slowik
- Janssen Global Services,LLC, Raritan, NJ, 08869, USA
| | | |
Collapse
|
19
|
CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES: A Long-Term Follow-up Study. Retina 2020. [PMID: 29528978 DOI: 10.1097/iae.0000000000002125] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the phenotype and clinical course of patients with RPGR-associated retinal dystrophies, and to identify genotype-phenotype correlations. METHODS A multicenter medical records review of 74 male patients with RPGR-associated retinal dystrophies. RESULTS Patients had retinitis pigmentosa (RP; n = 52; 70%), cone dystrophy (COD; n = 5; 7%), or cone-rod dystrophy (CORD; n = 17; 23%). The median follow-up time was 11.6 years (range 0-57.1). The median age at symptom onset was 5.0 years (range 0-14 years) for patients with RP and 23.0 years (range 0-60 years) for patients with COD/CORD. The probability of being blind (best-corrected visual acuity <0.05) at the age of 40 was 20% and 55% in patients with RP and COD/CORD, respectively. RPGR-ORF15 mutations were associated with high myopia (P = 0.01), which led to a faster best-corrected visual acuity decline in patients with RP (P < 0.001) and COD/CORD (P = 0.03). Patients with RP with RPGR-ORF15 mutations had a faster visual field decline (P = 0.01) and thinner central retina (P = 0.03) than patients with mutations in exon 1 to 14. CONCLUSION Based on best-corrected visual acuity survival probabilities, the intervention window for gene therapy for RPGR-associated retinal dystrophies is relatively broad in patients with RP. RPGR-ORF15 mutations were associated with COD/CORD and with a more severe phenotype in RP. High myopia is a risk factor for faster best-corrected visual acuity decline.
Collapse
|
20
|
Menghini M, Jolly JK, Nanda A, Wood L, Cehajic-Kapetanovic J, MacLaren RE. Early Cone Photoreceptor Outer Segment Length Shortening in RPGR X-Linked Retinitis Pigmentosa. Ophthalmologica 2020; 244:281-290. [PMID: 32209785 DOI: 10.1159/000507484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Introduction of retinal gene therapy requires established outcome measures along with thorough understanding of the pathophysiology. Evidence of early, thinned outer segments in RPGR X-linked retinitis pigmentosa could help understand how the level of cone photoreceptor involvement translates to visual potential. OBJECTIVE Analysis of foveal photoreceptor outer segment length in a young cohort of RPGR patients to help clarify the reason for absent maximal visual acuity seen. METHODS Case-control study of RPGR patients. Quantitative measurement of photoreceptor outer segment by OCT. RESULTS Eighteen male RPGR patients and 30 normal subjects were included. Outer segment thickness differed significantly between the RPGR and normal eyes (p < 0.0005). Mean outer segment values were 35.6 ± 2.3 µm and 35.4 ± 2.6 µm for RPGR right and left eyes, respectively. In normal eyes, the mean outer segment thickness was 61.4 ± 0.7 µm for right eyes and 62.4 ± 0.7 µm for left eyes. CONCLUSIONS Patients with RPGR X-linked retinitis pigmentosa show thinning of the foveal photoreceptor outer segment thickness early in the disease course, which could be an explanation for the lower maximum visual acuity seen. These findings must be taken into consideration when assessing efficacy outcome measures in retinal gene therapy trials.
Collapse
Affiliation(s)
- Moreno Menghini
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK,
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
21
|
Rodríguez-Muñoz A, Aller E, Jaijo T, González-García E, Cabrera-Peset A, Gallego-Pinazo R, Udaondo P, Salom D, García-García G, Millán JM. Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited Retinal Dystrophies. J Mol Diagn 2020; 22:532-543. [PMID: 32036094 DOI: 10.1016/j.jmoldx.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
A cohort of 172 patients diagnosed clinically with nonsyndromic retinal dystrophies, from 110 families underwent full ophthalmologic examination, including retinal imaging, electrophysiology, and optical coherence tomography, when feasible. Molecular analysis was performed using targeted next-generation sequencing (NGS). Variants were filtered and prioritized according to the minimum allele frequency, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Multiplex ligation-dependent probe amplification and array comparative genomic hybridization were performed to validate copy number variations identified by NGS. The diagnostic yield of this study was 62% of studied families. Thirty novel mutations were identified. The study found phenotypic intra- and interfamilial variability in families with mutations in C1QTNF5, CERKL, and PROM1; biallelic mutations in PDE6B in a unilateral retinitis pigmentosa patient; interocular asymmetry RP in 50% of the symptomatic RPGR-mutated females; the first case with possible digenism between CNGA1 and CNGB1; and a ROM1 duplication in two unrelated retinitis pigmentosa families. Ten unrelated cases were reclassified. This study highlights the clinical utility of targeted NGS for nonsyndromic inherited retinal dystrophy cases and the importance of full ophthalmologic examination, which allows new genotype-phenotype associations and expands the knowledge of this group of disorders. Identifying the cause of disease is essential to improve patient management, provide accurate genetic counseling, and take advantage of gene therapy-based treatments.
Collapse
Affiliation(s)
- Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Emilio González-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departments of Neurophysiology, Hospital de Manises, Valencia, Spain
| | | | - Roberto Gallego-Pinazo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Macula Unit, Oftalvist Clinic, Valencia, Spain
| | - Patricia Udaondo
- Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - David Salom
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departments of Ophthalmology, Hospital de Manises, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - José M Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
22
|
De La Camara CMF, Cehajic-Kapetanovic J, MacLaren RE. RPGR gene therapy presents challenges in cloning the coding sequence. Expert Opin Biol Ther 2020; 20:63-71. [PMID: 31612744 PMCID: PMC7104355 DOI: 10.1080/14712598.2020.1680635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Currently, there are three Phase I/II clinical trials based on gene therapy ongoing to test different AAV.RPGR or deleted RPGR vectors on patients affected by X-linked retinitis pigmentosa. These three vectors differ in the adeno-associated viral (AAV) vector capsid used, and the coding sequences: two contain codon optimized versions of RPGR which give the full-length protein, whilst the third uses a wild-type sequence that contains a large deletion encoding part of the functional domain of the RPGR protein.Areas covered: This review approaches the different studies that have led to the initiation of three different clinical trials for RPGR related X-linked retinitis pigmentosa.Expert opinion: The development of a gene therapy vector to deliver a normal copy of the RPGR gene into the photoreceptors has presented a challenge for the scientific community. The instability of its sequence and the fact that its function is not well understood can lead to the production of a nonfunctional or deleterious protein for the human retina. Since the RPGR protein undergoes post-translational glutamylation in the protein domain that may be particularly affected by gene instability, a functional assay of glutamylation is essential to verify the correct coding sequence.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez De La Camara
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Jasmina Cehajic-Kapetanovic
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Robert E. MacLaren
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| |
Collapse
|
23
|
Sanchez Tocino H, Diez Montero C, Villanueva Gómez A, Lobo Valentin R, Montero-Moreno JA. Phenotypic high myopia in X-linked retinitis pigmentosa secondary to a novel mutation in the RPGR gene. Ophthalmic Genet 2019; 40:170-176. [DOI: 10.1080/13816810.2019.1605385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Ana Villanueva Gómez
- Pediatric Ophthalmology Unit, Rio Hortega University Hospital, Valladolid, Spain
| | | | | |
Collapse
|
24
|
Exploring the Variable Phenotypes of RPGR Carrier Females in Assessing their Potential for Retinal Gene Therapy. Genes (Basel) 2018; 9:genes9120643. [PMID: 30567410 PMCID: PMC6316369 DOI: 10.3390/genes9120643] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal degenerations are the leading cause of blindness in the working population. X-linked retinitis pigmentosa (XLRP), caused by mutations in the Retinitis pigmentosa GTPase regulator (RPGR) gene is one of the more severe forms, and female carriers of RPGR mutations have a variable presentation. A retrospective review of twenty-three female RPGR carriers aged between 8 and 76 years old was carried out using fundoscopy, autofluorescence imaging (AF), blue reflectance (BR) imaging and optical coherence tomography (OCT). Confirmation of the genetic mutation was obtained from male relatives or Sanger genetic sequencing. Fundus examination and AF demonstrate phenotypic variability in RPGR carriers. The genetic mutation appears indeterminate of the degree of change. We found four distinct classifications based on AF images to describe RPGR carriers; normal (N) representing normal or near-normal AF appearance (n = 1, 4%); radial (R) pattern reflex without pigmentary retinopathy (n = 14, 61%); focal (F) pigmentary retinopathy (n = 5, 22%) and; male (M) phenotype (n = 3, 13%). The phenotypes were precisely correlated in both eyes (rs = 1.0, p < 0.0001). Skewed X-inactivation can result in severely affected carrier females—in some cases indistinguishable from the male pattern and these patients should be considered for RPGR gene therapy. In the cases of the male (M) phenotype where the X-inactivation was skewed, the pattern was similar in both eyes, suggesting that the mechanism is not truly random but may have an underlying genetic basis.
Collapse
|
25
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Martinez-Fernandez De La Camara C, Nanda A, Salvetti AP, Fischer MD, MacLaren RE. Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opin Orphan Drugs 2018; 6:167-177. [PMID: 30057863 PMCID: PMC6059358 DOI: 10.1080/21678707.2018.1444476] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION X-linked retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene is the most common form of recessive RP. The phenotype is characterised by its severity and rapid disease progression. Gene therapy using adeno-associated viral vectors is currently the most promising therapeutic approach. However, the construction of a stable vector encoding the full-length RPGR transcript has previously proven to be a limiting step towards gene therapy clinical trials. Recently however, a codon optimised version of RPGR has been shown to increase the stability and fidelity of the sequence, conferring a therapeutic effect in murine and canine animal models. AREAS COVERED This manuscript reviews the natural history of X-linked retinitis pigmentosa and the research performed from the discovery of the causative gene, RPGR, to the preclinical testing of potential therapies that have led to the initiation of three clinical trials. EXPERT OPINION X-linked retinitis pigmentosa is an amenable disease to be treated by gene therapy. Codon optimisation has overcome the challenge of designing an RPGR vector without mutations, and with a therapeutic effect in different animal models. With the RPGR gene therapy clinical trials still in the early stages, the confirmation of the safety, tolerability and potency of the therapy is still ongoing.
Collapse
Affiliation(s)
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Anna Paola Salvetti
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Sacco Hospital, University of Milan, Milano, Italy
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Centre for Ophthalmology Tübingen, University Eye Hospital, Tübingen, Germany
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
27
|
Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans 2017; 44:1235-1244. [PMID: 27911705 DOI: 10.1042/bst20160148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
Photoreceptor degeneration is the prominent characteristic of retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies resulting in blindness. Although abnormalities in many pathways can cause photoreceptor degeneration, one of the most important causes is defective protein transport through the connecting cilium, the structure that connects the biosynthetic inner segment with the photosensitive outer segment of the photoreceptors. The majority of patients with X-linked RP have mutations in the retinitis pigmentosa GTPase regulator (RPGR) or RP2 genes, the protein products of which are both components of the connecting cilium and associated with distinct mechanisms of protein delivery to the outer segment. RP2 and RPGR proteins are associated with severe diseases ranging from classic RP to atypical forms. In this short review, we will summarise current knowledge generated by experimental studies and knockout animal models, compare and discuss the prominent hypotheses about the two proteins' functions in retinal cell biology.
Collapse
|
28
|
Tee JJL, Carroll J, Webster AR, Michaelides M. Quantitative Analysis of Retinal Structure Using Spectral-Domain Optical Coherence Tomography in RPGR-Associated Retinopathy. Am J Ophthalmol 2017; 178:18-26. [PMID: 28322733 PMCID: PMC5451208 DOI: 10.1016/j.ajo.2017.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/29/2023]
Abstract
Purpose To quantify retinal structure and progression using spectral-domain optical coherence tomography (SDOCT) in patients with retinitis pigmentosa (RP) associated with retinitis pigmentosa GTPase regulator gene (RPGR) mutations. Design Retrospective observational case series. Methods Setting: Moorfields Eye Hospital, London, United Kingdom. Subjects: Both eyes of 32 patients. SDOCT follow-up period of >1 year (3.1 ± 1.4 years). Main Outcome Measures: Ellipsoid zone (EZ) width (EZW) and outer nuclear layer (ONL) and inner retinal layer (IRL) thickness measurements. Progression rates, interocular symmetry, and association with age and genotype were investigated. Results Significant differences were observed between baseline and final measurements of EZW and ONL thickness, but not for IRL thickness. Baseline and final EZWs were 2438 ± 1646 μm and 1901 ± 1423 μm for right eyes (P < .0001); 2420 ± 1758 μm and 1922 ± 1482 μm for left eyes (P < .0001). EZW constriction rates were 176.6 ± 130.1 μm/year and 173.1 ± 146.8 μm/year for right and left eyes. ONL thinning rates were 2.58 ± 2.85 μm/year and 2.52 ± 3.54 μm/year for right and left eyes. Interocular differences in EZW and ONL progression were not significant (P = .8609 and P = .6735, respectively). Strong correlations were found between EZW constriction rates of right and left eyes (rs = 0.627, P = .0002) and between EZW constriction and baseline EZW (rs = 0.714, P < .0001). There was moderate negative correlation between EZW constriction and age (rs = −0.532, P < .0001). Correlation between ONL thinning and age was not significant, as were differences between EZW and ONL progression rates with respect to genotype. Conclusions This study provides SDOCT progression rates for RPGR-associated RP. There is overall interocular symmetry with implications for future treatment trials where 1 eye could serve as a control.
Collapse
Affiliation(s)
- James J L Tee
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
29
|
Charng J, Cideciyan AV, Jacobson SG, Sumaroka A, Schwartz SB, Swider M, Roman AJ, Sheplock R, Anand M, Peden MC, Khanna H, Heon E, Wright AF, Swaroop A. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration. Hum Mol Genet 2016; 25:5444-5459. [PMID: 27798110 PMCID: PMC6078602 DOI: 10.1093/hmg/ddw361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ORF15 exon of the RPGR gene cause a common form of X-linked retinitis pigmentosa, which often results in severe loss of vision. In dogs and mice, gene augmentation therapy has been shown to arrest the progressive degeneration of rod and cone photoreceptors. However, the distribution of potentially treatable photoreceptors across the human retinas and the rate of degeneration are not known. Here, we have defined structural and functional features of the disease in 70 individuals with ORF15 mutations. We also correlated the features observed in patients with those of three Rpgr-mutant (Rpgr-ko, Rd9, and Rpgr-cko) mice. In patients, there was pronounced macular disease. Across the retina, rod and cone dysfunction showed a range of patterns and a spectrum of severity between individuals, but a high symmetry was observed between eyes of each individual. Genotype was not related to disease expression. In the Rpgr-ko mice, there were intra-retinal differences in rhodopsin and cone opsin trafficking. In Rd9 and Rpgr-cko mice, retinal degeneration showed inter-ocular symmetry. Longitudinal results in patients revealed localized rod and cone dysfunction with progression rates of 0.8 to 1.3 log per decade in sensitivity loss. Relatively retained rod and cone photoreceptors in mid- and far-peripheral temporal-inferior and nasal-inferior visual field regions should be good targets for future localized gene therapies in patients.
Collapse
Affiliation(s)
- Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Sharon B. Schwartz
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Manisha Anand
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Marc C. Peden
- Retina Associates of Florida, Tampa, Florida, FL, USA
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
30
|
Zhou L, Li T, Xing YQ, Li Y, Wu QS, Zhang MJ. Novel TRPM1 mutations in two Chinese families with early-onset high myopia, with or without complete congenital stationary night blindness. Int J Ophthalmol 2016; 9:1396-1402. [PMID: 27803854 DOI: 10.18240/ijo.2016.10.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/25/2015] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the relationship between high myopia [with or without complete congenital stationary night blindness (CSNB1)] and TRPM1 and NYX. METHODS Two unrelated families with early-onset high myopia (eoHM) and 96 normal controls were recruited. Sanger sequencing or clone sequencing were used for mutation screening. Further analyses of the available family members and the 96 normal controls were subsequently conducted to obtain additional evidence of the pathogenicity of these variants. The initial diagnosis of the probands was eoHM. We performed a further comprehensive examination of the available family members after mutations were detected in TRPM1 or NYX. RESULTS Two novel compound heterozygous mutations in TRPM1 were detected in the recruited families. The proband in family A with eoHM carried a c.2594C>T missense mutation in exon 19 and a c.669+3_669+6delAAGT splicing mutation, which was co-segregated with CSNB1 in this family. A patient in family B with a compound heterozygous missense mutation (c.3262G>A and c.3250T>C) was detected. No mutations were found in NYX. These two identified compound heterozygous mutations were not found in the 96 normal controls. After further examination of the family members, the patients in family A could be diagnosed as eoHM with CSNB1. However due to the limited clinic data, the patient in family B cloud not clearly diagnosed as CSNB1. CONCLUSION This study has expanded the mutation spectrum of TRPM1 for CSNB1 and additional studies are needed to elucidate the association between isolated high myopia and TRPM1 and NYX.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Tuo Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Yi-Qiao Xing
- Department of Ophthalmology, Remin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yin Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Qing-Song Wu
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Mao-Ju Zhang
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| |
Collapse
|
31
|
Misky D, Guillaumie T, Baudoin C, Bocquet B, Beltran M, Kaplan J, Dhaenens CM, Bonnefont JP, Meunier I, Hamel CP. Pattern dystrophy in a female carrier of RP2 mutation. Ophthalmic Genet 2016; 37:453-455. [DOI: 10.3109/13816810.2015.1081253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dina Misky
- Genetics of Sensory Diseases, CHU, Montpellier, France
| | | | | | - Béatrice Bocquet
- INSERM U1051, Institute des Neurosciences de Montpellier, Montpellier, France
- Université Montpellier, Montpellier, France
| | | | - Josseline Kaplan
- Institut Imagine, Université Paris Descartes, Paris, France
- Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire-Marie Dhaenens
- Biochemistry and Molecular Biology Department, UF Génopathies, CHU Lille, Lille, France
- UMR-S 1172, Jean-Pierre AUBERT Research Center, Université Lille, Lille, France
| | - Jean-Paul Bonnefont
- Institut Imagine, Université Paris Descartes, Paris, France
- Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Meunier
- Genetics of Sensory Diseases, CHU, Montpellier, France
- INSERM U1051, Institute des Neurosciences de Montpellier, Montpellier, France
- Université Montpellier, Montpellier, France
| | - Christian P. Hamel
- Genetics of Sensory Diseases, CHU, Montpellier, France
- INSERM U1051, Institute des Neurosciences de Montpellier, Montpellier, France
- Université Montpellier, Montpellier, France
| |
Collapse
|
32
|
Tee JJL, Smith AJ, Hardcastle AJ, Michaelides M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol 2016; 100:1022-7. [PMID: 26843488 DOI: 10.1136/bjophthalmol-2015-307698] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/02/2016] [Indexed: 11/04/2022]
Abstract
Retinitis pigmentosa GTPase regulator (RPGR) gene sequence variants account for the vast majority of X linked retinitis pigmentosa (RP), which is one of the most severe forms of RP. Symptoms of nyctalopia typically begin in childhood, with increasing loss of peripheral visual field during teenage years, and progressive central visual loss during the second to fourth decade of life. There is however marked intrafamilial and interfamilial phenotypic heterogeneity in affected males and carrier females. There is now a far greater understanding of the range of phenotypes associated with variants in this gene; including rod-cone dystrophy, cone-rod dystrophy, cone dystrophy, macular dystrophy and non-ocular phenotypes. There are also increasingly established genotype-phenotype associations and structure-function correlations. RPGR is involved in ciliary function, with ciliary dysfunction now recognised as the mechanism underlying a large proportion of inherited retinal disease. There has been significant progress in identifying naturally occurring animal models and developing novel models to define the underlying disease mechanisms and to test gene replacement therapy, in addition to advances in human retinal imaging, culminating in completed and planned clinical trials. These significant developments will be discussed.
Collapse
Affiliation(s)
- James J L Tee
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Alexander J Smith
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Alison J Hardcastle
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| |
Collapse
|
33
|
Zhang Q. Genetics of Refraction and Myopia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:269-79. [PMID: 26310160 DOI: 10.1016/bs.pmbts.2015.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both genetic and environmental factors play roles in the development of refractive errors. Identification of genes involved in refractive errors may help in elucidating the underlying molecular mechanism related to both genetic defects and environmental pressure. Recent development of techniques for genome wide analysis provides unique opportunity in dissecting the genetic basis related to refractive errors. This chapter tries to give a brief overview on the recent progress of genetic study of refractive errors, especially myopia.
Collapse
Affiliation(s)
- Qingjiong Zhang
- State Key Lab of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
34
|
Liu F, Chen J, Yu S, Raghupathy RK, Liu X, Qin Y, Li C, Huang M, Liao S, Wang J, Zou J, Shu X, Tang Z, Liu M. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet 2015; 24:4648-59. [PMID: 26034134 DOI: 10.1093/hmg/ddv197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiaxiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | | | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Chang Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Mi Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shengjie Liao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiuxiang Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jian Zou
- Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Zhongxin Beilou, Hangzhou, 310029 Zhejiang, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK and and
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| |
Collapse
|
35
|
Beltran WA, Cideciyan AV, Lewin AS, Hauswirth WW, Jacobson SG, Aguirre GD. Gene augmentation for X-linked retinitis pigmentosa caused by mutations in RPGR. Cold Spring Harb Perspect Med 2014; 5:a017392. [PMID: 25301933 DOI: 10.1101/cshperspect.a017392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is a severe and early onset form of retinal degeneration, and no treatment is currently available. Recent evidence in two clinically relevant canine models shows that adeno-associated viral (AAV)-mediated RPGR gene transfer to rods and cones can prevent disease onset and rescue photoreceptors at early- and mid-stages of degeneration. There is thus a strong incentive for conducting long-term, preclinical efficacy and safety studies, while concomitantly pursuing the detailed phenotypic characterization of XLRP disease in patients that may benefit from such corrective therapy.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida 32610
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gustavo D Aguirre
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
36
|
|
37
|
|
38
|
Sheng X, Li Z, Zhang X, Wang J, Ren H, Sun Y, Meng R, Rong W, Zhuang W. A novel mutation in retinitis pigmentosa GTPase regulator gene with a distinctive retinitis pigmentosa phenotype in a Chinese family. Mol Vis 2010; 16:1620-8. [PMID: 20806050 PMCID: PMC2927444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 08/11/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To screen the mutation in the retinitis pigmentosa GTPase regulator (RPGR) ORF15 in a large Chinese family with X-linked recessive retinitis pigmentosa and describe the phenotype in affected male and female carriers. METHODS Ophthalmic examination was performed on 77 family members to identify affected individuals and to characterize the disease phenotype. PCR and direct sequencing were used for screening mutations in the RPGR gene. RESULTS Mutation screening demonstrated a novel mutation ORF15+577_578 delAG, which caused an open reading frameshift and resulted in premature truncation of the RPGR protein. The mutation was detected in eight affected male individuals and 14 obligate female carriers of the family and was found to segregate with the phenotype in this family. The mutation led to a severe retinitis pigmentosa (RP) phenotype in male-affected individuals, with some variability in the age of onset of night blindness and visual acuity, but was recessive in female carriers without an RP phenotype. However, the state associated with the carrier was moderate to high myopia with the refractive error ranging from -5.00 D to 22.00 D in 14 female carriers. CONCLUSIONS This novel mutation in RPGR ORF15 causes a serious RP phenotype in males and no RP phenotype in female carriers. Moderate to high myopia was a particular feature for female carriers in this pedigree. Our finding expands the spectrum of RPGR mutations causing X-linked RP and expands phenotypic spectrum of the disease in a Chinese family. This finding will be useful for further genetic consultations and genetic diagnosis.
Collapse
Affiliation(s)
- Xunlun Sheng
- Department of Ophthalmology, People Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zili Li
- Department of Ophthalmology, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | | | - Jing Wang
- Department of Ophthalmology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Hongwang Ren
- Central Laboratory of Ningxia Medical University, Yinchuan, China
| | - Yanbo Sun
- Central Laboratory of Ningxia Medical University, Yinchuan, China
| | - Ruihua Meng
- Department of Ophthalmology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Weining Rong
- Department of Ophthalmology, People Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Wenjuan Zhuang
- Department of Ophthalmology, Affiliated Hospital of Ningxia Medical University, Yinchuan, China,Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Ji Y, Wang J, Xiao X, Li S, Guo X, Zhang Q. Mutations in RPGR and RP2 of Chinese Patients with X-Linked Retinitis Pigmentosa. Curr Eye Res 2009; 35:73-9. [DOI: 10.3109/02713680903395299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yanli Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
40
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
41
|
Maubaret C, Hamel C. [Genetics of retinitis pigmentosa: metabolic classification and phenotype/genotype correlations]. J Fr Ophtalmol 2005; 28:71-92. [PMID: 15767903 DOI: 10.1016/s0181-5512(05)81029-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Retinitis pigmentosa (RP, prevalence 1/4000) is a set of hereditary retinal dystrophies characterized by pigment deposits in fundus and progressive death of photoreceptors, always associated with the alteration of retinal pigment epithelium. Genetic heterogeneity of the typical nonsyndromic form (rod cone dystrophy) is extensive: 11 genes and one locus were reported for autosomal dominant RP, 17 genes and five loci for autosomal recessive RP, and two genes and two loci for X-linked RP. A survey of mutation screening reports in large series of patients indicates that the frequency of mutations for all cloned genes varies from 40% to 54% of cases in autosomal dominant RP, from 17% to 24% in autosomal recessive RP (excluding the USH2A gene for which the values remain uncertain) and from 61% to 89% in X-linked RP. Very few studies report on sporadic cases except for the two X-linked genes, RP2 and RPGR, which account for 29% of sporadic cases in males. Altogether, the two most frequently involved genes are RPGR (13% of all RP cases) and RHO (4%), an important consideration for molecular diagnosis. Finally, we roughly estimate that currently known genes do not represent more than 50% of RP cases, suggesting that many genes remain to be discovered. The known genes can be classified into metabolic groups according to the encoded protein: visual transduction, visual cycle, transcription factors, structural proteins, spliceosome complex and cellular traffic, indicating the high level of specialization of photoreceptors and of the retinal pigment epithelium. In parallel with this classification, genotype/phenotype correlations have been established that will help ophthalmologists to suspect particular genes, and thereby mechanisms. This approach will provide better informations to patients and will orient the choice of future therapies.
Collapse
Affiliation(s)
- C Maubaret
- INSERM U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, 34091 Montpellier cedex 05, 34090 Montpellier, France
| | | |
Collapse
|
42
|
Flitcroft DI, Adams GGW, Robson AG, Holder GE. Retinal dysfunction and refractive errors: an electrophysiological study of children. Br J Ophthalmol 2005; 89:484-8. [PMID: 15774929 PMCID: PMC1772604 DOI: 10.1136/bjo.2004.045328] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To evaluate the relation between refractive error and electrophysiological retinal abnormalities in children referred for investigation of reduced vision. METHODS The study group comprised 123 consecutive patients referred over a 14 month period from the paediatric service of Moorfields Eye Hospital for electrophysiological investigation of reduced vision. Subjects were divided into five refractive categories according to their spectacle correction: high myopia (< or = -6D), low myopia (>-6D and < or = -0.75D), emmetropia (>-0.75 and <1.5D), low hyperopia (> or = 1.5 and <6D), and high hyperopia (> or = 6D). Patients with a specific diagnosis at the time of electrophysiological testing were excluded. Only the first member of any one family was included if more than one sibling had been tested. All tests were performed to incorporate ISCEV standards, using gold foil corneal electrodes where possible. In younger patients skin electrodes and an abbreviated protocol were employed. RESULTS The mean age of patients was 7.1 years with an overall incidence of abnormal electrophysiological findings of 29.3%. The incidence of abnormality was higher in high ametropes (13/25, 52%) compared to the other groups (23/98, 23.5%). This difference was statistically significant (chi2 test, p = 0.005). There was also a significant association between high astigmatism (>1.5D) and ERG abnormalities (18/35 with high astigmatism v 20/88 without, chi2 test, p = 0.002). There was no significant variation in frequency of abnormalities between low myopes, emmetropes, and low hyperopes. The rate of abnormalities was very similar in both high myopes (8/15) and high hyperopes (5/10). CONCLUSIONS High ametropia and astigmatism in children being investigated for poor vision are associated with a higher rate of retinal electrophysiological abnormalities. An increased rate of refractive errors in the presence of retinal pathology is consistent with the hypothesis that the retina is involved in the process of emmetropisation. Electrophysiological testing should be considered in cases of high ametropia in childhood to rule out associated retinal pathology.
Collapse
Affiliation(s)
- D I Flitcroft
- Department of Ophthalmology, The Children's University Hospital, Temple Street, Dublin D1, Ireland.
| | | | | | | |
Collapse
|
43
|
Vorster AA, Rebello MT, Coutts N, Ehrenreich L, Gama AD, Roberts LJ, Goliath R, Ramesar R, Greenberg LJ. Arg120stop nonsense mutation in the RP2 gene: mutational hotspot and germ line mosaicism? Clin Genet 2003; 65:7-10. [PMID: 15032968 DOI: 10.1111/j..2004.00163.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the RP2 gene account for up to 20% of X-linked recessive retinitis pigmentosa (RP). Arg120stop is to date the most frequently reported mutation found in RP2. Mutation screening was performed during the course of a large screening program of retinal degenerative disorders (RDDs) in South Africa using exon 1 and 2 of RP2 in 20 unrelated families with an X-linked mode of retinal degenerative inheritance. Direct sequencing analysis revealed a C-->T transition at position 358 in the proband in a family of German origin. Subsequent analysis revealed that this Arg120stop mutation cosegregated with the disease in an additional affected family member. The nonsense mutation, Arg120stop, could not however, be detected in the somatic cells of the obligate carrier female. This, the first report of a germ line mutation for a family with RP, has many implications for genetic counseling of retinal degeneration (RD). To avoid inaccurate risk assessment for RP due to epigenetic events, such as the rare occurrence of germ line mosaicism, genetic counseling in families with XLRP should always be guided by molecular testing.
Collapse
Affiliation(s)
- A A Vorster
- Division of Human Genetics, University of Cape Town, Medical School, Observatory, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
Mutations in RPGR, retinitis pigmentosa GTPase regulator, are associated with RP3 type of X-linked retinitis pigmentosa, a severe, non-syndromic form of retinal degeneration. In the majority of subjects RPGR mutations are associated with a typical rod-cone degeneration, but in a small number, cone-rod dystrophy, deafness, and abnormalities in respiratory cilia have been noted. Alternative splicing of RPGR is complex in all species examined. In RP3 patients, mutations have been found in exons 1-14 and ORF15, thus delineating a transcript necessary for normal retinal function in humans. The great majority of mutations are predicted to result in premature termination of translation. These mutations are scattered over exons 1-14 and ORF15, while most missense mutations occur in a domain with homology to the protein RCC1, encoded by exons 1-10. Exon ORF15 is a "hot spot" for mutation, at least in the British population, in which it harbors 80% of the mutations found within a sample of 47 X-linked retinitis pigmentosa patients. Most RPGR mutations are unique to single families, which makes it difficult to demonstrate phenotype-genotype correlations.
Collapse
Affiliation(s)
- Raf Vervoort
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
46
|
Miano MG, Testa F, Filippini F, Trujillo M, Conte I, Lanzara C, Millán JM, De Bernardo C, Grammatico B, Mangino M, Torrente I, Carrozzo R, Simonelli F, Rinaldi E, Ventruto V, D'Urso M, Ayuso C, Ciccodicola A. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum Mutat 2001; 18:109-19. [PMID: 11462235 DOI: 10.1002/humu.1160] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked Retinitis Pigmentosa (XLRP) shows a huge genetic heterogeneity with almost five distinct loci on the X chromosome. So far, only two XLRP genes have been identified, RPGR (or RP3) and RP2, being mutated in approximately 70% and 10% of the XLRP patients. Clinically there is no clearly significative difference between RP3 and RP2 phenotypes. In the attempt to assess the degree of involvement of the RP2 gene, we performed a complete mutation analysis in a cohort of patients and we identified five novel mutations in five different XLRP families. These mutations include three missense mutations, a splice site mutation, and a single base insertion, which, because of frameshift, anticipates a stop codon. Four mutations fall in RP2 exon 2 and one in exon 3. Evidence that such mutations are different from the 21 RP2 mutations described thus far suggests that a high mutation rate occurs at the RP2 locus, and that most mutations arise independently, without a founder effect. Our mutation analysis confirms the percentage of RP2 mutations detected so far in populations of different ethnic origin. In addition to novel mutations, we report here that a deeper sequence analysis of the RP2 product predicts, in addition to cofactor C homology domain, further putative functional domains, and that some novel mutations identify RP2 amino acid residues which are evolutionary conserved, hence possibly crucial to the RP2 function.
Collapse
Affiliation(s)
- M G Miano
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
José Blanco M, Capeans C. [Retinitis pigmentosa]. Med Clin (Barc) 2001; 117:135-6. [PMID: 11472685 DOI: 10.1016/s0025-7753(01)72041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|