1
|
Rix I, Johansen ML, Lund A, Suppli MP, Chabanova E, van Hall G, Holst JJ, Wewer Albrechtsen NJ, Kistorp C, Knop FK. Hyperglucagonaemia and amino acid alterations in individuals with type 2 diabetes and non-alcoholic fatty liver disease. Endocr Connect 2024; 13:e230161. [PMID: 37947763 PMCID: PMC10762555 DOI: 10.1530/ec-23-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Aims Hyperglucagonaemia contributes to the pathophysiology in type 2 diabetes (T2D), but the mechanisms behind the inappropriate glucagon secretion are not fully understood. Glucagon and amino acids are regulated in a feedback loop referred to as the liver-α cell axis. Individuals with non-alcoholic fatty liver disease (NAFLD) appear to be glucagon resistant, disrupting the liver-α cell axis resulting in hyperglucagonaemia and hyperaminoacidaemia. We investigated the associations between circulating glucagon, amino acids, and liver fat content in a cohort of individuals with T2D. Methods We included 110 individuals with T2D in this cross-sectional study. Liver fat content was quantified using 1H magnetic resonance spectroscopy (MRS). Associations between liver fat content and plasma glucagon and amino acids, respectively, were estimated in multivariate linear regression analyses. Results Individuals with NAFLD (n = 52) had higher plasma glucagon concentrations than individuals without NAFLD (n = 58). The positive association between plasma glucagon concentrations and liver fat content was confirmed in the multivariable regression analyses. Plasma concentrations of isoleucine and glutamate were increased, and glycine and serine concentrations were decreased in individuals with NAFLD. Concentrations of other amino acids were similar between individuals with and without NAFLD, and no clear association was seen between liver fat content and amino acids in the regression analyses. Conclusion MRS-diagnosed NAFLD in T2D is associated with hyperglucagonaemia and elevated plasma concentrations of isoleucine and glutamate and low plasma concentrations of glycine and serine. Whether NAFLD and glucagon resistance per se induce these changes remains to be elucidated.
Collapse
Affiliation(s)
- Iben Rix
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Zealand Pharma A/S, Søborg, Denmark
| | - Marie L Johansen
- Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Malte P Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Elizaveta Chabanova
- Department of Radiology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
2
|
Kjeldsen SA, Gluud LL, Werge MP, Pedersen JS, Bendtsen F, Alexiadou K, Tan T, Torekov SS, Iepsen EW, Jensen NJ, Richter MM, Goetze JP, Rungby J, Hartmann B, Holst JJ, Holst B, Holt J, Gustafsson F, Madsbad S, Svane MS, Bojsen-Møller KN, Wewer Albrechtsen NJ. Neprilysin activity is increased in metabolic dysfunction-associated steatotic liver disease and normalizes after bariatric surgery or GLP-1 therapy. iScience 2023; 26:108190. [PMID: 37953952 PMCID: PMC10638073 DOI: 10.1016/j.isci.2023.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Inhibitors of neprilysin improve glycemia in patients with heart failure and type 2 diabetes (T2D). The effect of weight loss by diet, surgery, or pharmacotherapy on neprilysin activity (NEPa) is unknown. We investigated circulating NEPa and neprilysin protein concentrations in obesity, T2D, metabolic dysfunction-associated steatotic liver disease (MASLD), and following bariatric surgery, or GLP-1-receptor-agonist therapy. NEPa, but not neprilysin protein, was enhanced in obesity, T2D, and MASLD. Notably, MASLD associated with NEPa independently of BMI and HbA1c. NEPa decreased after bariatric surgery with a concurrent increase in OGTT-stimulated GLP-1. Diet-induced weight loss did not affect NEPa, but individuals randomized to 52-week weight maintenance with liraglutide (1.2 mg/day) decreased NEPa, consistent with another study following 6-week liraglutide (3 mg/day). A 90-min GLP-1 infusion did not alter NEPa. Thus, MASLD may drive exaggerated NEPa, and lowered NEPa following bariatric surgery or liraglutide therapy may contribute to the reported improved cardiometabolic effects.
Collapse
Affiliation(s)
- Sasha A.S. Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lise L. Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel P. Werge
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Julie S. Pedersen
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kleopatra Alexiadou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Signe S. Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eva W. Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicole J. Jensen
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Michael M. Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
| | - Jens P. Goetze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joachim Holt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sten Madsbad
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, 2650 Hvidovre, Denmark
| | - Maria S. Svane
- Gastro Unit, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, 2650 Hvidovre, Denmark
| | - Kirstine N. Bojsen-Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, 2650 Hvidovre, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Alimajstorovic Z, Mitchell JL, Yiangou A, Hancox T, Southam AD, Grech O, Ottridge R, Winder CL, Tahrani AA, Tan TM, Mollan SP, Dunn WB, Sinclair AJ. Determining the role of novel metabolic pathways in driving intracranial pressure reduction after weight loss. Brain Commun 2023; 5:fcad272. [PMID: 37901040 PMCID: PMC10608960 DOI: 10.1093/braincomms/fcad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Idiopathic intracranial hypertension, a disease classically occurring in women with obesity, is characterized by raised intracranial pressure. Weight loss leads to the reduction in intracranial pressure. Additionally, pharmacological glucagon-like peptide-1 agonism reduces cerebrospinal fluid secretion and intracranial pressure. The potential mechanisms by which weight loss reduces intracranial pressure are unknown and were the focus of this study. Meal stimulation tests (fasted plasma sample, then samples at 15, 30, 60, 90 and 120 min following a standardized meal) were conducted pre- and post-bariatric surgery [early (2 weeks) and late (12 months)] in patients with active idiopathic intracranial hypertension. Dynamic changes in gut neuropeptides (glucagon-like peptide-1, gastric inhibitory polypeptide and ghrelin) and metabolites (untargeted ultra-high performance liquid chromatography-mass spectrometry) were evaluated. We determined the relationship between gut neuropeptides, metabolites and intracranial pressure. Eighteen idiopathic intracranial hypertension patients were included [Roux-en-Y gastric bypass (RYGB) n = 7, gastric banding n = 6 or sleeve gastrectomy n = 5]. At 2 weeks post-bariatric surgery, despite similar weight loss, RYGB had a 2-fold (50%) greater reduction in intracranial pressure compared to sleeve. Increased meal-stimulated glucagon-like peptide-1 secretion was observed after RYGB (+600%) compared to sleeve (+319%). There was no change in gastric inhibitory polypeptide and ghrelin. Dynamic changes in meal-stimulated metabolites after bariatric surgery consistently identified changes in lipid metabolites, predominantly ceramides, glycerophospholipids and lysoglycerophospholipids, which correlated with intracranial pressure. A greater number of differential lipid metabolites were observed in the RYGB cohort at 2 weeks, and these also correlated with intracranial pressure. In idiopathic intracranial hypertension, we identified novel changes in lipid metabolites and meal-stimulated glucagon-like peptide-1 levels following bariatric surgery which were associated with changes in intracranial pressure. RYGB was most effective at reducing intracranial pressure despite analogous weight loss to gastric sleeve at 2 weeks post-surgery and was associated with more pronounced changes in these metabolite pathways. We suggest that these novel perturbations in lipid metabolism and glucagon-like peptide-1 secretion are mechanistically important in driving a reduction in intracranial pressure following weight loss in patients with idiopathic intracranial hypertension. Therapeutic targeting of these pathways, for example with glucagon-like peptide-1 agonist infusion, could represent a therapeutic strategy.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| | - Thomas Hancox
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Grech
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ryan Ottridge
- Birmingham Clinical Trials Unit, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Catherine L Winder
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L3 5TR, UK
| | - Abd A Tahrani
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Susan P Mollan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| | - Warwick B Dunn
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L3 5TR, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| |
Collapse
|
4
|
Kowalka AM, Alexiadou K, Cuenco J, Clarke RE, Minnion J, Williams EL, Bech P, Purkayastha S, Ahmed AR, Takats Z, Whitwell HJ, Romero MG, Bloom SR, Camuzeaux S, Lewis MR, Khoo B, Tan TM. The postprandial secretion of peptide YY 1-36 and 3-36 in obesity is differentially increased after gastric bypass versus sleeve gastrectomy. Clin Endocrinol (Oxf) 2023; 99:272-284. [PMID: 36345253 PMCID: PMC10952770 DOI: 10.1111/cen.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.
Collapse
Affiliation(s)
- Anna M. Kowalka
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Kleopatra Alexiadou
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Joyceline Cuenco
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | | | - James Minnion
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Emma L. Williams
- Department of Clinical Biochemistry, North West London PathologyCharing Cross HospitalLondonUK
| | - Paul Bech
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Sanjay Purkayastha
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Harry J. Whitwell
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Maria Gomez Romero
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Stephane Camuzeaux
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Matthew R. Lewis
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Bernard Khoo
- Endocrinology, Division of MedicineUniversity College LondonLondonUK
| | - Tricia M.‐M. Tan
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
5
|
Pérez-Arana GM, Díaz-Gómez A, Bancalero-de los Reyes J, Gracia-Romero M, Ribelles-García A, Visiedo F, González-Domínguez Á, Almorza-Gomar D, Prada-Oliveira JA. The role of glucagon after bariatric/metabolic surgery: much more than an "anti-insulin" hormone. Front Endocrinol (Lausanne) 2023; 14:1236103. [PMID: 37635984 PMCID: PMC10451081 DOI: 10.3389/fendo.2023.1236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | | | | | | | | | - Francisco Visiedo
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - Álvaro González-Domínguez
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
- Operative Statistic and Research Department, University of Cádiz, Cádiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| |
Collapse
|
6
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
7
|
Behary P, Alessimii H, Miras AD, Tharakan G, Alexiadou K, Aldhwayan MM, Purkayastha S, Moorthy K, Ahmed AR, Bloom SR, Tan TM. Tripeptide gut hormone infusion does not alter food preferences or sweet taste function in volunteers with obesity and prediabetes/diabetes but promotes restraint eating: A secondary analysis of a randomized single-blind placebo-controlled study. Diabetes Obes Metab 2023; 25:1731-1739. [PMID: 36811311 PMCID: PMC11497251 DOI: 10.1111/dom.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
AIMS To investigate whether the elevation in postprandial concentrations of the gut hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and peptide YY (PYY) accounts for the beneficial changes in food preferences, sweet taste function and eating behaviour after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS This was a secondary analysis of a randomized single-blind study in which we infused GLP-1, OXM, PYY (GOP) or 0.9% saline subcutaneously for 4 weeks in 24 subjects with obesity and prediabetes/diabetes, to replicate their peak postprandial concentrations, as measured at 1 month in a matched RYGB cohort (ClinicalTrials.gov NCT01945840). A 4-day food diary and validated eating behaviour questionnaires were completed. Sweet taste detection was measured using the method of constant stimuli. Correct sucrose identification (corrected hit rates) was recorded, and sweet taste detection thresholds (EC50s: half maximum effective concencration values) were derived from concentration curves. The intensity and consummatory reward value of sweet taste were assessed using the generalized Labelled Magnitude Scale. RESULTS Mean daily energy intake was reduced by 27% with GOP but no significant changes in food preferences were observed, whereas a reduction in fat and increase in protein intake were seen post-RYGB. There was no change in corrected hit rates or detection thresholds for sucrose detection following GOP infusion. Additionally, GOP did not alter the intensity or consummatory reward value of sweet taste. A significant reduction in restraint eating, comparable to the RYGB group was observed with GOP. CONCLUSION The elevation in plasma GOP concentrations after RYGB is unlikely to mediate changes in food preferences and sweet taste function after surgery but may promote restraint eating.
Collapse
Affiliation(s)
- Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Haya Alessimii
- Clinical Nutrition Department, College of Applied Medical SciencesUmm Al Qura UniversityMeccaSaudi Arabia
| | - Alexander D. Miras
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
- School of MedicineUlster UniversityLondonderryUK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Madhawi M. Aldhwayan
- Community Health Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
| | - Tricia M. Tan
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
8
|
Holst JJ. Glucagon 100 years. Important, but still enigmatic. Peptides 2023; 161:170942. [PMID: 36626940 DOI: 10.1016/j.peptides.2023.170942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Glucagon was discovered in 1923 as a contaminant of early insulin preparations, and its hormonal status was not established until its structure was established in the 1950 s and when the first radioimmunoassay was developed by Roger Unger, providing information about its secretion. Its role in hepatic glucose production was soon established and it was proposed as an essential factor in diabetic hyperglycemia. However, even today a number of issues remain unsolved. For instance, the assays for glucagon are not straightforward, although the development of sandwich ELISAs allowed reasonably accurate measurements also in rodents. The tools for evaluation of glucagon physiology include pancreatectomy, but studies in both humans and experimental animals pointed towards extrapancreatic sources of glucagon. It was demonstrated that glucagon receptor knockout animals do not develop diabetes upon destruction of their beta cells with streptozotocin. However, in patients with type 1 diabetes, glucagon antagonists do not normalize glucose levels; but antagonists do lower glucose levels in patients with in type 2 diabetes. Recent studies in animals and humans have confirmed the essential role of glucagon in glucose metabolism, but have suggested that it may be at least equally important for amino acid and lipid metabolism. In spite of the 100 years, glucagon research is very much alive.
Collapse
Affiliation(s)
- Jens Juul Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Jiang H, Pang S, Zhang Y, Yu T, Liu M, Deng H, Li L, Feng L, Song B, Han-Zhang H, Ma Q, Qian L, Yang W. A phase 1b randomised controlled trial of a glucagon-like peptide-1 and glucagon receptor dual agonist IBI362 (LY3305677) in Chinese patients with type 2 diabetes. Nat Commun 2022; 13:3613. [PMID: 35750681 PMCID: PMC9232612 DOI: 10.1038/s41467-022-31328-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
The success of glucagon-like peptide-1 (GLP-1) receptor agonists to treat type 2 diabetes (T2D) and obesity has sparked considerable efforts to develop next-generation co-agonists that are more effective. We conducted a randomised, placebo-controlled phase 1b study (ClinicalTrials.gov: NCT04466904) to evaluate the safety and efficacy of IBI362 (LY3305677), a GLP-1 and glucagon receptor dual agonist, in Chinese patients with T2D. A total of 43 patients with T2D were enrolled in three cohorts in nine study centres in China and randomised in each cohort to receive once-weekly IBI362 (3.0 mg, 4.5 mg or 6.0 mg), placebo or open-label dulaglutide (1.5 mg) subcutaneously for 12 weeks. Forty-two patients received the study treatment and were included in the analysis, with eight receiving IBI362, four receiving placebo and two receiving dulaglutide in each cohort. The patients, investigators and study site personnel involved in treating and assessing patients in each cohort were masked to IBI362 and placebo allocation. Primary outcomes were safety and tolerability of IBI362. Secondary outcomes included the change in glycated haemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and post-mixed-meal tolerance test (post-MTT) glucose levels. IBI362 was well tolerated. Most commonly-reported treatment-emergent adverse events were diarrhoea (29.2% for IBI362, 33.3% for dulaglutide, 0% for placebo), decreased appetite (25.0% for IBI362, 16.7% for dulaglutide, 0% for placebo) and nausea (16.7% for IBI362, 16.7% for dulaglutide and 8.3% for placebo). HbA1c, FPG and post-MTT glucose levels were reduced from baseline to week 12 in patients receiving IBI362 in all three cohorts. IBI362 showed a favourable safety profile and clinically meaningful reductions in blood glucose in Chinese patients with T2D. Glucagon-like peptide-1 receptor (GLP1R) agonists are used to treat type 2 diabetes (T2D), and polyagonists targeting multiple hormone receptors are investigated as potential therapeutics for T2D. Here the authors report that IBI362 (LY3305677), a balanced once-weekly GLP-1 and glucagon receptor dual agonist, showed favourable safety and tolerability in Chinese patients with type 2 diabetes in a randomized controlled phase 1b clinical trial.
Collapse
Affiliation(s)
- Hongwei Jiang
- The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Jinan, China
| | - Yawei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang, China
| | - Ting Yu
- Innovent Biologics, Inc, Suzhou, China
| | - Meng Liu
- Innovent Biologics, Inc, Suzhou, China
| | - Huan Deng
- Innovent Biologics, Inc, Suzhou, China
| | - Li Li
- Innovent Biologics, Inc, Suzhou, China
| | - Liqi Feng
- Innovent Biologics, Inc, Suzhou, China
| | | | | | | | - Lei Qian
- Innovent Biologics, Inc, Suzhou, China.
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
10
|
Gao Z, Yang J, Liang Y, Yang S, Zhang T, Gong Z, Li M. Changes in Gastric Inhibitory Polypeptide (GIP) After Roux-en-Y Gastric Bypass in Obese Patients: a Meta-analysis. Obes Surg 2022; 32:2706-2716. [PMID: 35597875 DOI: 10.1007/s11695-022-05959-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/19/2023]
Abstract
This meta-analysis aimed to evaluate changes in GIP after RYGB in obese patients. We searched PubMed, EMBASE, and CENTRAL for relevant studies from database inception through July 2021. Articles were eligible for inclusion if they reported pre-operative and post-operative fasting GIP levels. We found fasting GIP levels had a decreasing tendency. The decrease in fasting glucose and postprandial GIP levels was also observed. Subgroup analysis indicated diabetic subjects tended to have a more obvious fasting GIP reduction compared to non-diabetic individuals. Meta-regression showed that the amount of weight loss (% total body weight), gastric pouch volume, alimentary limb length, and biliopancreatic limb length were not related to fasting GIP decrease. Fasting GIP levels decreased significantly after RYGB in obese people, especially in diabetic patients.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China.
| | - Jingge Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhi Liang
- Department of Medical Imaging, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Sen Yang
- Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Zuyuan Gong
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Min Li
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| |
Collapse
|
11
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
12
|
Yang C, Brecht J, Weiß C, Reissfelder C, Otto M, Buchwald JN, Vassilev G. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obes Surg 2021; 31:4939-4946. [PMID: 34471996 DOI: 10.1007/s11695-021-05677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG). METHODS Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up. RESULTS From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward. CONCLUSION RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.
Collapse
Affiliation(s)
- Cui Yang
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Brecht
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jane N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, 54750, USA
| | - Georgi Vassilev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
13
|
Kahn SE, Mather KJ, Arslanian SA, Barengolts E, Buchanan TA, Caprio S, Ehrmann DA, Hannon TS, Marcovina S, Nadeau KJ, Utzschneider KM, Xiang AH, Edelstein SL. Hyperglucagonemia Does Not Explain the β-Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study. Diabetes Care 2021; 44:1961-1969. [PMID: 34131047 PMCID: PMC8740916 DOI: 10.2337/dc21-0460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine whether β-cell hyperresponsiveness and insulin resistance in youth versus adults in the Restoring Insulin Secretion (RISE) Study are related to increased glucagon release. RESEARCH DESIGN AND METHODS In 66 youth and 350 adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes (drug naive), we performed hyperglycemic clamps and oral glucose tolerance tests (OGTTs). From clamps we quantified insulin sensitivity (M/I), plasma fasting glucagon and C-peptide, steady-state glucagon and C-peptide at glucose of 11.1 mmol/L, and arginine-stimulated glucagon (acute glucagon response [AGR]) and C-peptide (ACPRmax) responses at glucose >25 mmol/L. RESULTS Mean ± SD fasting glucagon (7.63 ± 3.47 vs. 8.55 ± 4.47 pmol/L; P = 0.063) and steady-state glucagon (2.24 ± 1.46 vs. 2.49 ± 1.96 pmol/L, P = 0.234) were not different in youth and adults, respectively, while AGR was lower in youth (14.1 ± 5.2 vs. 16.8 ± 8.8 pmol/L, P = 0.001). Significant age-group differences in insulin sensitivity, fasting C-peptide, steady-state C-peptide, and ACPRmax were not related to glucagon. Fasting glucose and glucagon were positively correlated in adults (r = 0.133, P = 0.012) and negatively correlated in youth (r = -0.143, P = 0.251). In both age-groups, higher fasting glucagon was associated with higher fasting C-peptide (youth r = 0.209, P = 0.091; adults r = 0.335, P < 0.001) and lower insulin sensitivity (youth r = -0.228, P = 0.066; adults r = -0.324, P < 0.001). With comparable fasting glucagon, youth had greater C-peptide and lower insulin sensitivity. OGTT suppression of glucagon was greater in youth. CONCLUSIONS Youth with IGT or recently diagnosed type 2 diabetes (drug naive) have hyperresponsive β-cells and lower insulin sensitivity, but their glucagon concentrations are not increased compared with those in adults. Thus, α-cell dysfunction does not appear to explain the difference in β-cell function and insulin sensitivity in youth versus adults.
Collapse
Affiliation(s)
- Steven E. Kahn
- VA Puget Sound Health Care System, Seattle, WA
- University of Washington, Seattle, WA
| | | | | | | | - Thomas A. Buchanan
- Keck School of Medicine of University of Southern California, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kahn SE, Edelstein SL, Arslanian SA, Barengolts E, Caprio S, Ehrmann DA, Hannon TS, Marcovina S, Mather KJ, Nadeau KJ, Utzschneider KM, Xiang AH, Buchanan TA. Effect of Medical and Surgical Interventions on α-Cell Function in Dysglycemic Youth and Adults in the RISE Study. Diabetes Care 2021; 44:1948-1960. [PMID: 34135015 PMCID: PMC8740921 DOI: 10.2337/dc21-0461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare effects of medications and laparoscopic gastric band surgery (LB) on α-cell function in dysglycemic youth and adults in the Restoring Insulin Secretion (RISE) Study protocols. RESEARCH DESIGN AND METHODS Glucagon was measured in three randomized, parallel, clinical studies: 1) 91 youth studied at baseline, after 12 months on metformin alone (MET) or glargine followed by metformin (G/M), and 3 months after treatment withdrawal; 2) 267 adults studied at the same time points and treated with MET, G/M, or liraglutide plus metformin (L+M) or given placebo (PLAC); and 3) 88 adults studied at baseline and after 12 and 24 months of LB or MET. Fasting glucagon, glucagon suppression by glucose, and acute glucagon response (AGR) to arginine were assessed during hyperglycemic clamps. Glucagon suppression was also measured during oral glucose tolerance tests (OGTTs). RESULTS No change in fasting glucagon, steady-state glucagon, or AGR was seen at 12 months following treatment with MET or G/M (in youth and adults) or PLAC (in adults). In contrast, L+M reduced these measures at 12 months (all P ≤ 0.005), which was maintained 3 months after treatment withdrawal (all P < 0.01). LB in adults also reduced fasting glucagon, steady-state glucagon, and AGR at 12 and 24 months (P < 0.05 for all, except AGR at 12 months [P = 0.098]). Similarly, glucagon suppression during OGTTs was greater with L+M and LB. Linear models demonstrated that treatment effects on glucagon with L+M and LB were largely associated with weight loss. CONCLUSIONS Glucagon concentrations were reduced by L+M and LB in adults with dysglycemia, an effect principally attributable to weight loss in both interventions.
Collapse
Affiliation(s)
- Steven E Kahn
- VA Puget Sound Health Care System, Seattle, WA
- University of Washington, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | - Anny H Xiang
- Kaiser Permanente Southern California, Pasadena, CA
| | | |
Collapse
|
15
|
Sun EW, Martin AM, de Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Colella AD, Chataway T, Wewer Albrechtsen NJ, Spencer NJ, Young RL, Keating DJ. Evidence for Glucagon Secretion and Function Within the Human Gut. Endocrinology 2021; 162:6127286. [PMID: 33534908 DOI: 10.1210/endocr/bqab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 11/19/2022]
Abstract
Glucagon is secreted by pancreatic α cells in response to hypoglycemia and increases hepatic glucose output through hepatic glucagon receptors (GCGRs). There is evidence supporting the notion of extrapancreatic glucagon but its source and physiological functions remain elusive. Intestinal tissue samples were obtained from patients undergoing surgical resection of cancer. Mass spectrometry analysis was used to detect glucagon from mucosal lysate. Static incubations of mucosal tissue were performed to assess glucagon secretory response. Glucagon concentration was quantitated using a highly specific sandwich enzyme-linked immunosorbent assay. A cholesterol uptake assay and an isolated murine colonic motility assay were used to assess the physiological functions of intestinal GCGRs. Fully processed glucagon was detected by mass spectrometry in human intestinal mucosal lysate. High glucose evoked significant glucagon secretion from human ileal tissue independent of sodium glucose cotransporter and KATP channels, contrasting glucose-induced glucagon-like peptide 1 (GLP-1) secretion. The GLP-1 receptor agonist Exendin-4 attenuated glucose-induced glucagon secretion from the human ileum. GCGR blockade significantly increased cholesterol uptake in human ileal crypt culture and markedly slowed ex vivo colonic motility. Our findings describe the human gut as a potential source of extrapancreatic glucagon and demonstrate a novel enteric glucagon/GCGR circuit with important physiological functions beyond glycemic regulation.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Alexander D Colella
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Tim Chataway
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Richard L Young
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
16
|
McGlone ER, Malallah K, Cuenco J, Wewer Albrechtsen NJ, Holst JJ, Vincent RP, Ling C, Khan OA, Verma S, Ahmed AR, Walters JRF, Khoo B, Bloom SR, Tan TMM. Differential effects of bile acids on the postprandial secretion of gut hormones: a randomized crossover study. Am J Physiol Endocrinol Metab 2021; 320:E671-E679. [PMID: 33459181 DOI: 10.1152/ajpendo.00580.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bile acids (BA) regulate postprandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The postprandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effects of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on postprandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon, and ghrelin. Twelve healthy volunteers underwent a mixed meal test 60 min after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg), or no BA in a randomized crossover study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin, and fibroblast growth factor 19 were measured prior to BA administration at -60 and 0 min (just prior to mixed meal) and 15, 30, 60, 120, 180, and 240 min after the meal. UDCA and CDCA provoked differential gut hormone responses; UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced postprandial secretion of GIP, with an associated reduction in postprandial insulin secretion. Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmed in obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.NEW & NOTEWORTHY Oral CDCA and UDCA have different effects on gut and pancreatic hormone secretion. A single dose of CDCA increased fasting secretion of the hormones GLP-1 and OXM with an accompanying increase in insulin secretion. CDCA also reduced postprandial GIP secretion, which was associated with reduced insulin. In contrast, UDCA did not change gut hormone secretion fasting or postprandially. Oral CDCA could be beneficial to patients with obesity and diabetes.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Khalefah Malallah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Joyceline Cuenco
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Royce P Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Charlotte Ling
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Omar A Khan
- Department of Surgery, St. George's University Hospitals NHS Trust, London, United Kingdom
| | - Surabhi Verma
- Leadiant Biosciences, Amberley House, Windsor, Berkshire, United Kingdom
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian R F Walters
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Bernard Khoo
- Endocrinology, UCL Division of Medicine, Royal Free Hospital, London, United Kingdom
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tricia M M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Do Gut Hormones Contribute to Weight Loss and Glycaemic Outcomes after Bariatric Surgery? Nutrients 2021; 13:nu13030762. [PMID: 33652862 PMCID: PMC7996890 DOI: 10.3390/nu13030762] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery is an effective intervention for management of obesity through treating dysregulated appetite and achieving long-term weight loss maintenance. Moreover, significant changes in glucose homeostasis are observed after bariatric surgery including, in some cases, type 2 diabetes remission from the early postoperative period and postprandial hypoglycaemia. Levels of a number of gut hormones are dramatically increased from the early period after Roux-en-Y gastric bypass and sleeve gastrectomy—the two most commonly performed bariatric procedures—and they have been suggested as important mediators of the observed changes in eating behaviour and glucose homeostasis postoperatively. In this review, we summarise the current evidence from human studies on the alterations of gut hormones after bariatric surgery and their impact on clinical outcomes postoperatively. Studies which assess the role of gut hormones after bariatric surgery on food intake, hunger, satiety and glucose homeostasis through octreotide use (a non-specific inhibitor of gut hormone secretion) as well as with exendin 9–39 (a specific glucagon-like peptide-1 receptor antagonist) are reviewed. The potential use of gut hormones as biomarkers of successful outcomes of bariatric surgery is also evaluated.
Collapse
|
18
|
Ilesanmi I, Tharakan G, Alexiadou K, Behary P, Alessimii H, Bovill-Taylor C, Kenkre J, Choudhury S, Doyle C, Purkayastha S, Miras A, Tsironis C, Chahal H, Bloom SR, Oliver NS, Ahmed AR, Khoo B, Tan TMM. Roux-en-Y Gastric Bypass Increases Glycemic Variability and Time in Hypoglycemia in Patients With Obesity and Prediabetes or Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2021; 44:614-617. [PMID: 33334806 DOI: 10.2337/dc20-1609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) is an established treatment for type 2 diabetes and obesity. The study objective was to establish RYGB's effects on glycemic variability (GV) and hypoglycemia. RESEARCH DESIGN AND METHODS This was a prospective observational study of 10 participants with obesity and prediabetes or type 2 diabetes who underwent RYGB. Patients were studied before RYGB (Pre) and 1 month, 1 year, and 2 years postsurgery with continuous glucose measurement (CGM). A mixed-meal test (MMT) was conducted at Pre, 1 month, and 1 year. RESULTS After RYGB, mean CGM decreased (at 1 month, 1 year, and 2 years), and GV increased (at 1 year and 2 years). Five of the 10 participants had a percent time in range (%TIR) <3.0 mmol/L (54 mg/dL) greater than the international consensus target of 1% at 1 or 2 years. Peak glucagon-like peptide-1 (GLP-1) and glucagon area under the curve during MMT were positively and negatively associated, respectively, with contemporaneous %TIR <3.0 mmol/L. CONCLUSIONS Patients undergoing RYGB are at risk for development of postbariatric hypoglycemia due to a combination of reduced mean glucose, increased GV, and increased GLP-1 response.
Collapse
Affiliation(s)
- Ibiyemi Ilesanmi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - George Tharakan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Kleopatra Alexiadou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Preeshila Behary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Haya Alessimii
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Candace Bovill-Taylor
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Julia Kenkre
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Sirazum Choudhury
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Chedie Doyle
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Alex Miras
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Christos Tsironis
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Harvinder Chahal
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Nick S Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Bernard Khoo
- Endocrinology, Division of Medicine, Royal Free Campus, University College London, London, U.K
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K.
| |
Collapse
|