1
|
Lee J, Moon JH. Targeting Cardiac Fibrosis in Diabetic Heart Failure: The Role of the EZH2, AMPK, and PPAR-γ Pathways (Diabetes Metab J 2024;48:716-29). Diabetes Metab J 2024; 48:1176-1178. [PMID: 39610136 PMCID: PMC11621649 DOI: 10.4093/dmj.2024.0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Affiliation(s)
- Jooyeop Lee
- Department of Internal Medicine, Armed Forces Yangju Hospital, Yangju, Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
2
|
Li SS, Pan L, Dang S, Wang RX. Diabetes Promotes Myocardial Fibrosis via AMPK/EZH2/PPAR-γ Signaling Pathway (Diabetes Metab J 2024;48:716-29). Diabetes Metab J 2024; 48:1181-1182. [PMID: 39610138 PMCID: PMC11621659 DOI: 10.4093/dmj.2024.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Affiliation(s)
- Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lu Pan
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shipeng Dang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
3
|
Nambiar M, Bee YM, Chan YE, Ho Mien I, Guretno F, Carmody D, Lee PC, Chia SY, Salim NNM, Krishnaswamy P. A drug mix and dose decision algorithm for individualized type 2 diabetes management. NPJ Digit Med 2024; 7:254. [PMID: 39289474 PMCID: PMC11408718 DOI: 10.1038/s41746-024-01230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Pharmacotherapy guidelines for type 2 diabetes (T2D) emphasize patient-centered care, but applying this approach effectively in outpatient practice remains challenging. Data-driven treatment optimization approaches could enhance individualized T2D management, but current approaches cannot account for drug-specific and dose-dependent variations in safety and efficacy. We developed and evaluated an AI Drug mix and dose Advisor (AIDA) for glycemic management, using electronic medical records from 107,854 T2D patients in the SingHealth Diabetes Registry. Given a patient's medical profile, AIDA leverages a predict-then-optimize approach to identify the minimal drug mix and dose changes required to optimize glycemic control, subject to clinical knowledge-based guidelines. On unseen data from large internal, external, and temporal validation sets, AIDA recommendations were estimated to improve post-visit glycated hemoglobin (HbA1c) by an average of 0.40-0.68% over standard of care (P < 0.0001). In qualitative evaluations on 60 diverse cases by a panel of three endocrinologists, AIDA recommendations were mostly rated as reasonable and precise. Finally, AIDA's ability to account for drug-dose specifics offered several advantages over competing methods, including greater consistency with practice preferences and clinical guidelines for practical but effective options, indication-based treatments, and renal dosing. As AIDA provides drug-dose recommendations to improve outcomes for individual T2D patients, it could be used for clinical decision support at point-of-care, especially in resource-limited settings.
Collapse
Grants
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
- H19/01/a0/023 - Diabetes Clinic of the Future Agency for Science, Technology and Research (A*STAR)
Collapse
Affiliation(s)
- Mila Nambiar
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yu En Chan
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ivan Ho Mien
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Feri Guretno
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Carmody
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Phong Ching Lee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Sing Yi Chia
- Health Services Research Unit, Singapore General Hospital, Singapore, Singapore
| | | | - Pavitra Krishnaswamy
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
4
|
Çöllüoğlu İT, Çelik A, Ata N, Ural D, Şahin A, Ulgu MM, Kanık EA, Birinci Ş, Yılmaz MB. Deciphering mortality risk of diabetes medications in heart failure patients with diabetes mellitus under triple guideline-directed medical therapy. Int J Cardiol 2024; 407:132109. [PMID: 38703896 DOI: 10.1016/j.ijcard.2024.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Scientific evidence regarding the impact of different combinations of diabetes medications in heart failure patients with diabetes mellitus (HFwDM) remains limited. AIM We aimed to investigate the effect of monotherapy and combination therapy for DM on all-cause mortality in HFwDM under triple guideline-directed medical therapy (GDMT). METHOD This nationwide retrospective cohort study included adult HFwDM under triple GDMT between January 1, 2016 and December 31, 2022.We collected the data from the National Electronic Database of the Turkish Ministry of Health.We created various combination including different diabetes medications based on the current guidelines for DM.The primary endpoint was all-cause mortality. RESULTS A total of 321,525 HFwDM under triple GDMT (female:49%, median age:68[61-75] years) were included. The highest rate of prescribed combination therapy was metformin and sulfonylureas (n = 55,266). In Cox regression analysis, insülin monotherapy had the highest risk for all-cause mortality (HR:2.25, 95CI%:2.06 - 2.45), whereas combination therapy including metformin, SGLT2i, and sulfonylureas provided the most beneficial effect on survival (HR:0.29, 95CI%:0.22-0.39) when compared to patients not receiving diabetes medication. Among patients taking diabetes medications, the inclusion of SGLT2i demonstrated a survival benefit (p < 0.05), despite concurrent use of volume-retaining medications such as insulin and thiazolidinediones. Conversely, combinations of diabetes medications without SGLT2i did not demonstrate any survival benefit compared to patients not taking diabetes medication (p > 0.05). CONCLUSION This study underscored the use of SGLT2i as monotherapy or as a part of combination diabetes medications to improve survival among HFwDM, while also highlighting that combinations lacking SGLT2i did not confer any survival benefit.
Collapse
Affiliation(s)
- İnci Tuğçe Çöllüoğlu
- Karabük University, Faculty of Medicine, Department of Cardiology, Karabük, Türkiye.
| | - Ahmet Çelik
- Mersin University, Faculty of Medicine, Department of Cardiology, Mersin, Türkiye
| | - Naim Ata
- General Directorate of Information Systems, Ministry of Health, Ankara, Türkiye
| | - Dilek Ural
- Koç University, Faculty of Medicine, Department of Cardiology, Istanbul, Türkiye
| | - Anıl Şahin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Cardiology, Sivas, Türkiye
| | - Mustafa Mahir Ulgu
- General Directorate of Information Systems, Ministry of Health, Ankara, Türkiye
| | - Emine Arzu Kanık
- Mersin University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin, Türkiye
| | - Şuayip Birinci
- Deputy Minister of Health, Ministry of Health, Ankara, Türkiye
| | - Mehmet Birhan Yılmaz
- Dokuz Eylül University, Faculty of Medicine, Department of Cardiology, Izmir, Türkiye
| |
Collapse
|
5
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
6
|
Mahmoud F, Mueller T, Mullen A, Sainsbury C, Rushworth GF, Kurdi A. Patterns of initial and first-intensifying antidiabetic drug utilization among patients with type 2 diabetes mellitus in Scotland, 2010-2020: A retrospective population-based cohort study. Diabetes Obes Metab 2024; 26:2684-2694. [PMID: 38558305 DOI: 10.1111/dom.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
AIM To evaluate the utilization and prescribing patterns of antidiabetic drugs (ADDs) for patients with type 2 diabetes mellitus (T2DM) at treatment initiation and first intensification. METHODS A retrospective cohort study was performed using linked routinely collected data of patients with T2DM who received ADDs between January 2010 and December 2020 in Scotland. The prescribing patterns were quantified using frequency/percentages, absolute/relative change, and trend tests. RESULTS Overall, 145 909 new ADD users were identified, with approximately 91% (N = 132 382) of patients receiving a single ADD at first treatment initiation. Metformin was the most often prescribed monotherapy (N = 118 737, 89.69%). A total of 50 731 patients (39.40%) who were started on metformin (N = 46 730/118 737, 39.36%) or sulphonylurea (SU; N = 4001/10 029, 39.89%) monotherapy had their treatment intensified with one or more additional ADD. Most initial-metformin (45 963/46 730; 98.36%) and initial-SU users (3894/4001; 97.33%) who added further drugs were intensified with single ADDs. SUs (22 197/45 963; 48.29%) were the most common first-intensifying monotherapy after initial metformin use, but these were replaced by sodium-glucose cotransporter-2 (SGLT2) inhibitors in 2019 (SGLT2 inhibitors: 2039/6065, 33.62% vs. SUs: 1924/6065, 31.72%). Metformin was the most frequently added monotherapy to initial SU use (2924/3894, 75.09%). Although the majority of patients received a single ADD, the use of combination therapy significantly increased over time. Nevertheless, there was a significant increasing trend towards prescribing the newer ADD classes (SGLT2 inhibitors, dipeptidyl peptidase-4 inhibitors) as monotherapy or in combination compared with the older ones (SUs, insulin, thiazolidinediones) at both drug initiation and first intensification. CONCLUSIONS An overall increasing trend in prescribing the newer ADD classes compared to older ADDs was observed. However, metformin remained the most commonly prescribed first-line ADD, while SGLT2 inhibitors replaced SUs as the most common add-on therapy to initial metformin use in 2019.
Collapse
Affiliation(s)
- Fatema Mahmoud
- Clinical Pharmacy Department, School of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Tanja Mueller
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Alexander Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Gordon F Rushworth
- Highland Pharmacy Education & Research Centre, NHS Highland, Inverness, UK
| | - Amanj Kurdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Department of Clinical Pharmacy, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
7
|
Chiu CD, Chiu YP, Yip HT, Ji HR, Cho DY, Cheng IHJ, Chen CY. Thiazolidinediones Decrease the Recurrence of Intracerebral Hemorrhage in Type 2 Diabetes Mellitus Patients: A Nested Case-Control Study. Neuroepidemiology 2024; 59:43-56. [PMID: 38705143 DOI: 10.1159/000539001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Preclinical evidence demonstrated the therapeutic potential of thiazolidinediones (TZDs) for the treatment of intracerebral hemorrhage (ICH). The present study conducted an investigation of cerebrovascular and cardiovascular outcomes following ICH in patients with type 2 diabetes mellitus (T2DM) treated with or without TZDs. METHODS This retrospective nested case-control study used data from the Taiwan National Health Insurance Research Database. A total of 62,515 T2DM patients who were hospitalized with a diagnosis of ICH were enrolled, including 7,603 TZD users. Data for TZD non-users were extracted using propensity score matching. Primary outcomes included death and major adverse cardiovascular events (MACEs), which were defined as a composite of ischemic stroke, hemorrhagic stroke (HS), acute myocardial infarction, and congestive heart failure. Patients aged <20 years with a history of traumatic brain injury or any prior history of MACEs were excluded. RESULTS TZD users had significantly lower MACE risks compared with TZD non-users following ICH (adjusted hazard ratio [aHR]: 0.90, 95% confidence interval [CI]: 0.85-0.94, p < 0.001). The most significant MACE difference reported for TZD users was HS, which possessed lower incidence than in TZD non-users, especially for the events that happened within 3 months following ICH (aHR: 0.74, 95% CI: 0.62-0.89 within 1 month, p < 0.01; aHR: 0.68, 95% CI: 0.54-0.85 between 1 and 3 month). CONCLUSION The use of TZD in patients with T2DM was associated with a lower risk of subsequent HS and mortality following ICH.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- School of Medicine, China Medical University, Taichung, Taiwan,
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan,
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan,
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan,
| | - You-Pen Chiu
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ru Ji
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cho-Yi Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
9
|
Ahmad BA, Sanghani IM, Sayabugari R, Biju H, Siddegowda A, Ittiachen Kinattingal M, Yartha SGR, Gaonkar PM, Andrabi SS, Vaghamashi YK, Korwar A. Beyond Blood Sugar: Investigating the Cardiovascular Effects of Antidiabetic Drugs. Cureus 2023; 15:e46373. [PMID: 37920618 PMCID: PMC10618835 DOI: 10.7759/cureus.46373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiovascular disease is a major comorbidity associated with diabetes mellitus. Various antidiabetic drugs are currently used to treat type 2 diabetes mellitus and have varying effects on the cardiovascular system. Some drugs, such as glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, are cardioprotective, whereas others, such as insulin, have deleterious effects on the cardiovascular system. This narrative review assessed the impact of antidiabetic drugs on cardiovascular health in the management of diabetes mellitus. It critically examines various classes of these medications, including conventional options such as metformin and newer agents such as incretin-based therapies and SGLT-2.
Collapse
Affiliation(s)
- Binish A Ahmad
- Department of Internal Medicine, King Edward Medical University, Lahore, PAK
| | - Isha M Sanghani
- Department of Internal Medicine, Punyashlok Ahilyadevi Holkar Government Medical College, Baramati, IND
| | | | - Hannah Biju
- Department of Internal Medicine, Kristu Jayanti College, Bengaluru, IND
| | | | - Minnu Ittiachen Kinattingal
- Department of Internal Medicine, New Hope Clinical Research, Charlotte, USA
- Department of Internal Medicine, Karuna Medical College, Palakkad, IND
| | | | - Prajyoth M Gaonkar
- Department of Internal Medicine, Punyashlok Ahilyadevi Holkar Government Medical College, Baramati, IND
| | - Syed Shireen Andrabi
- Department of Internal Medicine, School of Medicne, Tehran University of Medical Sciences, Tehran, IRN
| | | | - Arunika Korwar
- Department of Internal Medicine, KJ Somaiya Medical College, Mumbai, IND
| |
Collapse
|
10
|
Hyun YE, An S, Kim M, Park IG, Yoon S, Javaid HMA, Vu TNL, Kim G, Choi H, Lee HW, Noh M, Huh JY, Choi S, Kim HR, Jeong LS. Structure–Activity Relationships of Truncated 1′-Homologated Carbaadenosine Derivatives as New PPARγ/δ Ligands: A Study on Sugar Puckering Affecting Binding to PPARs. J Med Chem 2023; 66:4961-4978. [PMID: 36967575 DOI: 10.1021/acs.jmedchem.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1β expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.
Collapse
|
11
|
Utility of Hypoglycemic Agents to Treat Asthma with Comorbid Obesity. Pulm Ther 2022; 9:71-89. [PMID: 36575356 PMCID: PMC9931991 DOI: 10.1007/s41030-022-00211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Adults with obesity may develop asthma that is ineffectively controlled by inhaled corticosteroids and long-acting beta-adrenoceptor agonists. Mechanistic and translational studies suggest that metabolic dysregulation that occurs with obesity, particularly hyperglycemia and insulin resistance, contributes to altered immune cell function and low-grade systemic inflammation. Importantly, in these cases, the same proinflammatory cytokines believed to contribute to insulin resistance may also be responsible for airway remodeling and hyperresponsiveness. In the past decade, new research has emerged assessing whether hypoglycemic therapies impact comorbid asthma as reflected by the incidence of asthma, asthma-related emergency department visits, asthma-related hospitalizations, and asthma-related exacerbations. The purpose of this review article is to discuss the mechanism of action, preclinical data, and existing clinical studies regarding the efficacy and safety of hypoglycemic therapies for adults with obesity and comorbid asthma.
Collapse
|
12
|
Kim J, Ko H, Hur JS, An S, Lee JW, Deyrup ST, Noh M, Shim SH. Discovery of Pan-peroxisome Proliferator-Activated Receptor Modulators from an Endolichenic Fungus, Daldinia childiae. JOURNAL OF NATURAL PRODUCTS 2022; 85:2804-2816. [PMID: 36475432 DOI: 10.1021/acs.jnatprod.2c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 μM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.
Collapse
Affiliation(s)
- Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Tian L, Ai S, zheng H, Yang H, Zhou M, Tang J, Liu W, Zhao W, Wang Y. Cardiovascular and renal outcomes with sodium glucose co-transporter 2 inhibitors in patients with type 2 diabetes mellitus: A system review and network meta-analysis. Front Pharmacol 2022; 13:986186. [PMID: 36506550 PMCID: PMC9731650 DOI: 10.3389/fphar.2022.986186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular and renal impairment are the most common complications of type 2 diabetes mellitus (T2DM). As an emerging class of glucose-lowing agents sodium glucose co-transporter 2 (SGLT2), possesses beneficial effects on cardiovascular and renal outcomes in patients with T2DM. The aim of this study is to assess the efficacy of different SGLT2 inhibitors for cardiovascular and renal outcomes for patients with T2DM when compared with placebo. We performed a systematic search of PubMed, Embase, and the Cochrane library from inception through November 2021. Randomized clinical trials enrolling participants with T2DM were included, in which SGLT2 inhibitors were compared with each other or placebo. The primary outcomes including all-caused mortality, Cardiovascular outcomes (cardiovascular mortality, hospitalization for heart failure), and the renal composite outcomes (worsening persistent microalbuminuria or macroalbuminuria, new or worsening chronic kidney disease, doubling of serum creatinine, end-stage renal disease, renal transplant, or renal death). The data for the outcomes were pooled and recorded as Hazard rations (HRs) with 95% confidence intervals (CLs). Two researcher independently screened the trials and drawn the data. Ten trials enrolling 68,723 patients were included. Compared with placebo groups, Canagliflozin [HR, 0.85 (95%CI, 0.75-0.98)], ertugliflozin [HR, 0.93 (95%CI, 0.78-1.11)], and sotagliflozin [HR, 0.94 (95%CI, 0.79-1.12)] were associated with a reduction in all-cause mortality. Canagliflozin [HR, 0.84 (95%CI, 0.72-0.97)], dapagliflozin [HR, 0.88 (95%CI, 0.79-0.99)], empagliflozin [HR, 0.62 (95%CI, 0.49-0.78)], ertugliflozin [HR, 0.92 (95%CI, 0.77-1.10)], and sotagliflozin [HR, 0.88 (95%CI, 0.73-1.06)] were associated with a reduction in cardiovascular mortality; Canagliflozin [HR, 0.64 (95%CI, 0.53-0.77)], dapagliflozin [HR, 0.71 (95%CI, 0.63-0.81)], empagliflozin [HR, 0.65 (95%CI, 0.50-0.85)], ertugliflozin [HR, 0.70 (95%CI, 0.54-0.90)], and sotagliflozin [HR, 0.66 (95%CI, 0.56-0.77)] were associated with a reduction in hospitalization for heart failure. Dapagliflozin [HR, 0.55 (95%CI, 0.47-0.63)], Empagliflozin [HR, 0.54 (95%CI, 0.39-0.74)], canagliflozin [HR, 0.64 (95%CI, 0.54-0.75)], sotagliflozin [HR, 0.71 (95%CI, 0.46-1.09)], and ertugliflozin [HR, 0.81 (95%CI, 0.63-1.04)] were associated with a reduction in the renal composite outcome. All SGLT2 inhibitors showed a reduction in cardiovascular mortality, hospitalization for heart failure, renal composite outcomes and all-cause mortality. Canagliflozin and empagliflozin seemed to have the same efficacy in reducing hospitalization for heart failure, but empagliflozin had advantage in reducing cardiovascular mortality, whereas dapagliflozin most likely showed the best renal composite outcomes.
Collapse
Affiliation(s)
- Lei Tian
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan zheng
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hanwen Yang
- China-Japan Friendship Hospital, Beijing, China
| | - Mengqi Zhou
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Weijing Liu, ; Wenjing Zhao, ; Yaoxian Wang,
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Weijing Liu, ; Wenjing Zhao, ; Yaoxian Wang,
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Weijing Liu, ; Wenjing Zhao, ; Yaoxian Wang,
| |
Collapse
|
14
|
Li M, Trapika IGSC, Tang SYS, Cho JL, Qi Y, Li CG, Li Y, Yao M, Yang D, Liu B, Li R, Yang P, Ma G, Ren P, Huang X, Xie D, Chen S, Li M, Yang L, Leng P, Huang Y, Li GQ. Mechanisms and Active Compounds Polysaccharides and Bibenzyls of Medicinal Dendrobiums for Diabetes Management. Front Nutr 2022; 8:811870. [PMID: 35155528 PMCID: PMC8832146 DOI: 10.3389/fnut.2021.811870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Medicinal dendrobiums are used popularly in traditional Chinese medicine for the treatment of diabetes, while their active compounds and mechanism remain unclear. This review aimed to evaluate the mechanism and active compounds of medicinal dendrobiums in diabetes management through a systematic approach. METHODS A systematic approach was conducted to search for the mechanism and active phytochemicals in Dendrobium responsible for anti-diabetic actions using databases PubMed, Embase, and SciFinder. RESULTS Current literature indicates polysaccharides, bibenzyls, phenanthrene, and alkaloids are commonly isolated in Dendrobium genusin which polysaccharides and bibenzyls are most aboundant. Many animal studies have shown that polysaccharides from the species of Dendrobium provide with antidiabetic effects by lowering glucose level and reversing chronic inflammation of T2DM taken orally at 200 mg/kg. Dendrobium polysaccharides protect pancreatic β-cell dysfunction and insulin resistance in liver. Dendrobium polysaccharides up-regulate the abundance of short-chain fatty acid to stimulate GLP-1 secretion through gut microbiota. Bibenzyls also have great potency to inhibit the progression of the chronic inflammation in cellular studies. CONCLUSION Polysaccharides and bibenzyls are the major active compounds in medicinal dendrobiums for diabetic management through the mechanisms of lowering glucose level and reversing chronic inflammation of T2DM by modulating pancreatic β-cell dysfunction and insulin resistance in liver as a result from gut microbita regulation.
Collapse
Affiliation(s)
- Mingjian Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - I. Gusti Surya Chandra Trapika
- Faculty of Medicine and Health, The University of Sydney School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine, Department of Pharmacology and Therapy, Udayana University, Jimbaran, Indonesia
| | - Suet Yee Sara Tang
- Faculty of Medicine and Health, The University of Sydney School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jun-Lae Cho
- Faculty of Medicine and Health, The University of Sydney School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, Centre for Advanced Food Enginomics, The University of Sydney, Sydney, NSW, Australia
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoyi Ma
- The National Center for Natural Products Research, The University of Mississippi, Oxford, MS, United States
| | - Ping Ren
- Institute of TCM-related Comorbidity, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-related Comorbidity, Nanjing University of Chinese Medicine, Nanjing, China
| | - Deshan Xie
- Chengdu Tepu Biotech Co., Ltd., Chengdu, China
| | | | - Min Li
- College of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- College of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Chengdu Tepu Biotech Co., Ltd., Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - George Q. Li
- Faculty of Medicine and Health, The University of Sydney School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Gao D, Dai P, Fan Z, Wang J, Zhang Y. The Roles of Different Multigene Combinations of Pdx1, Ngn3, Sox9, Pax4, and Nkx2.2 in the Reprogramming of Canine ADSCs Into IPCs. Cell Transplant 2022; 31:9636897221081483. [PMID: 35236160 PMCID: PMC8902191 DOI: 10.1177/09636897221081483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are ideal sources for the treatment of diabetes, and the differentiation of ADSCs into insulin-producing cells (IPCs) through transfection of exogenous regulatory genes in vitro has been studied in depth. The differentiation of ADSCs is strictly regulated by a variety of transcription factors such as Pdx1, Ngn3, Pax4, Nkx2.2, and Sox9. However, whether these genes can coordinately regulate the differentiation of ADSCs into IPCs is still unknown. In this study, five multigene coexpressing adenovirus vectors (pAdTrack-Pdx1-Ngn3-AdEasy, pAdTrack-Pdx1-Ngn3-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Pax4-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Nkx2.2-Sox9-AdEasy, and pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) were constructed, and then the stocks of the packaged adenoviruses were used to infect the canine ADSCs (cADSCs). Based on results of morphological observation, dithizone staining, sugar-stimulated insulin secretion test, cellular insulin immunofluorescence assays, and the detection of pancreatic β-cell development-related genes in the induced cells, the best induction combination (pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) was identified after comparative screening. This study provides a theoretical reference and an experimental basis for further research on stem cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Dengke Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zhixin Fan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jinglu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
16
|
Yen FS, Wei JCC, Yang YC, Hsu CC, Hwu CM. Thiazolidinedione Use in Individuals With Type 2 Diabetes and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2021; 8:729518. [PMID: 34957135 PMCID: PMC8695877 DOI: 10.3389/fmed.2021.729518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Few studies have investigated the effects of various antidiabetic agents on individuals with both type 2 diabetes mellitus (T2DM) and Chronic obstructive pulmonary disease (COPD). This study compared mortality, cardiovascular events and respiratory outcomes in individuals with both T2DM and COPD taking TZD vs. those not taking TZD. From Taiwan's National Health Insurance Research Database, 12 856 propensity-score-matched TZD users and non-users were selected between January 1, 2000, and December 31, 2012. Cox proportional hazards models were used to calculate the risks of investigated outcomes. Compared with non-use of TZD, the adjusted hazard ratios (95% CI) of TZD use were stroke 1.63 (1.21–2.18), coronary artery disease 1.55 (1.15–2.10), heart failure 1.61 (1.06–2.46), non-invasive positive pressure ventilation 1.82 (1.46–2.27), invasive mechanical ventilation 1.23 (1.09–1.37), bacterial pneumonia 1.55 (1.42–1.70), and lung cancer 1.71 (1.32–2.22), respectively. The stratified analysis disclosed that rosiglitazone, not pioglitazone, was associated with significantly higher risk of major cardiovascular events than TZD non-users. In patients with concomitant T2DM and COPD, TZD use was associated with higher risks of cardiovascular events, ventilation use, pneumonia, and lung cancer. Use of TZD in these patients should be supported by monitoring for cardiovascular and respiratory complications.
Collapse
Affiliation(s)
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Health Services Administration, China Medical University, Taichung, Taiwan.,Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chii-Min Hwu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
18
|
Zhang X, Deng F, Zhang Y, Zhang X, Chen J, Jiang Y. PPARγ attenuates hepatic inflammation and oxidative stress of non‑alcoholic steatohepatitis via modulating the miR‑21‑5p/SFRP5 pathway. Mol Med Rep 2021; 24:823. [PMID: 34558644 PMCID: PMC8485121 DOI: 10.3892/mmr.2021.12463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation and oxidative stress are key steps in the progression of non‑alcoholic steatohepatitis (NASH). Intervention in these two processes will therefore benefit NASH treatment. Peroxisome proliferator‑activated receptor γ (PPARγ), as a multiple functional transcription factor, has been reported to be involved in the prevention of NASH progression. However, the mechanism by which PPARγ prevents NASH remains to be elucidated. The present study demonstrated that the level of PPARγ was inversely correlated with that of microRNA (miRNA/miRs)‑21‑5p in both mice and humans with NASH. Activation of PPARγ inhibited lipid droplet accumulation, hepatic inflammation and oxidative stress by downregulating miR‑21‑5p in an in vitro model. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that PPARγ suppressed transcriptional activity of miR‑21‑5p and bound to miR‑21‑5p promoter region. Furthermore, PPARγ downregulated miR‑21‑5p while miR‑21‑5p upregulated secreted frizzled‑related protein 5 (SFRP5) by targeting the 3'‑UTR of its mRNA. In vivo experiments revealed that PPARγ repressed inflammation and oxidative stress and miR‑21‑5p expression while increased SFRP5 level in a NASH mouse model. In summary, PPARγ attenuates inflammation and oxidative stress in NASH by modulating the miR‑21‑5p/SFRP5 pathway, thus holding promise of a new target for NASH treatment.
Collapse
Affiliation(s)
- Xiying Zhang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Fang Deng
- Department of Endocrinology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yuping Zhang
- Department of Endocrinology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiaohong Zhang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Jianfei Chen
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Youzhao Jiang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| |
Collapse
|
19
|
Prakoso D, Tate M, Blasio M, Ritchie R. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci (Lond) 2021; 135:1369-1387. [PMID: 34076247 PMCID: PMC8187922 DOI: 10.1042/cs20210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Darnel Prakoso
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
| | - Mitchel Tate
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
| | - Miles J. De Blasio
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H. Ritchie
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Zhang Y, Huang L, Wang D, Ren P, Hong Q, Kang D. The ROBINS-I and the NOS had similar reliability but differed in applicability: A random sampling observational studies of systematic reviews/meta-analysis. J Evid Based Med 2021; 14:112-122. [PMID: 34002466 DOI: 10.1111/jebm.12427] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE There is a lack of evidence on the usage of the quality assessment tool-the Risk Of Bias In Nonrandomized Studies-of Interventions (ROBINS-I). This article aimed to measure the reliability, criterion validity, and feasibility of the ROBINS-I and the Newcastle-Ottawa Scale (NOS). METHODS A sample of systematic reviews or meta-analyses of observational studies were selected from Medline (2013-2017) and assessed by two reviewers using ROBINS-I and the NOS. We reported on reliability in terms of the first-order agreement coefficient (AC1) statistic. Correlation coefficient statistic was used to explore the criterion validity of the ROBINS-I. We compared the feasibility of the ROBINS-I and NOS by recording the time to complete an assessment and the instances where assessing was difficult. RESULTS Five systematic reviews containing 41 cohort studies were finally included. Interobserver agreement on the individual domain of the ROBINS-I as well as the NOS was substantial with a mean AC1 statistic of 0.67 (95% CI: 0.50-0.83) and 0.73 (95% CI: 0.65-0.81), respectively. The criterion validity of the ROBNS-I was moderate (K = 0.52) against NOS. The time in assessing a single study by ROBINS-I varied from 7 hours initially to 3 hours compared with 30 minutes for the NOS. Both reviewers rated "bias due to departure from the intended interventions" the most time-consuming domain in the ROBINS-I, items in the NOS were equal. CONCLUSIONS The ROBINS-I and the NOS seem to provide the same reliability but vary in applicability. The over-complicated feature of ROBINS-I may limit its usage and a simplified version is needed.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Litao Huang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Pengwei Ren
- Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Hong
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deying Kang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Oronsky B, Cabrales P, Caroen S, Guo X, Scribner C, Oronsky A, Reid TR. RRx-001, a downregulator of the CD47- SIRPα checkpoint pathway, does not cause anemia or thrombocytopenia. Expert Opin Drug Metab Toxicol 2021; 17:355-357. [PMID: 33432831 DOI: 10.1080/17425255.2021.1876025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The CD47 and SIRPα checkpoint pathway has garnered much interest within the anti-cancer research community, with multiple experimental checkpoint inhibitors targeting CD47 and SIRPα in development. The use of such checkpoint inhibitors may however be limited by hematologic toxicity.Areas covered: We report on RRx-001, the first known small molecule downregulator of CD47 and SIRPα, which has shown a lack of hematologic toxicity in clinical trials.Expert opinion: RRx-001 is the first reported small molecule downregulator of CD47 and SIRPα and lacks any notable hematologic or systemic toxicity as demonstrated in clinical trials to date. Small molecule RRx-001 could be used in combination with or in place of CD47 targeting antibodies for anti-cancer treatment.
Collapse
Affiliation(s)
- Bryan Oronsky
- Clinical Department, EpicentRx, Inc, La Jolla, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Scott Caroen
- Clinical Department, EpicentRx, Inc, La Jolla, CA, USA
| | - Xiaoning Guo
- Clinical Department, SciClone Pharmaceuticals Co. Ltd, Shanghai, China
| | | | | | - Tony R Reid
- Clinical Department, EpicentRx, Inc, La Jolla, CA, USA
| |
Collapse
|
22
|
Yen FS, Wei JCC, Chiu LT, Hsu CC, Hou MC, Hwu CM. Thiazolidinediones were associated with higher risk of cardiovascular events in patients with type 2 diabetes and cirrhosis. Liver Int 2021; 41:110-122. [PMID: 33124143 DOI: 10.1111/liv.14714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND& AIMS Type 2 diabetes mellitus (T2DM) management in patients with cirrhosis is complicated. No clinical trials have investigated appropriate antidiabetic drug use in these patients. This study compared the risks of all-cause mortality, major adverse cardiovascular events (MACE) and hepatic outcomes between patients with T2DM and cirrhosis using and not using thiazolidinedione (TZD). METHODS We selected 1,705 propensity score-matched TZD users and nonusers from a Taiwan National Health Insurance Research Database cohort of T2DM patients with compensated cirrhosis between January 1, 2000, and December 31, 2012 and followed them until December 31, 2013. Cox proportional hazards models with robust sandwich standard error estimates were used to assess risks of investigated outcomes for TZD users. RESULTS MACE incidence rates during follow-up were 2.14 and 1.30 per 100 patient-years for TZD users and nonusers, respectively (adjusted hazard ratio [aHR] 1.70; 95% confidence interval [CI], 1.32-2.19). On the basis of TZD use, the aHRs (95% CIs) for stroke, ischemic heart disease and heart failure were 1.81 (1.28-2.55), 1.59 (1.03-2.44) and 2.09 (1.22-3.60) respectively. Compared with TZD nonusers, rosiglitazone users had significantly higher aHR [1.67 (1.26-2.20)] and pioglitazone users had no significant difference of aHR [1.12 (0.90-1.64)]. All-cause mortality, hepatocellular carcinoma, decompensated cirrhosis and hepatic failure risks did not differ significantly between TZD users and nonusers. CONCLUSIONS Compared with nonuser, TZD users demonstrated significantly higher MACE risks. Therefore, the risks of cardiovascular complications should be considered when prescribing TZDs to patients with T2DM and cirrhosis.
Collapse
Affiliation(s)
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology Chung, Shan Medical University Hospital, Taichung, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Health Services Administration, China Medical University, Taichung, Taiwan.,Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chii-Min Hwu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
An S, Kim G, Kim HJ, Ahn S, Kim HY, Ko H, Hyun YE, Nguyen M, Jeong J, Liu Z, Han J, Choi H, Yu J, Kim JW, Lee HW, Jacobson KA, Cho WJ, Kim YM, Kang KW, Noh M, Jeong LS. Discovery and Structure-Activity Relationships of Novel Template, Truncated 1'-Homologated Adenosine Derivatives as Pure Dual PPARγ/δ Modulators. J Med Chem 2020; 63:16012-16027. [PMID: 33325691 DOI: 10.1021/acs.jmedchem.0c01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.
Collapse
Affiliation(s)
- Seungchan An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hyun Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Hyun Young Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyejin Ko
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Mai Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Juri Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Zijing Liu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Jinhe Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Ji Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyuk Woo Lee
- Future Medicine Company Ltd., Seongnam, Gyeonggi-do 13449, Korea
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Won Jea Cho
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Keon Wook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Gopal K, Chahade JJ, Kim R, Ussher JR. The Impact of Antidiabetic Therapies on Diastolic Dysfunction and Diabetic Cardiomyopathy. Front Physiol 2020; 11:603247. [PMID: 33364978 PMCID: PMC7750477 DOI: 10.3389/fphys.2020.603247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy is more prevalent in people with type 2 diabetes mellitus (T2DM) than previously recognized, while often being characterized by diastolic dysfunction in the absence of systolic dysfunction. This likely contributes to why heart failure with preserved ejection fraction is enriched in people with T2DM vs. heart failure with reduced ejection fraction. Due to revised mandates from major health regulatory agencies, all therapies being developed for the treatment of T2DM must now undergo rigorous assessment of their cardiovascular risk profiles prior to approval. As such, we now have data from tens of thousands of subjects with T2DM demonstrating the impact of major therapies including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor (GLP-1R) agonists, and dipeptidyl peptidase 4 (DPP-4) inhibitors on cardiovascular outcomes. Evidence to date suggests that both SGLT2 inhibitors and GLP-1R agonists improve cardiovascular outcomes, whereas DPP-4 inhibitors appear to be cardiovascular neutral, though evidence is lacking to determine the overall utility of these therapies on diastolic dysfunction or diabetic cardiomyopathy in subjects with T2DM. We herein will review the overall impact SLGT2 inhibitors, GLP-1R agonists, and DPP-4 inhibitors have on major parameters of diastolic function, while also highlighting the potential mechanisms of action responsible. A more complete understanding of how these therapies influence diastolic dysfunction will undoubtedly play a major role in how we manage cardiovascular disease in subjects with T2DM.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Assessing the need for pioglitazone in the treatment of patients with type 2 diabetes: a meta-analysis of its risks and benefits from prospective trials. Sci Rep 2020; 10:15781. [PMID: 32978507 PMCID: PMC7519682 DOI: 10.1038/s41598-020-72967-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
The safety and usefulness of pioglitazone (Pio) is repeatedly called into question due to the contradictory information available about it. A meta-analysis and risk benefit assessment was conducted to address the various points of debate regarding Pio. Electronic database search (Cochrane library, Embase & PubMed) resulted in 10 citations eligible for this meta-analysis (prospective, randomised studies), which was conducted using CMA software version 3 (Biostat Inc., Englewood, NJ, USA). The meta-analysis was registered with PROSPERO (ID: CRD42019122403) and compared pioglitazone with a control (anti-hyperglycemic agents without pioglitazone) in patients with either established cardiovascular disease or having high cardiovascular risk. Sensitivity and subgroup analysis were conducted to differentiate the effect of Pio against active controls and placebo. The use of Pio compared to the control group that did not use Pio resulted in a 14% and 23% significant reduction in odds of major adverse cardiac events (MACE: MH-OR, 0.86; 95% CI 0.75–0.98), and stroke (MH-OR, 0.77; 95% CI 0.60–0.99), respectively. This reduction in stroke was not significant in comparison to placebo on subgroup analysis. However, Pio significantly increased odds of heart failure (HF) (MH-OR, 1.47; 95% CI 1.26–1.71) as well as hospitalization for heart failure (hHF) (MH-OR, 1.48; 95% CI 1.21–1.81). In addition, the use of Pio was associated with a significant increase in odds of fractures in women (MH-OR, 2.05; 95% CI 1.28–3.27) and anaemia (MH-OR, 2.56; 95% CI 1.55–4.21). Pio has no significant effect on bladder cancer nor macular oedema. Pio has salutary effects on MACE. The positive effects are completely offset by the harm they seem to cause by way of heart failure, fractures, and anaemia. Pio should therefore be reserved for treatment of T2D with high CV risk or established cardiovascular (CV) disease only in selected patients where other antidiabetics are precluded and not routinely.
Collapse
|
26
|
Zhu J, Yu X, Zheng Y, Li J, Wang Y, Lin Y, He Z, Zhao W, Chen C, Qiu K, Wu J. Association of glucose-lowering medications with cardiovascular outcomes: an umbrella review and evidence map. Lancet Diabetes Endocrinol 2020; 8:192-205. [PMID: 32006518 DOI: 10.1016/s2213-8587(19)30422-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Considering the global burden of diabetes and associated cardiovascular disease, an urgent need exists for the best treatment, which should be based on the best available evidence. We examined the association between glucose-lowering medications and a broad range of cardiovascular outcomes, and assessed the strength of evidence for these associations. METHODS For this umbrella review we searched PubMed, Embase, and the Cochrane Library to identify systematic reviews and meta-analyses of randomised controlled trials examining the cardiovascular safety of glucose-lowering medications. Cardiovascular outcomes examined included major adverse cardiovascular events, cardiovascular death, myocardial infarction, stroke, heart failure, unstable angina, and atrial fibrillation. For each meta-analysis, we estimated the relative risk (RR) and 95% CI. We also created an evidence map showing the plausible benefits or harms of each intervention and the certainty of the evidence. FINDINGS We examined 232 meta-analyses evaluating ten classes of diabetes drugs. We identified six risk and 38 protective associations showing a high strength of evidence. Six associations increased the risk of cardiovascular disease, including glimepiride (stroke [RR 2·01; 95% CI 1·02-3·98]), rosiglitazone (myocardial infarction [1·28; 1·02-1·62] and heart failure [1·72, 1·31-2·27]), and pioglitazone (heart failure [1·40; 1·16-1·69]). 38 associations decreased the risk of cardiovascular disease, including glucagon-like peptide-1 receptor agonists as a class (major adverse cardiovascular events [RR 0·88; 95% CI 0·84-0·92], death from cardiovascular disease [0·87; 0·81-0·94], myocardial infarction [0·92; 0·86-0·99], stroke [0·84; 0·77-0·93], and heart failure [0·90; 0·83-0·99]), albiglutide (major adverse cardiovascular events [0·81; 0·68-0·96], myocardial infarction [0·77; 0·64-0·92], and heart failure [0·71; 0·55-0·93]), dulaglutide (stroke [0·78; 0·64-0·96]), exenatide (major adverse cardiovascular events [0·91; 0·83-1·00]), liraglutide (major adverse cardiovascular events [0·86; 0·77-0·96]), semaglutide (major adverse cardiovascular events [0·76; 0·62-0·92] and stroke [0·67; 0·45-1·00]), sodium-glucose co-transporter-2 inhibitors as a class (major adverse cardiovascular events [0·87; 0·82-0·93], death from cardiovascular disease [0·82; 0·75-0·90], myocardial infarction [0·86; 0·78-0·94], and heart failure [0·68; 0·63-0·73]), canagliflozin (major adverse cardiovascular events [0·84; 0·75-0·93], death from cardiovascular disease [0·82; 0·71-0·96], and heart failure [0·65; 0·54-0·78]), dapagliflozin (heart failure [0·70; 0·60-0·82]), empagliflozin (major adverse cardiovascular events [0·85; 0·77-0·94], death from cardiovascular disease [0·62; 0·50-0·78], and heart failure [0·64; 0·53-0·77]), and pioglitazone (major adverse cardiovascular events [0·84; 0·74-0·96], myocardial infarction [0·80; 0·67-0·95], and stroke [0·79; 0·65-0·95]). INTERPRETATION We found varied levels of evidence for the associations between diabetes drugs and cardiovascular outcomes; some drugs raised the risk of cardiovascular disease, whereas others showed benefit. FUNDING None.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yayuan Zheng
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianfang Li
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wang
- Guangdong Province Pharmaceutical Association, Guangzhou, China
| | - Yin Lin
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhichao He
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Zhao
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuxiong Chen
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Wallach JD, Wang K, Zhang AD, Cheng D, Grossetta Nardini HK, Lin H, Bracken MB, Desai M, Krumholz HM, Ross JS. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ 2020; 368:l7078. [PMID: 32024657 PMCID: PMC7190063 DOI: 10.1136/bmj.l7078] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To conduct a systematic review and meta-analysis of the effects of rosiglitazone treatment on cardiovascular risk and mortality using multiple data sources and varying analytical approaches with three aims in mind: to clarify uncertainties about the cardiovascular risk of rosiglitazone; to determine whether different analytical approaches are likely to alter the conclusions of adverse event meta-analyses; and to inform efforts to promote clinical trial transparency and data sharing. DESIGN Systematic review and meta-analysis of randomized controlled trials. DATA SOURCES GlaxoSmithKline's (GSK's) ClinicalStudyDataRequest.com for individual patient level data (IPD) and GSK's Study Register platforms, MEDLINE, PubMed, Embase, Web of Science, Cochrane Central Registry of Controlled Trials, Scopus, and ClinicalTrials.gov from inception to January 2019 for summary level data. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomized, controlled, phase II-IV clinical trials that compared rosiglitazone with any control for at least 24 weeks in adults. DATA EXTRACTION AND SYNTHESIS For analyses of trials for which IPD were available, a composite outcome of acute myocardial infarction, heart failure, cardiovascular related death, and non-cardiovascular related death was examined. These four events were examined independently as secondary analyses. For analyses including trials for which IPD were not available, myocardial infarction and cardiovascular related death were examined, which were determined from summary level data. Multiple meta-analyses were conducted that accounted for trials with zero events in one or both arms with two different continuity corrections (0.5 constant and treatment arm) to calculate odds ratios and risk ratios with 95% confidence intervals. RESULTS 33 eligible trials were identified from ClinicalStudyDataRequest.com for which IPD were available (21 156 patients). Additionally, 103 trials for which IPD were not available were included in the meta-analyses for myocardial infarction (23 683 patients), and 103 trials for which IPD were not available contributed to the meta-analyses for cardiovascular related death (22 772 patients). Among 29 trials for which IPD were available and that were included in previous meta-analyses using GSK's summary level data, more myocardial infarction events were identified by using IPD instead of summary level data for 26 trials, and fewer cardiovascular related deaths for five trials. When analyses were limited to trials for which IPD were available, and a constant continuity correction of 0.5 and a random effects model were used to account for trials with zero events in only one arm, patients treated with rosiglitazone had a 33% increased risk of a composite event compared with controls (odds ratio 1.33, 95% confidence interval 1.09 to 1.61; rosiglitazone population: 274 events among 11 837 patients; control population: 219 events among 9319 patients). The odds ratios for myocardial infarction, heart failure, cardiovascular related death, and non-cardiovascular related death were 1.17 (0.92 to 1.51), 1.54 (1.14 to 2.09), 1.15 (0.55 to 2.41), and 1.18 (0.60 to 2.30), respectively. For analyses including trials for which IPD were not available, odds ratios for myocardial infarction and cardiovascular related death were attenuated (1.09, 0.88 to 1.35, and 1.12, 0.72 to 1.74, respectively). Results were broadly consistent when analyses were repeated using trials with zero events across both arms and either of the two continuity corrections was used. CONCLUSIONS The results suggest that rosiglitazone is associated with an increased cardiovascular risk, especially for heart failure events. Although increased risk of myocardial infarction was observed across analyses, the strength of the evidence varied and effect estimates were attenuated when summary level data were used in addition to IPD. Because more myocardial infarctions and fewer cardiovascular related deaths were reported in the IPD than in the summary level data, sharing IPD might be necessary when performing meta-analyses focused on safety. SYSTEMATIC REVIEW REGISTRATION OSF Home https://osf.io/4yvp2/.
Collapse
Affiliation(s)
- Joshua D Wallach
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT 06510, USA
- Collaboration for Research Integrity and Transparency, Yale School of Medicine, New Haven, CT, USA
| | - Kun Wang
- Center for Outcomes Research and Evaluation, Yale-New Haven Health System, New Haven, CT, USA
| | - Audrey D Zhang
- Center for Outcomes Research and Evaluation, Yale-New Haven Health System, New Haven, CT, USA
- New York University School of Medicine, New York, NY, USA
| | - Deanna Cheng
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Haiqun Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Michael B Bracken
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Mayur Desai
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Harlan M Krumholz
- Center for Outcomes Research and Evaluation, Yale-New Haven Health System, New Haven, CT, USA
- Section of Cardiovascular Medicine and the National Clinician Scholars Program, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Joseph S Ross
- Collaboration for Research Integrity and Transparency, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Health System, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
- Section of General Medicine and the National Clinician Scholars Program, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Riess ML, Elorbany R, Weihrauch D, Stowe DF, Camara AK. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020; 9:cells9010252. [PMID: 31968546 PMCID: PMC7017211 DOI: 10.3390/cells9010252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of anti-diabetic thiazolidinediones (TZDs) on contributing to heart failure and cardiac ischemia/reperfusion (IR) injury is controversial. In this study we investigated the effect of select TZDs on myocardial and mitochondrial function in Brown Norway rat isolated hearts. In a first set of experiments, the TZD rosiglitazone was given acutely before global myocardial IR, and pre- and post-IR function and infarct size were assessed. In a second set of experiments, different concentrations of rosiglitazone and pioglitazone were administered in the presence or absence of the specific PPARγ antagonist GW9662, and their effects on the mitochondrial redox state were measured by online NADH and FAD autofluorescence. The administration of rosiglitazone did not significantly affect myocardial function except for transiently increasing coronary flow, but it increased IR injury compared to the control hearts. Both TZDs resulted in dose-dependent, reversible increases in mitochondrial oxidation which was not attenuated by GW9662. Taken together, these data suggest that TZDs cause excessive mitochondrial uncoupling by a PPARγ-independent mechanism. Acute rosiglitazone administration before IR was associated with enhanced cardiac injury. If translated clinically, susceptible patients on PPARγ agonists may experience enhanced myocardial IR injury by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-0277; Fax: +1-(615)-343-3916
| | - Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
| | - David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, Maegel L, Mitsialis SA, Rog-Zielinska EA, Kourembanas S, Jonigk D, Hansmann G. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med 2019; 10:10/438/eaao0303. [PMID: 29695452 DOI: 10.1126/scitranslmed.aao0303] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/18/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO (Cpt1b and Fabp4) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Erin Snay
- Division of Nuclear Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martin Meier
- Small Animal Imaging Center, Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
30
|
Fadini GP, Frison V, Simioni N, Lapolla A, Gatti A, Bossi AC, Del Buono A, Fornengo P, Gottardo L, Laudato M, Perseghin G, Bonora E, Avogaro A. Changes in the Prescription of Glucose-Lowering Medications in Patients With Type 2 Diabetes Mellitus After a Cardiovascular Event: A Call to Action From the DATAFILE Study. J Am Heart Assoc 2019; 8:e012244. [PMID: 31269877 PMCID: PMC6662129 DOI: 10.1161/jaha.119.012244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Evidence accumulated that some glucose‐lowering medications protect against cardiovascular events (CVEs) in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease. The present study evaluated if and how glucose‐lowering medication prescription pattern changes in T2DM after a CVE. Methods and Results DATAFILE (Diabetes Therapy After a Cardiovascular Event) was a retrospective multicenter study conducted at 12 diabetes mellitus specialist outpatient clinics in Italy. We identified T2DM patients with an incident CVE for whom a follow‐up visit was available after the event. We selected control T2DM patients without an incident CVE, who were matched with cases for age, sex, known diabetes mellitus duration, baseline hemoglobin A1c, kidney function, and follow‐up time. We extracted clinical variables and compared prescribed therapies at baseline and follow‐up. We included 563 patients with and 497 matched patients without an incident CVE. As expected, patients with a subsequent CVE had a higher baseline prevalence of ischemic heart disease. After a median of 9.5 months, in patients with versus those without a CVE, there was a significant increase in the prescription of beta‐blockers, loop diuretics, dual antiplatelet therapy, and, among glucose‐lowering medications, a significant decrease in metformin. Hemoglobin A1c marginally declined only in the control group, whereas low‐density lipoprotein cholesterol decreased only in patients with CVE. Conclusions This study highlights that occurrence of a CVE in T2DM patients did not prime the prescription of glucose‐lowering medications provided with cardiovascular protective effects, even though glucose control remained poor. These data emphasize the need to optimize the therapeutic regimen of T2DM patients with established cardiovascular disease, according to updated guidelines.
Collapse
Affiliation(s)
| | - Vera Frison
- 2 Diabetology Service ULSS6 Cittadella Italy
| | | | | | - Adriano Gatti
- 4 Diabetology Service ASL Napoli 1 Centro Napoli Italy
| | | | | | - Paolo Fornengo
- 7 Department of Medicine Internal Medicine 3 University Hospital of Turin Italy
| | | | | | - Gianluca Perseghin
- 10 Department of Medicine and Rehabilitation Policlinico di Monza and University of Milan Bicocca Monza Italy
| | - Enzo Bonora
- 11 Division of Endocrinology, Diabetes and Metabolism University and Hospital Trust of Verona Verona Italy
| | | |
Collapse
|
31
|
Zhang X, Huang-Fu Z, Lang XY, Chun P, Chi YY, Yuan XY, Wang XG. Pathological and cognitive changes in patients with type 2 diabetes mellitus and comorbid MCI and protective hypoglycemic therapies: a narrative review. Rev Neurosci 2019; 30:757-770. [PMID: 31199776 DOI: 10.1515/revneuro-2018-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is becoming a significant health issue worldwide. Many studies support the hypothesis that patients with T2DM have a higher-than-expected incidence of mild cognitive impairment (MCI) than individuals without diabetes. Based on the results from recent studies, MCI might be associated with the effects of T2DM on glucose metabolism and brain atrophy. As a narrative review, we will illuminate pathological and cognitive changes in patients with T2DM and comorbid MCI and protective hypoglycemic therapies. The early abnormal signs of cognition must be elucidated, and extensive investigations are needed to develop improved therapies for use in the clinic.
Collapse
Affiliation(s)
- Xiao Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116000, P.R. China
| | - Zhao Huang-Fu
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P.R. China
| | - Xing-Ying Lang
- Dalian Center for Disease Control and Prevention, Dalian 116021, P.R. China
| | - Pu Chun
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 16044, P.R. China
| | - Yan-Yan Chi
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 16044, P.R. China
| | - Xiao-Ying Yuan
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 16044, P.R. China
| | - Xu-Gang Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P.R. China
| |
Collapse
|
32
|
Bell DSH, Goncalves E. Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab 2019; 21:1277-1290. [PMID: 30724013 DOI: 10.1111/dom.13652] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
In people with type 2 diabetes the frequency of heart failure (HF) is increased and mortality from HF is higher than with non-diabetic HF. The increased frequency of HF is attributable to the cardiotoxic tetrad of ischaemic heart disease, left ventricular hypertrophy, diabetic cardiomyopathy and an extracellular volume expansion resistant to atrial natriuretic peptides. Activation of the renin-angiotensin-aldosterone system and sympathetic nervous systems results in cardiac remodelling, which worsens cardiac function. Reversal of remodelling can be achieved, and cardiac function improved in people with HF with reduced ejection fraction (HFrEF) by treatment with angiotensin-converting enzyme inhibitors and β-blockers. However, with HF with preserved ejection fraction (HFpEF), only therapy for the underlying risk factors helps. Blockers of mineralocorticoid receptors may be beneficial in both HFrEF and HFpEF. Glucose-lowering drugs can have a negative effect (insulin, sulphonylureas, dipeptidyl peptidase-4 inhibitors and thiazolidinediones), a neutral effect (α-glucosidase inhibitors and glucagon-like peptide-1 receptor agonists) or a positive effect (sodium-glucose co-transporter-2 inhibitors and metformin).
Collapse
|
33
|
Calvier L, Boucher P, Herz J, Hansmann G. LRP1 Deficiency in Vascular SMC Leads to Pulmonary Arterial Hypertension That Is Reversed by PPARγ Activation. Circ Res 2019; 124:1778-1785. [PMID: 31023188 DOI: 10.1161/circresaha.119.315088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Arterial remodeling-a hallmark of many cardiovascular pathologies including pulmonary arterial hypertension (PAH)-is regulated by TGFβ1 (transforming growth factor-β1)-TGFβ receptors and the antagonistic, vasoprotective BMPR2 (bone morphogenetic protein receptor 2)-PPARγ (peroxisome proliferator-activated receptor-γ) axis. However, it is unclear which factors drive detrimental TGFβ1 pathways in the hypertensive pulmonary vasculature. OBJECTIVE We hypothesized that LRP1 (low-density lipoprotein receptor-related protein 1) expression is decreased in PAH, leading to enhancement (disinhibition) of TGFβ1 signals and that the PPARγ agonist pioglitazone can restore vascular homeostasis and prevent PAH resulting from LRP1 deletion in vascular smooth muscle cells (SMCs). METHODS AND RESULTS Targeted deletion of LRP1 in vascular SMC (smLRP1-/-) in mice disinhibited TGFβ1-CTGF (connective tissue growth factor) signaling, leading to spontaneous PAH and distal pulmonary arterial muscularization as assessed by closed-chest cardiac catheterization and anti-αSMA staining. Pioglitazone inhibited the canonical TGFβ1-CTGF axis in human pulmonary artery SMC and smLRP1-/- main pulmonary artery (CTGF and NOX4) and reversed PAH in smLRP1-/- mice. TGFβ1 boosted pSmad3 in PASMC from smLRP1-/- mice versus controls. Pioglitazone-activated PPARγ binds to Smad3 in human pulmonary artery SMC (coimmunoprecipitation), thereby blocking its phosphorylation and overriding LRP1 deficiency. Finally, mRNA and protein expression of LRP1 was decreased in pulmonary plexiform lesions of patients with end-stage idiopathic PAH (laser capture microdissection, qPCR, and immunohistochemistry). Downregulation of LRP1 protein was also demonstrated in explanted PASMC from patients with PAH and accompanied by enhanced TGFβ1-pSmad3-CTGF signaling and increased TGFβ1-induced PASMC proliferation that was prevented by pioglitazone. CONCLUSIONS Here, we identify LRP1 as an integrator of TGFβ1-mediated mechanisms that regulate vascular remodeling in mice and clinical PAH and PPARγ as a therapeutic target that controls canonical TGFβ1 pathways. Hence, pharmacologic PPARγ activation represents a promising new therapy for patients with PAH who lack the vasoprotective LRP1 in vascular SMC.
Collapse
Affiliation(s)
- Laurent Calvier
- From the Department of Pediatric Cardiology and Critical Care (L.C., G.H.), Hannover Medical School, Germany.,Pulmonary Vascular Research Center (L.C., G.H.), Hannover Medical School, Germany.,Department of Molecular Genetics (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Center for Translational Neurodegeneration Research (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas
| | - Philippe Boucher
- UMR CNRS 7021, University of Strasbourg, Illkirch Cedex, France (P.B.)
| | - Joachim Herz
- Department of Molecular Genetics (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Center for Translational Neurodegeneration Research (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neuroscience (J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neurology and Neurotherapeutics (J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neuroanatomy, Center for Neuroscience, Albert-Ludwigs-University, Freiburg, Germany (J.H.)
| | - Georg Hansmann
- From the Department of Pediatric Cardiology and Critical Care (L.C., G.H.), Hannover Medical School, Germany.,Pulmonary Vascular Research Center (L.C., G.H.), Hannover Medical School, Germany
| |
Collapse
|
34
|
Yaribeygi H, Butler AE, Barreto GE, Sahebkar A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J Cell Physiol 2019; 234:2436-2446. [DOI: 10.1002/jcp.27278] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/26/2018] [Indexed: 08/30/2023]
Abstract
AbstractMany vascular complications are related to exposure of tissues to elevated levels of glucose, a condition that promotes oxidative stress. The primary goal of antidiabetic medication is for normalization of blood glucose. However, antidiabetic medications may have antioxidant effects that go beyond their hypoglycemic influences. Therefore, antidiabetic drugs may be doubly beneficial in preventing diabetic complications. Vascular dysfunction due to uncontrolled diabetes is a serious complication of the disease and one which has a severe impact on quality of life. Readjustment of the oxidative balance in subjects with diabetes, and the positive effects thereof is a topic of intense interest at present. In the current review, we highlight the antioxidant effects of antidiabetic medications which may prevent or delay the onset of vascular dysfunction.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - George E. Barreto
- Departamento de Nutrición y Bioquímica Facultad de Ciencias Pontificia Universidad Javeriana Bogotá D.C. Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
35
|
Redd D, Shao Y, Cheng Y, Zeng-Treitler Q. Detecting Secular Trends in Clinical Treatment through Temporal Analysis. J Med Syst 2019; 43:74. [DOI: 10.1007/s10916-019-1173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
36
|
Choudhary NS, Kumar N, Duseja A. Peroxisome Proliferator-Activated Receptors and Their Agonists in Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2019; 9:731-739. [PMID: 31889755 PMCID: PMC6926194 DOI: 10.1016/j.jceh.2019.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. In addition to the liver-related morbidity and mortality, NAFLD is now also associated with various extrahepatic diseases. Pathogenesis of NAFLD is multifactorial with limited pharmacotherapy options for the treatment of patients with NAFLD. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in the transcriptional regulation of lipid metabolism, glucose homeostasis, energy balance, inflammation, and atherosclerosis. PPAR agonists are attractive options for treatment of NAFLD as they can act at multiple targets involved in the pathogenesis of NAFLD. We reviewed the available literature on the pathophysiological role of PPARs and use of PPAR agonists in the treatment of NAFLD. Original studies and review articles available on PubMed regarding the role of PPARs in the pathogenesis and utility of PPAR agonists in the treatment of NAFLD were included in this review article. ClinicalTrials.gov and Clinical Trials Registry-India sites were searched for ongoing studies on saroglitazar. The available literature suggests that PPARs play an important role in the pathogenesis of NAFLD. Use of PPAR gamma agonists is associated with histological improvement in NAFLD. Dual PPAR agonists with no or minimal PPAR gamma activity are being explored in the treatment of NAFLD. Because of the pathophysiological role of PPARs in NAFLD, PPAR agonists are attractive options for the treatment of patients with NAFLD. Dual PPAR agonists without significant gamma activity appear promising for the treatment of NAFLD.
Collapse
Affiliation(s)
- Narendra S. Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta the Medicity, Gurugram, India
| | | | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Address for correspondence: Dr. Ajay Duseja MD, DM, FAMS, FAASLD, FACG, FSGEI Professor, Department of Hepatology, Sector 12, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
37
|
Ando T, Ooba N, Mochizuki M, Koide D, Kimura K, Lee SL, Setoguchi S, Kubota K. Positive predictive value of ICD-10 codes for acute myocardial infarction in Japan: a validation study at a single center. BMC Health Serv Res 2018; 18:895. [PMID: 30477501 PMCID: PMC6260564 DOI: 10.1186/s12913-018-3727-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background In Japan, several large healthcare databases have become available for research since the early 2000’s. However, validation studies to examine the accuracy of these databases remain scarce. We conducted a validation study in order to estimate the positive predictive value (PPV) of local or ICD-10 codes for acute myocardial infarction (AMI) in Japanese claims. In particular, we examined whether the PPV differs between claims in the Diagnosis Procedure Combination case mix scheme (DPC claims) and in non-DPC claims. Methods We selected a random sample of 200 patients from all patients hospitalized at a large tertiary-care university hospital between January 1, 2009 and December 31, 2011 who had an inpatient claim assigned a local or ICD-10 code for AMI. We used a standardized data abstraction form to collect the relevant information from an electronic medical records system. Abstracted information was then categorized by a single cardiologist as being either definite or not having AMI. Results In a random sample of 200 patients, the average age was 67.7 years and the proportion of males was 78.0%. The PPV of the local or ICD-10 code for AMI was 82.5% in this sample of 200 patients. Further, of 178 patients who had an ICD-10 code for AMI based on any of the 7 types of condition codes in the DPC claims, the PPV was 89.3%, whereas of the 161 patients who had an ICD-10 code for AMI based on any of 3 major types of condition codes in the DPC claims, the PPV was 93.8%. Conclusion The PPV of the local or ICD-10 code for AMI was high for inpatient claims in Japan. The PPV was even higher for the ICD-10 code for AMI for those patients who received AMI care through the DPC case mix scheme. The current study was conducted in a single center, suggesting that a multi-center study involving different types of hospitals is needed in the future. The accuracy of condition codes for DPC claims in Japan may also be worth examining for conditions other than AMI such as stroke.
Collapse
Affiliation(s)
- Takashi Ando
- Division of Evaluation and Analysis of Drug Information, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Nobuhiro Ooba
- Department of Clinical Pharmacy, Nihon University School of Pharmacy, Chiba, Japan
| | - Mayumi Mochizuki
- Division of Evaluation and Analysis of Drug Information, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Daisuke Koide
- Department of Biostatistics & Bioinformatics Graduate School of Medicine The University of Tokyo, Tokyo, Japan
| | - Koichi Kimura
- Departments of Advanced Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seitetz L Lee
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | | | - Kiyoshi Kubota
- NPO Drug Safety Research Unit Japan, Yushima 1-2-13-4F, Bunkyo-ku, Tokyo, 114-0002, Japan.
| |
Collapse
|
38
|
Birkenfeld AL, Jordan J, Dworak M, Merkel T, Burnstock G. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts. Pharmacol Ther 2018; 194:132-144. [PMID: 30149104 DOI: 10.1016/j.pharmthera.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant therapeutic advances in heart failure (HF) therapy, the morbidity and mortality associated with this disease remains unacceptably high. The concept of metabolic dysfunction as an important underlying mechanism in HF is well established. Cardiac function is inextricably linked to metabolism, with dysregulation of cardiac metabolism pathways implicated in a range of cardiac complications, including HF. Modulation of cardiac metabolism has therefore become an attractive clinical target. Cardiac metabolism is based on the integration of adenosine triphosphate (ATP) production and utilization pathways. ATP itself impacts the heart not only by providing energy, but also represents a central element in the purinergic signaling pathway, which has received considerable attention in recent years. Furthermore, novel drugs that have received interest in HF include angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors, whose favorable cardiovascular profile has been at least partly attributed to their effects on metabolism. This review, describes the major metabolic pathways and concepts of the healthy heart (including fatty acid oxidation, glycolysis, Krebs cycle, Randle cycle, and purinergic signaling) and their dysregulation in the progression to HF (including ketone and amino acid metabolism). The cardiac implications of HF comorbidities, including metabolic syndrome, diabetes mellitus and cachexia are also discussed. Finally, the impact of current HF and diabetes therapies on cardiac metabolism pathways and the relevance of this knowledge for current clinical practice is discussed. Targeting cardiac metabolism may have utility for the future treatment of patients with HF, complementing current approaches.
Collapse
Affiliation(s)
- Andreas L Birkenfeld
- Medical Clinic III, Universitätsklinikum "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital, Faculty of Medicine, Dresden, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center and Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | | | | | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free Campus, University College Medical School, London, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW In addition to their effects on glycemic control, two specific classes of relatively new anti-diabetic drugs, namely the sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have demonstrated reduced rates of major adverse cardiovascular events (MACE) in subjects with type 2 diabetes (T2D) at high risk for cardiovascular disease (CVD). This review summarizes recent experimental results that inform putative molecular mechanisms underlying these benefits. RECENT FINDINGS SGLT2i and GLP-1RA exert cardiovascular effects by targeting in both common and distinctive ways (A) several mediators of macro- and microvascular pathophysiology: namely (A1) inflammation and atherogenesis, (A2) oxidative stress-induced endothelial dysfunction, (A3) vascular smooth muscle cell reactive oxygen species (ROS) production and proliferation, and (A4) thrombosis. These agents also exhibit (B) hemodynamic effects through modulation of (B1) natriuresis/diuresis and (B2) the renin-angiotensin-aldosterone system. This review highlights that while GLP-1RA exert direct effects on vascular (endothelial and smooth muscle) cells, the effects of SGLT2i appear to include the activation of signaling pathways that prevent adverse vascular remodeling. Both SGLT2i and GLP-1RA confer hemodynamic effects that counter adverse cardiac remodeling.
Collapse
Affiliation(s)
- Dorrin Zarrin Khat
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada.
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
40
|
Okine BN, Gaspar JC, Finn DP. PPARs and pain. Br J Pharmacol 2018; 176:1421-1442. [PMID: 29679493 DOI: 10.1111/bph.14339] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is a common cause of disability worldwide and remains a global health and socio-economic challenge. Current analgesics are either ineffective in a significant proportion of patients with chronic pain or associated with significant adverse side effects. The PPARs, a family of nuclear hormone transcription factors, have emerged as important modulators of pain in preclinical studies and therefore a potential therapeutic target for the treatment of pain. Modulation of nociceptive processing by PPARs is likely to involve both transcription-dependent and transcription-independent mechanisms. This review presents a comprehensive overview of preclinical studies investigating the contribution of PPAR signalling to nociceptive processing in animal models of inflammatory and neuropathic pain. We examine current evidence from anatomical, molecular and pharmacological studies demonstrating a role for PPARs in pain control. We also discuss the limited evidence available from relevant clinical studies and identify areas that warrant further research. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
41
|
Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. JOURNAL OF INFLAMMATION-LONDON 2018; 15:9. [PMID: 29760587 PMCID: PMC5944154 DOI: 10.1186/s12950-018-0185-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Background There is currently an unmet clinical need to develop better pharmacological treatments to improve glucose handling in Type II Diabetes patients with obesity. To this end, determining the effect of obesity-associated adipokines on skeletal muscle insulin sensitivity has emerged as an important area of drug discovery research. This review draws together the data on the functional role of adipokines on skeletal muscle insulin signalling, highlights several understudied novel adipokines and provides a perspective on the direction of future research. Main body The adipokines leptin, resistin, visfatin and adiponectin have all been shown to affect skeletal muscle insulin sensitivity by impacting on the activity of components within insulin signalling pathways, affecting GLUT4 translocation and modulating insulin-mediated skeletal muscle glucose uptake. Furthermore, proteomic analysis of the adipose tissue secretome has recently identified several novel adipokines including vaspin, chemerin and pref-1 that are associated with obesity and insulin resistance in humans and functionally impact on insulin signalling pathways. However, predominantly, these functional findings are the result of studies in rodents, with in vitro studies utilising either rat L6 or murine C2C12 myoblasts and/or myotubes. Despite the methodology to isolate and culture human myoblasts and to differentiate them into myotubes being established, the use of human muscle in vitro models for the functional validation of adipokines on skeletal muscle insulin sensitivity is limited. Conclusion Understanding the mechanism of action and function of adipokines in mediating insulin sensitivity in skeletal muscle may lead to the development of novel therapeutics for patients with type 2 diabetes. However, to date, studies conducted in human skeletal muscle cells and tissues are limited. Such human in vitro studies should be prioritised in order to reduce the risk of candidate drugs failing in the clinic due to the assumption that rodent skeletal muscle target validation studies will to translate to human.
Collapse
Affiliation(s)
- Thomas Nicholson
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK
| | - Chris Church
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - David J Baker
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Simon W Jones
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK.,3Institute of Inflammation and Ageing, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
42
|
Wang Y, Wei RB, Yang Y, Su TY, Huang MJ, Li P, Chen XM. Valsartan Alleviates Insulin Resistance in Skeletal Muscle of Chronic Renal Failure Rats. Med Sci Monit 2018; 24:2413-2419. [PMID: 29679000 PMCID: PMC5933205 DOI: 10.12659/msm.909910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Studies on insulin resistance (IR) in chronic kidney disease (CKD) patients are rare, and its exact mechanism remains unclear. In this study, we explored the molecular mechanism of IR with chronic renal failure (CRF) and interventions to alleviate IR in patients with CRF. MATERIAL AND METHODS In vivo and in vitro models of CRF were established by 5/6 nephrectomy and urea stimulation C2C12 cells, respectively. Based on the CRF model, angiotensin II (Ang II) and valsartan groups were established to observe the effect of drug intervention on IR. Western blot assays were performed to detect the expression and phosphorylation of IRS-1 and Akt, which are 2 critical proteins in the insulin signaling pathway. RESULTS Both urea stimulation and 5/6 nephrectomy induced glucose uptake disorder in skeletal muscle cells (P<0.01). Skeletal muscle IR was aggravated in the Ang II group (P<0.05) but alleviated in the valsartan group (P<0.01). Regardless of the experimental method (in vivo or in vitro), tyrosine phosphorylation of IRS-1 and Akt were significantly lower (P<0.01) and serine phosphorylation was significantly higher (P<0.01) in the model group than in the sham/control group. Compared to the model group, additional Ang II aggravated abnormal phosphorylation (P<0.05); conversely, additional valsartan alleviated abnormal phosphorylation to some extent (P<0.05). CONCLUSIONS There is skeletal muscle insulin resistance in the presence of CRF. This phenomenon can be aggravated by Ang II and partially relieved by valsartan. One of the mechanisms of IR in CRF patients may be associated with the critical proteins in the IRS-PI3k-Akt pathway by changing their phosphorylation levels.
Collapse
Affiliation(s)
- Yang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ri-Bao Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Yue Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
- Renal Division of China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting-Yu Su
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Meng-Jie Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ping Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| |
Collapse
|
43
|
Digenio A, Pham NC, Watts LM, Morgan ES, Jung SW, Baker BF, Geary RS, Bhanot S. Antisense Inhibition of Protein Tyrosine Phosphatase 1B With IONIS-PTP-1B Rx Improves Insulin Sensitivity and Reduces Weight in Overweight Patients With Type 2 Diabetes. Diabetes Care 2018; 41:807-814. [PMID: 29439147 DOI: 10.2337/dc17-2132] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate safety and efficacy of IONIS-PTP-1BRx, a second-generation 2'-O-methoxyethyl antisense inhibitor of protein tyrosine phosphatase 1B, as add-on therapy in overweight patients with type 2 diabetes inadequately controlled with metformin with or without sulfonylurea therapy. RESEARCH DESIGN AND METHODS In this phase II, double-blind, randomized, placebo-controlled, multicenter trial, overweight and obese patients (BMI ≥27 kg/m2) with type 2 diabetes (HbA1c ≥7.5% [58 mmol/mol] and ≤10.5% [91 mmol/mol]) on a stable dose of metformin alone or with sulfonylurea were randomized 2:1 to IONIS-PTP-1BRx 200 mg (n = 62) or placebo (n = 30) once weekly for 26 weeks. RESULTS Mean baseline HbA1c was 8.6% (70 mmol/mol) and 8.7% (72 mmol/mol) in placebo and active treatment, respectively. At week 27, IONIS-PTP-1BRx reduced mean HbA1c levels by -0.44% (-4.8 mmol/mol; P = 0.074) from baseline and improved leptin (-4.4 ng/mL; P = 0.007) and adiponectin (0.99 μg/mL; P = 0.026) levels compared with placebo. By week 36, mean HbA1c was significantly reduced (-0.69% [-7.5 mmol/mol]; P = 0.034) and accompanied by reductions in fructosamine (-33.2 μmol/L; P = 0.005) and glycated albumin (-1.6%; P = 0.031) versus placebo. Despite both treatment groups receiving similar lifestyle counseling, mean body weight significantly decreased from baseline to week 27 with IONIS-PTP-1BRx versus placebo (-2.6 kg; P = 0.002) independent of HbA1c reduction (R2 = 0.0020). No safety concerns were identified in the study. CONCLUSIONS Compared with placebo, IONIS-PTP-1BRx treatment for 26 weeks produced prolonged reductions in HbA1c, improved medium-term glycemic parameters, reduced leptin and increased adiponectin levels, and resulted in a distinct body weight-reducing effect.
Collapse
|
44
|
Terlizzese P, Losurdo F, Iacoviello M, Aspromonte N. Heart failure risk and major cardiovascular events in diabetes: an overview of within-group differences in non-insulin antidiabetic treatment. Heart Fail Rev 2018; 23:469-479. [DOI: 10.1007/s10741-017-9667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Androulakis E, Zacharia E, Papageorgiou N, Lioudaki E, Bertsias D, Charakida M, Siasos G, Tousoulis D. High-density Lipoprotein and Low-density Lipoprotein Therapeutic Approaches in Acute Coronary Syndromes. Curr Cardiol Rev 2017; 13:168-182. [PMID: 28190386 PMCID: PMC5633711 DOI: 10.2174/1573403x13666170209145622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL), and especially its oxidized form, renders the atherosclerotic plaque vulnerable to rupture in acute coronary syndromes (ACS). On the other hand, high-density lipoprotein (HDL) is considered an anti-atherogenic molecule. The more recent HDL-targeted drugs may prove to be superior to those used before. Indeed, delipidated HDL and HDL mimetics are efficient in increasing HDL levels, while the apoA-I upregulation with RVX-208 appears to offer a clinical benefit which is beyond the HDL related effects. HDL treatment however has not shown a significant improvement in the outcomes of patients with ACS so far, studies have therefore focused again on LDL. In addition to statins and ezetimibe, novel drugs such as PSCK9 inhibitors and apolipoprotein B inhibitors appear to be both effective and safe for patients with hyperlipidemia. CONCLUSION Data suggest these could potentially improve the cardiovascular outcomes of patient with ACS. Yet, there is still research to be done, in order to confirm whether ACS patients would benefit from LDL- or HDL-targeted therapies or a combination of both.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Nikolaos Papageorgiou
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, London, United Kingdom
| | - Eirini Lioudaki
- Epsom and St Helier University Hospitals, London, United Kingdom
| | - Dimitris Bertsias
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Marietta Charakida
- Department of Cardiovascular Imaging, King's College London, United Kingdom
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Eshraghian A. Current and emerging pharmacological therapy for non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:7495-7504. [PMID: 29204050 PMCID: PMC5698243 DOI: 10.3748/wjg.v23.i42.7495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
The main treatment of patients with non-alcoholic fatty liver disease (NAFLD) is life style modification including weight reduction and dietary regimen. Majority of patients are safely treated with this management and pharmacologic interventions are not recommended. However, a subgroup of NAFLD patients with non-alcoholic steatohepatitis (NASH) who cannot achieve goals of life style modification may need pharmacological therapy. One major obstacle is measurement of histological outcome by liver biopsy which is an invasive method and is not recommended routinely in these patients. Several medications, mainly targeting baseline mechanism of NAFLD, have been investigated in clinical trials for treatment of NASH with promising results. At present, only pioglitazone acting as insulin sensitizing agent and vitamin E as an anti-oxidant have been recommended for treatment of NASH by international guidelines. Lipid lowering agents including statins and fibrates, pentoxifylline, angiotensin receptor blockers, ursodeoxycholic acid, probiotics and synbiotics are current agents with beneficial effects for treatment of NASH but have not been approved yet. Several emerging medications are in development for treatment of NASH. Obeticholic acid, liraglutide, elafibranor, cenicriviroc and aramchol have been tested in clinical trials or are completing trials. Here in, current and upcoming medications with promising results in clinical trial for treatment of NAFLD were reviewed.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71937-11351, Iran
| |
Collapse
|
47
|
Liyanagedera S, Williams RP, Veraldi S, Nobili V, Mann JP. The pharmacological management of NAFLD in children and adolescents. Expert Rev Clin Pharmacol 2017; 10:1225-1237. [PMID: 28803504 DOI: 10.1080/17512433.2017.1365599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) represents a spectrum, including 'simple' steatosis, non-alcoholic steatohepatitis (NASH), and fibrosis. Increasing prevalence of NAFLD has followed the international rise in obesity and lifestyle modification is the mainstay therapy for children. To date, pharmacological trials have had varying efficacy but a large number of new agents are in early phase trials for adults. Areas covered: This review explores the effect of current and potential future paediatric NAFLD treatments in terms of histological and biochemical endpoints. The potential for the extension of adult treatments to children is discussed, as well as what limits the use of certain agents in children. Expert commentary: No drugs have yet to be licenced for NAFLD. Trial heterogeneity makes comparison of drugs between studies challenging. FXR agonists are yet to be trialled in children but may represent a safe and potentially efficacious therapy. Future treatments would likely encompass a multimodal approach that may include bariatric surgery.
Collapse
Affiliation(s)
- Savinda Liyanagedera
- a Department of Paediatrics , Cardiff University School of Medicine , Cardiff , UK
| | | | - Silvio Veraldi
- b Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,c Liver Research Unit , Bambino Gesu Hospital, IRCCS , Rome , Italy
| | - Valerio Nobili
- b Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,c Liver Research Unit , Bambino Gesu Hospital, IRCCS , Rome , Italy
| | - Jake P Mann
- d Metabolic Research Laboratories, Institute of Metabolic Science , University of Cambridge , Cambridge , UK.,e Department of Paediatrics , University of Cambridge , Cambridge , UK
| |
Collapse
|
48
|
Pharaon LF, El-Orabi NF, Kunhi M, Al Yacoub N, Awad SM, Poizat C. Rosiglitazone promotes cardiac hypertrophy and alters chromatin remodeling in isolated cardiomyocytes. Toxicol Lett 2017; 280:151-158. [PMID: 28822817 DOI: 10.1016/j.toxlet.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022]
Abstract
Rosiglitazone is an anti-diabetic agent that raised a major controversy over its cardiovascular adverse effects. There is in vivo evidence that Rosiglitazone promotes cardiac hypertrophy by PPAR-γ-independent mechanisms. However, whether Rosiglitazone directly alters hypertrophic growth in cardiac cells is unknown. Chromatin remodeling by histone post-translational modifications has emerged as critical for many cardiomyopathies. Based on these observations, this study was initiated to investigate the cardiac hypertrophic effect of Rosiglitazone in a cellular model of primary neonatal rat cardiomyocytes (NRCM). We assessed whether the drug alters cardiac hypertrophy and its relationship with histone H3 phosphorylation. Our study showed that Rosiglitazone is a mild pro-hypertrophic agent. Rosiglitazone caused a significant increase in the release of brain natriuretic peptide (BNP) into the cell media and also increased cardiomyocytes surface area and atrial natriuretic peptide (ANP) protein expression significantly. These changes correlated with increased cardiac phosphorylation of p38 MAPK and enhanced phosphorylation of H3 at serine 10 globally and at one cardiac hypertrophic gene locus. These results demonstrate that Rosiglitazone causes direct cardiac hypertrophy in NRCM and alters H3 phosphorylation status. They suggest a new mechanism of Rosiglitazone cardiotoxicity implicating chromatin remodeling secondary to H3 phosphorylation, which activate the fetal cardiac gene program.
Collapse
Affiliation(s)
- Lama Fawaz Pharaon
- King Saud University, College of Pharmacy, Department of Pharmacology and Toxicology, PO Box 22452, Riyadh 11495, Saudi Arabia; Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Naglaa Fathi El-Orabi
- King Saud University, College of Pharmacy, Department of Pharmacology and Toxicology, PO Box 22452, Riyadh 11495, Saudi Arabia; Suez Canal University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ismailia 41522, Egypt
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Nadya Al Yacoub
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia; San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
49
|
Wang W, Zhou X, Kwong JSW, Li L, Li Y, Sun X. Efficacy and safety of thiazolidinediones in diabetes patients with renal impairment: a systematic review and meta-analysis. Sci Rep 2017; 7:1717. [PMID: 28496176 PMCID: PMC5431943 DOI: 10.1038/s41598-017-01965-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/06/2017] [Indexed: 02/05/2023] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of TZDs in treatment of diabetes mellitus patients with renal impairment. We searched PubMed, EMBASE and Cochrane Central Register of Controlled Trials. Randomized controlled trials (RCTs), cohort studies, and case-control studies that investigated the effects of TZDs in patients with diabetes and renal impairment were eligible. Outcomes included glycosylated hemoglobin, fasting plasma glucose, serum lipids, and patient-important outcomes (i.e. hypoglycemia, weight, edema, cardiovascular events and mortality). 19 RCTs and 3 cohort studies involving 21,803 patients with diabetes and renal impairment were included. Meta-analysis of RCTs showed that TZDs could significantly reduce HbA1c (MD -0.64, 95%CI -0.93 to -0.35), FPG (MD -26.27, 95%CI -44.90 to -7.64) and increase HDL levels (MD 3.70, 95%CI 1.10, 6.29). TZDs could increase weight (MD 3.23, 95% CI 2.29 to 4.16) and risk of edema (RR 2.96, 95% CI 1.22 to 7.20). Their effects on risk of hypoglycemia (RR 1.46, 95% CI 0.65 to 3.29), heart failure (RR 0.64, 95% CI 0.15 to 2.66), angina (RR 1.45, 95% CI 0.23 to 8.95) and all-cause mortality (RR 0.40, 95% CI 0.08 to 2.01) are uncertain. Results from cohort studies were similar to RCTs.
Collapse
Affiliation(s)
- Wen Wang
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Zhou
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Center of Evidence-based Medicine, School of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Joey S W Kwong
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research and Evaluation Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Li
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research and Evaluation Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Youping Li
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research and Evaluation Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Sun
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research and Evaluation Unit, West China Hospital, Sichuan University, Chengdu, China.
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
50
|
Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G. PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism. Cell Metab 2017; 25:1118-1134.e7. [PMID: 28467929 DOI: 10.1016/j.cmet.2017.03.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 01/24/2023]
Abstract
BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan's syndrome.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Nadine Hoffmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Jonas Geldner
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover 30625, Germany
| | - Miklos M Mozes
- Department of Pathophysiology, Semmelweis University, Budapest 1089, Hungary
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|