1
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Li Z, Cui S, Wang H, Xiong W, Han Y, Dai W, Xi W, Cui T, Zhang X. Associations of maternal sleep trajectories during pregnancy and adverse perinatal outcomes: a prospective cohort study. Sleep Med 2024; 117:71-78. [PMID: 38513533 DOI: 10.1016/j.sleep.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Sleep problems are common in pregnant women and sleep is altered during pregnancy. However, the associations between sleep trajectory patterns and adverse maternal and neonatal outcomes are unclear. The current study aims to identify sleep trajectory patterns and explore their associations with adverse perinatal outcomes in a prospective cohort study. METHODS Pregnant women (N = 232) completed the Pittsburgh Sleep Quality Index each trimester during pregnancy in Tianjin, China. Perinatal outcomes were extracted from the hospital delivery records. Latent class growth analysis (LCGA) described the trajectories of sleep timing, duration, and efficiency. Multivariable linear regression and multivariable logistic regression were employed to evaluate associations between sleep trajectory patterns and perinatal outcomes. RESULTS Trajectories were identified for bedtime (early, 49.1%; delaying, 50.9%), wake-up time (early, 82.8% of the sample; late, 17.2%), duration (short, 5.2%; adequate 78.0%; excessive, 16.8%), and efficiency (high, 88.4%; decreasing, 11.6%). Compared with women in more optimal sleep groups, those in the late wake-up, excessive duration, and decreasing efficiency groups had babies with shorter birth lengths (β range, -0.50 to -0.28, p < 0.05). Moreover, women in the decreasing efficiency group had babies with lower birth weight (β, -0.44; p < 0.05). Women in the delaying bedtime group had greater odds of preterm delivery (OR, 4.57; p < 0.05), while those in the decreasing efficiency group had greater odds of cesarean section (OR, 3.12; p < 0.05). CONCLUSIONS Less optimal sleep trajectory patterns during pregnancy are associated with perinatal outcomes. Therefore, early assessment of maternal sleep during pregnancy is significant for identifying at-risk women and initiating interventions to reduce perinatal outcomes.
Collapse
Affiliation(s)
- Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Shanshan Cui
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Azarmehr N, Porhemat R, Roustaei N, Radmanesh E, Moslemi Z, Vanda R, Barmoudeh Z, Eslamnik P, Doustimotlagh AH. Melatonin-Attenuated Oxidative Stress in High-Risk Pregnant Women Receiving Enoxaparin and Aspirin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9523923. [PMID: 37275576 PMCID: PMC10234730 DOI: 10.1155/2023/9523923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Objective In pregnancy, reducing inflammation and oxidative stress is important. Administration of melatonin during pregnancy can improve reproductive performance by improving the placental antioxidant system and inflammatory response. This investigation was carried out to evaluate the beneficial impact of melatonin on the oxidative stress state among high-risk pregnant women receiving enoxaparin and aspirin. Methods In this double-blind, placebo-controlled trial, 40 pregnant women, aged 15-45 years at 6 weeks of pregnancy, were randomly selected and divided into intervention and control groups. The control group received prophylaxis enoxaparin and aspirin once daily between 6 and 16 weeks of pregnancy. The intervention group was taken enoxaparin and aspirin for 9 weeks and melatonin once daily from the sixth week of pregnancy to delivery time. Blood samples were taken to measure some oxidative stress biomarkers including total antioxidant capacity (TAC), malondialdehyde (MDA), total thiol (T-SH), protein carbonyl (PCO), and nitric oxide (NO). The level of high-sensitivity C-reactive protein (hs-CRP) was also determined. Results TAC and T-SH levels increased significantly in the intervention group in comparison with the control group. Melatonin administration compared to the control group led to a significantly decreased level of NO and an insignificant hs-CRP level. Conclusion Melatonin supplementation in high-risk pregnancy had favorable effects on TAC, T-SH, NO, and hs-CRP levels, improved antioxidant activity, and reduced inflammation. More studies are needed in different pregnancy conditions along with the measurement of different biomarkers.
Collapse
Affiliation(s)
- Nahid Azarmehr
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Roghayeh Porhemat
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidemiology, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Esmat Radmanesh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Physiology, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
- Clinical Research Development Unit, Imam Sajad Educational Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Moslemi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Razieh Vanda
- Clinical Research Development Unit, Imam Sajad Educational Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Barmoudeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Parvinsadat Eslamnik
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Clinical Research Development Unit, Imam Sajad Educational Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
4
|
Smith KLM, Swiderska A, Lock MC, Graham L, Iswari W, Choudhary T, Thomas D, Kowash HM, Desforges M, Cottrell EC, Trafford AW, Giussani DA, Galli GLJ. Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner. J Pineal Res 2022; 73:e12821. [PMID: 35941749 PMCID: PMC9540814 DOI: 10.1111/jpi.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown. Furthermore, while maternal antioxidant treatments are emerging as a promising new strategy to protect the hypoxic fetus, whether these treatments convey similar protection to cardiac mitochondria in the male or female fetus has not been investigated. Therefore, using an established rat model, we measured the sex-dependent effects of gestational hypoxia and maternal melatonin treatment on fetal cardiac mitochondrial respiration, reactive oxygen species (ROS) production, and lipid peroxidation. Pregnant Wistar rats were subjected to normoxia or hypoxia (13% oxygen) during gestational days (GDs) 6-20 (term ~22 days) with or without melatonin treatment (5 µg/ml in maternal drinking water). On GD 20, mitochondrial aerobic respiration and H2 O2 production were measured in fetal heart tissue, together with lipid peroxidation and citrate synthase (CS) activity. Gestational hypoxia reduced maternal body weight gain (p < .01) and increased placental weight (p < .05) but had no effect on fetal weight or litter size. Cardiac mitochondria from male but not female fetuses of hypoxic pregnancy had reduced respiratory capacity at Complex II (CII) (p < .05), and an increase in H2 O2 production/O2 consumption (p < .05) without any changes in lipid peroxidation. CS activity was also unchanged in both sexes. Despite maternal melatonin treatment increasing maternal and fetal plasma melatonin concentration (p < .001), melatonin treatment had no effect on any of the mitochondrial parameters investigated. To conclude, we show that gestational hypoxia leads to ROS generation from the mitochondrial electron transport chain and affects fetal cardiac mitochondrial respiration in a sex-dependent manner. We also show that maternal melatonin treatment had no effect on these relationships, which has implications for the development of future therapies for hypoxic pregnancies.
Collapse
Affiliation(s)
- Kerri L. M. Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Agnieszka Swiderska
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mitchell C. Lock
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lucia Graham
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Wulan Iswari
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Tashi Choudhary
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Donna Thomas
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Hager M. Kowash
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michelle Desforges
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Elizabeth C. Cottrell
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Dino A. Giussani
- Department of Physiology Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Gina L. J. Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Victor S, Rocha-Ferreira E, Rahim A, Hagberg H, Edwards D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2022; 181:875-887. [PMID: 34820702 PMCID: PMC8897336 DOI: 10.1007/s00431-021-04320-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Around 0.75 million babies worldwide suffer from moderate or severe hypoxic-ischemic encephalopathy (HIE) each year resulting in around 400,000 babies with neurodevelopmental impairment. In 2010, neonatal HIE was associated with 2.4% of the total Global Burden of Disease. Therapeutic hypothermia (TH), a treatment that is now standard of care in high-income countries, provides proof of concept that strategies that aim to improve neurodevelopment are not only possible but can also be implemented to clinical practice. While TH is beneficial, neonates with moderate or severe HIE treated with TH still experience devastating complications: 48% (range: 44-53) combined death or moderate/severe disability. There is a concern that TH may not be effective in low- and middle-income countries. Therapies that further improve outcomes are desperately needed, and in high-income countries, they must be tested in conjunction with TH. We have in this review focussed on pharmacological treatment options (e.g. erythropoietin, allopurinol, melatonin, cannabidiol, exendin-4/exenatide). Erythropoietin and allopurinol show promise and are progressing towards the clinic with ongoing definitive phase 3 randomised placebo-controlled trials. However, there remain global challenges for the next decade. Conclusion: There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials to avoid exposure to harmful medications or abandoning putative treatments. What is Known: • Therapeutic hypothermia is beneficial in neonatal hypoxic-ischemic encephalopathy. • Neonates with moderate or severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia still experience severe sequelae. What is New: • Erythropoietin, allopurinol, melatonin, cannabidiol, and exendin-4/exenatide show promise in conjunction with therapeutic hypothermia. • There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials.
Collapse
Affiliation(s)
- Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ahad Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| |
Collapse
|
6
|
Hansell JA, Richter HG, Camm EJ, Herrera EA, Blanco CE, Villamor E, Patey OV, Lock MC, Trafford AW, Galli GLJ, Giussani DA. Maternal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res 2022; 72:e12766. [PMID: 34634151 DOI: 10.1111/jpi.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2 ) pregnancy ± melatonin (M) treatment (5 μg·ml-1 .day-1 ) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15-20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia-induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair-fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in-vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair-fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch-up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia-induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair-fed pregnancies. Whilst maternal treatment of normoxic or pair-fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Jeremy A Hansell
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hans G Richter
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Carlos E Blanco
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Eduardo Villamor
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Olga V Patey
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mitchell C Lock
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge BHF Centre for Research Excellence, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
7
|
Stevenson NJ, Lai MM, Starkman HE, Colditz PB, Wixey JA. Electroencephalographic studies in growth-restricted and small-for-gestational-age neonates. Pediatr Res 2022; 92:1527-1534. [PMID: 35197567 PMCID: PMC9771813 DOI: 10.1038/s41390-022-01992-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Foetal growth restriction (FGR) and being born small for gestational age (SGA) are associated with neurodevelopmental delay. Early diagnosis of neurological damage is difficult in FGR and SGA neonates. Electroencephalography (EEG) has the potential as a tool for the assessment of brain development in FGR/SGA neonates. In this review, we analyse the evidence base on the use of EEG for the assessment of neonates with FGR or SGA. We found consistent findings that FGR/SGA is associated with measurable changes in the EEG that present immediately after birth and persist into childhood. Early manifestations of FGR/SGA in the EEG include changes in spectral power, symmetry/synchrony, sleep-wake cycling, and the continuity of EEG amplitude. Later manifestations of FGR/SGA into infancy and early childhood include changes in spectral power, sleep architecture, and EEG amplitude. FGR/SGA infants had poorer neurodevelopmental outcomes than appropriate for gestational age controls. The EEG has the potential to identify FGR/SGA infants and assess the functional correlates of neurological damage. IMPACT: FGR/SGA neonates have significantly different EEG activity compared to AGA neonates. EEG differences persist into childhood and are associated with adverse neurodevelopmental outcomes. EEG has the potential for early identification of brain impairment in FGR/SGA neonates.
Collapse
Affiliation(s)
- Nathan J. Stevenson
- grid.1049.c0000 0001 2294 1395Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Melissa M. Lai
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD 4029 Australia
| | - Hava E. Starkman
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.17063.330000 0001 2157 2938Department of Obstetrics and Gynaecology, University of Toronto, King’s College Circle, Toronto, ON M5S Canada
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD 4029 Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia
| |
Collapse
|
8
|
Langston-Cox A, Marshall SA, Lu D, Palmer KR, Wallace EM. Melatonin for the Management of Preeclampsia: A Review. Antioxidants (Basel) 2021; 10:antiox10030376. [PMID: 33802558 PMCID: PMC8002171 DOI: 10.3390/antiox10030376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Preeclampsia is a disease specific to pregnancy characterised by new-onset hypertension with maternal organ dysfunction and/or fetal growth restriction. It remains a major cause of maternal and perinatal morbidity and mortality. For sixty years, antihypertensives have been the mainstay of treating preeclampsia and only recently have insights into the pathogenesis of the disease opened new avenues for novel therapies. Melatonin is one such option, an endogenous and safe antioxidant, that may improve the maternal condition in preeclampsia while protecting the fetus from a hostile intrauterine environment. Here we review the evidence for melatonin as a possible adjuvant therapy for preeclampsia, including in vitro evidence supporting a role for melatonin in protecting the human placenta, preclinical models, vascular studies, and clinical studies in hypertension and pregnancy.
Collapse
Affiliation(s)
- Annie Langston-Cox
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Sarah A. Marshall
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Daisy Lu
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Kirsten R. Palmer
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Monash Health, Clayton, VIC 3168, Australia
| | - Euan M. Wallace
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Correspondence: ; Tel.: +61-3-9594-5145; Fax: +61-3-9594-5003
| |
Collapse
|
9
|
Ahmed J, Pullattayil S AK, Robertson NJ, More K. Melatonin for neuroprotection in neonatal encephalopathy: A systematic review & meta-analysis of clinical trials. Eur J Paediatr Neurol 2021; 31:38-45. [PMID: 33601197 DOI: 10.1016/j.ejpn.2021.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Melatonin has shown neuroprotective properties in pre-clinical studies of perinatal asphyxia through antioxidant, anti-apoptotic and anti-inflammatory actions. Studies have also demonstrated its safety and efficacy in neonatal encephalopathy (NE). However, its role in the current era of therapeutic hypothermia (HT) is unclear. The review aims to describe the currently available clinical evidence for Melatonin as a potential therapy for NE. METHODS Data Sources: We searched Medline, EMBASE, CINAHL, LILACS, and Cochrane central databases, published journals, and conference proceedings from inception to May 31, 2020. STUDY SELECTION Randomized controlled trials (RCTs) of Melatonin for NE in term or late preterm infants reporting neurodevelopmental outcomes, death, or both. The evidence quality was evaluated using the GRADE system, while the recommendations were taken according to the quality. RESULTS We included five RCTs involving 215 neonates. Long-term development outcome data is lacking in all except in one small study, reporting significantly higher composite cognition scores at 18 months. One study reported intermediate 6-month favorable development on follow-up. Meta-analysis of mortality in combined HT + Melatonin group vs HT alone (Studies = 2, participants = 54) demonstrated no significant reduction with relative risk (RR) 0.42; 95%CI, 0.99-1.12). The overall GRADE evidence quality was very low for a very small sample size. We did not meta-analyze the data for Melatonin alone therapy without HT, as the included studies were of very low quality. CONCLUSIONS Despite strong experimental data supporting the role of Melatonin as a neuroprotective agent in NE (both alone and as an adjunct with therapeutic hypothermia), the clinical data supporting the neuroprotective effects in neonates is limited. Larger well designed, adequately powered multicentre clinical trials are urgently needed to define the neuroprotective role of Melatonin in optimizing outcomes of NE.
Collapse
Affiliation(s)
- Javed Ahmed
- Division of Neonatology, Women's Wellness and Research Centre, Hamad Medical Corporation, Doha, Qatar.
| | | | - Nicola J Robertson
- Institute for Women's Health, University College London, London, WC1E 6HX, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, BioQuarter, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; The Roslin Institute, University of Edinburgh, Easter Bush Campus, EH25 9RG, UK.
| | - Kiran More
- Division of Neonatology, Sidra Medicine, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar.
| |
Collapse
|
10
|
Liu H, Li H, Li C, Chen L, Zhang C, Liu Z, Wu Y, Huang H. Associations between Maternal Sleep Quality Throughout Pregnancy and Newborn Birth Weight. Behav Sleep Med 2021; 19:57-69. [PMID: 31830816 DOI: 10.1080/15402002.2019.1702551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Poor sleep quality is common during pregnancy. Although a few studies have investigated the associations between maternal sleep quality and fetal birth weight (BW), no evidence has been clearly demonstrated. Our aim was to investigate the effects of sleep quality during pregnancy on the newborn BW z-scores. Participants: 1466 mother-infant pairs were included in the present study based on an ongoing prospective cohort. Methods: Questionnaires including the Pittsburgh Sleep Quality Index (PSQI) and scales for psychosocial status were administered at each trimester. BW z-scores were calculated based on the INTERGROWTH-21st standard. A generalized estimating equation model was applied to evaluate the associations between trimester-specific sleep quality and newborn BW after adjusting for potential confounders. Multivariable logistic regression models were applied to examine the impacts of maternal sleep quality on small-for-gestational-age (SGA) or low birth weight (LBW). Results: We found that maternal PSQI scores in the first and third trimesters were negatively associated with BW z-scores among female newborns (β = -0.032, 95% CI: -0.063, -0.001, P= .043; β = -0.031, 95% CI: -0.060, -0.003, P= .033, respectively). However, no relationship was observed between maternal sleep quality and BW in male neonates. Additionally, poor sleep quality in late pregnancy was a risk factor for LBW (OR = 1.501, 95% CI: 1.082-2.082). Conclusions: The BW z-scores of female newborns decreased as maternal sleep quality in the first and third trimesters worsened. This finding suggests that sleep during pregnancy may influence fetal weight in a trimester- and gender-specific manner.
Collapse
Affiliation(s)
- Han Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Hong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Cheng Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Lei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Chenjie Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Zhiwei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Yanting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China.,Shanghai Municipal Key Clinical Specialty , Shanghai, China
| |
Collapse
|
11
|
Ellery SJ, Murthi P, Davies-Tuck ML, Della Gatta PA, May AK, Kowalski GM, Callahan DL, Bruce CR, Alers NO, Miller SL, Erwich JJHM, Wallace EM, Walker DW, Dickinson H, Snow RJ. Placental creatine metabolism in cases of placental insufficiency and reduced fetal growth. Mol Hum Reprod 2020; 25:495-505. [PMID: 31323678 DOI: 10.1093/molehr/gaz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 11/14/2022] Open
Abstract
Creatine is a metabolite involved in cellular energy homeostasis. In this study, we examined placental creatine content, and expression of the enzymes required for creatine synthesis, transport and the creatine kinase reaction, in pregnancies complicated by low birthweight. We studied first trimester chorionic villus biopsies (CVBs) of small for gestational age (SGA) and appropriately grown infants (AGA), along with third trimester placental samples from fetal growth restricted (FGR) and healthy gestation-matched controls. Placental creatine and creatine precursor (guanidinoacetate-GAA) levels were measured. Maternal and cord serum from control and FGR pregnancies were also analyzed for creatine concentration. mRNA expression of the creatine transporter (SLC6A8); synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT); mitochondrial (mtCK) and cytosolic (BBCK) creatine kinases; and amino acid transporters (SLC7A1 & SLC7A2) was assessed in both CVBs and placental samples. Protein levels of AGAT (arginine:glycine aminotransferase), GAMT, mtCK and BBCK were also measured in placental samples. Key findings; total creatine content of the third trimester FGR placentae was 43% higher than controls. The increased creatine content of placental tissue was not reflected in maternal or fetal serum from FGR pregnancies. Tissue concentrations of GAA were lower in the third trimester FGR placentae compared to controls, with lower GATM and GAMT mRNA expression also observed. No differences in the mRNA expression of GATM, GAMT or SLC6A8 were observed between CVBs from SGA and AGA pregnancies. These results suggest placental creatine metabolism in FGR pregnancies is altered in late gestation. The relevance of these changes on placental bioenergetics should be the focus of future investigations.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Padma Murthi
- Department of Physiology, Monash University, Clayton, Victoria; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Miranda L Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Anthony K May
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Damien L Callahan
- Centre for Cellular and Molecular Biology, School of Life and Environmental Science, Deakin University, Burwood, Melbourne, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Nicole O Alers
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Jan Jaap H M Erwich
- Dept of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| |
Collapse
|
12
|
Maternal Antioxidant Status in Early Pregnancy and Development of Fetal Complications in Twin Pregnancies: A Pilot Study. Antioxidants (Basel) 2020; 9:antiox9040269. [PMID: 32218124 PMCID: PMC7222178 DOI: 10.3390/antiox9040269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
Twin pregnancies are increasing due to the rise in mothers' childbearing age and have a higher risk of fetal growth restriction (FGR) and prematurity. Therefore, early prediction of these events is important. Our aim was to analyze in the first trimester of pregnancy a possible association between antioxidants, including melatonin, in maternal plasma and the development of fetal complications in twin pregnancies. A single-center, prospective, and observational study was performed in 104 twin-pregnant women. A blood sample was extracted between the 9th and the 11th week of gestation, and plasma was obtained. Antioxidants (thiols, reduced glutathione, phenolic compounds, catalase, superoxide dismutase) and oxidative damage biomarkers (carbonyl groups and malondialdehyde) were assessed by spectrophotometry, and global scores were calculated from these parameters (Antiox-S, Prooxy-S). Melatonin and cortisol were evaluated by a competitive immunoassay. In the first trimester of pregnancy, Antiox-S was significantly lower in women who developed FGR compared to those with normal fetal growth; plasma melatonin was significantly lower in women with preterm compared to those with full-term births and exhibited a positive correlation with birth weight. Maternal cortisol showed a negative correlation with birth weight. We conclude that, for twin gestations, maternal plasma antioxidant status and melatonin could be potential biomarkers to be included in algorithms to predict FGR and preterm labor.
Collapse
|
13
|
Lee JY, Li S, Shin NE, Na Q, Dong J, Jia B, Jones-Beatty K, McLane MW, Ozen M, Lei J, Burd I. Melatonin for prevention of placental malperfusion and fetal compromise associated with intrauterine inflammation-induced oxidative stress in a mouse model. J Pineal Res 2019; 67:e12591. [PMID: 31231832 DOI: 10.1111/jpi.12591] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
Abstract
Melatonin has been shown to reduce oxidative stress and mitigate hypercoagulability. We hypothesized that maternally administered melatonin may reduce placental oxidative stress and hypercoagulability associated with exposure to intrauterine inflammation (IUI) and consequently improve fetoplacental blood flow and fetal sequelae. Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. The systolic/diastolic ratio, resistance index, and pulsatility index in uterine artery (UtA) and umbilical artery (UA) were significantly increased in L compared with other groups when analyzed by Doppler ultrasonography. The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. Vascular endothelial damage and thrombi formation, as evidenced by fibrin deposits, were similarly increased in L compared to other groups. Maternal pretreatment with melatonin appears to modulate maternal placental malperfusion, fetal cardiovascular compromise, and fetal neuroinflammation induced by IUI through its antioxidant properties.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Su Li
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na E Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly Jones-Beatty
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Finch-Edmondson M, Morgan C, Hunt RW, Novak I. Emergent Prophylactic, Reparative and Restorative Brain Interventions for Infants Born Preterm With Cerebral Palsy. Front Physiol 2019; 10:15. [PMID: 30745876 PMCID: PMC6360173 DOI: 10.3389/fphys.2019.00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, an estimated 15 million babies are born preterm (<37 weeks' gestation) every year. Despite significant improvements in survival rates, preterm infants often face a lifetime of neurodevelopmental disability including cognitive, behavioral, and motor impairments. Indeed, prematurity remains the largest risk factor for the development of cerebral palsy. The developing brain of the preterm infant is particularly fragile; preterm babies exhibit varying severities of cerebral palsy arising from reductions in both cerebral white and gray matter volumes, as well as altered brain microstructure and connectivity. Current intensive care therapies aim to optimize cardiovascular and respiratory function to protect the brain from injury by preserving oxygenation and blood flow. If a brain injury does occur, definitive diagnosis of cerebral palsy in the first few hours and weeks of life is difficult, especially when the lesions are subtle and not apparent on cranial ultrasound. However, early diagnosis of mildly affected infants is critical, because these are the patients most likely to respond to emergent treatments inducing neuroplasticity via high-intensity motor training programs and regenerative therapies involving stem cells. A current controversy is whether to test universal treatment in all infants at risk of brain injury, accepting that some patients never required treatment, because the perceived potential benefits outweigh the risk of harm. Versus, waiting for a diagnosis before commencing targeted treatment for infants with a brain injury, and potentially missing the therapeutic window. In this review, we discuss the emerging prophylactic, reparative, and restorative brain interventions for infants born preterm, who are at high risk of developing cerebral palsy. We examine the current evidence, considering the timing of the intervention with relation to the proposed mechanism/s of action. Finally, we consider the development of novel markers of preterm brain injury, which will undoubtedly lead to improved diagnostic and prognostic capability, and more accurate instruments to assess the efficacy of emerging interventions for this most vulnerable group of infants.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Catherine Morgan
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Rod W. Hunt
- Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Iona Novak
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Wixey JA, Lee KM, Miller SM, Goasdoue K, Colditz PB, Tracey Bjorkman S, Chand KK. Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. J Neuroinflammation 2019; 16:5. [PMID: 30621715 PMCID: PMC6323795 DOI: 10.1186/s12974-018-1392-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The fetal brain is particularly vulnerable to intrauterine growth restriction (IUGR) conditions evidenced by neuronal and white matter abnormalities and altered neurodevelopment in the IUGR infant. To further our understanding of neurodevelopment in the newborn IUGR brain, clinically relevant models of IUGR are required. This information is critical for the design and implementation of successful therapeutic interventions to reduce aberrant brain development in the IUGR newborn. We utilise the piglet as a model of IUGR as growth restriction occurs spontaneously in the pig as a result of placental insufficiency, making it a highly relevant model of human IUGR. The purpose of this study was to characterise neuropathology and neuroinflammation in the neonatal IUGR piglet brain. METHODS Newborn IUGR (< 5th centile) and normally grown (NG) piglets were euthanased on postnatal day 1 (P1; < 18 h) or P4. Immunohistochemistry was utilised to examine neuronal, white matter and inflammatory responses, and PCR for cytokine analysis in parietal cortex of IUGR and NG piglets. RESULTS The IUGR piglet brain displayed less NeuN-positive cells and reduced myelination at both P1 and P4 in the parietal cortex, indicating neuronal and white matter disruption. A concurrent decrease in Ki67-positive proliferative cells and increase in cell death (caspase-3) in the IUGR piglet brain was also apparent on P4. We observed significant increases in the number of both Iba-1-positive microglia and GFAP-positive astrocytes in the white matter in IUGR piglet brain on both P1 and P4 compared with NG piglets. These increases were associated with a change in activation state, as noted by altered glial morphology. This inflammatory state was further evident with increased expression levels of proinflammatory cytokines (interleukin-1β, tumour necrosis factor-α) and decreased levels of anti-inflammatory cytokines (interleukin-4 and -10) observed in the IUGR piglet brains. CONCLUSIONS These findings suggest that the piglet model of IUGR displays the characteristic neuropathological outcomes of neuronal and white matter impairment similar to those reported in the IUGR human brain. The activated glial morphology and elevated proinflammatory cytokines is indicative of an inflammatory response that may be associated with neuronal damage and white matter disruption. These findings support the use of the piglet as a pre-clinical model for studying mechanisms of altered neurodevelopment in the IUGR newborn.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| | - Kah Meng Lee
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Stephanie M Miller
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kate Goasdoue
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.,Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| |
Collapse
|
16
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
17
|
Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, Wallace EM. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res 2018; 65:e12508. [PMID: 29766570 DOI: 10.1111/jpi.12508] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
Abstract
Preeclampsia remains a leading cause of maternal and perinatal morbidity and mortality. There have been no material advances in the treatment of preeclampsia for nearly 50 years. Combining in vitro studies and a clinical trial, we aimed to determine whether melatonin could be a useful adjuvant therapy. In a xanthine/xanthine oxidase (X/XO) placental explant model, melatonin reduced oxidative stress (8-isoprostane) and enhanced antioxidant markers (Nrf2 translocation, HO-1), but did not affect explant production of anti-angiogenic factors (sFlt, sEng, activin A). In cultured HUVECs, melatonin mitigated TNFα-induced vascular cell adhesion molecule expression and rescued the subsequent disruption to endothelial monolayer integrity but did not affect other markers for endothelial activation and dysfunction. In a phase I trial of melatonin in 20 women with preeclampsia, we assessed the safety and efficacy of melatonin on (i) preeclampsia progression, (ii) clinical outcomes, and (iii) oxidative stress, matching outcomes with recent historical controls receiving similar care. Melatonin therapy was safe for mothers and their fetuses. Compared to controls, melatonin administration extended the mean ± SEM diagnosis to delivery interval by 6 ± 2.3 days reduced the need for increasing antihypertensive medication on days 3-4 (13% vs 71%), days 6-7 (8% vs 51%), and at delivery (26% vs 75%). All other clinical and biochemical measures of disease severity were unaffected by melatonin. We have shown that melatonin has the potential to mitigate maternal endothelial pro-oxidant injury and could therefore provide effective adjuvant therapy to extend pregnancy duration to deliver improved clinical outcomes for women with severe preeclampsia.
Collapse
Affiliation(s)
- Sebastian R Hobson
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- Women's Health Program, Monash Health, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Seshi Gurusinghe
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - Nicole O Alers
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| |
Collapse
|
18
|
Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacol Res 2018; 139:228-242. [PMID: 30227261 DOI: 10.1016/j.phrs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The majority of brain injuries that lead to cerebral palsy, developmental disability, and mental health disorders have their onset in utero. These lifelong conditions come with great economic and emotional burden as they impact function in nearly all domains of affected individuals' lives. Unfortunately, current therapeutic options are limited. There remains a focus on rescue, rehabilitation, and regeneration after the injury has occurred, rather than aiming to prevent the initial injury. Prevention would imply treating the mother during pregnancy to alter the fetal environment and in turn, treat the fetus. Fear of harming the developing fetus remains as a result of errors of the past such as the release of thalidomide. In this review, we outline evidence from animal studies and clinical trials that have explored maternal dietary supplementation with natural health products (including nutraceuticals and functional foods) for perinatal brain injury prevention. Namely, we discuss magnesium sulphate, creatine, choline, melatonin, resveratrol and broccoli sprouts/sulforaphane. Although clinical trials have only been completed in this realm for magnesium sulphate, results in animal models have been promising, suggesting that this is a productive avenue for further research. Natural health products may provide safe, effective, affordable, and easily accessible prevention of fetal brain injury and resulting lifelong disabilities.
Collapse
|
19
|
Renshall LJ, Morgan HL, Moens H, Cansfield D, Finn-Sell SL, Tropea T, Cottrell EC, Greenwood S, Sibley CP, Wareing M, Dilworth MR. Melatonin Increases Fetal Weight in Wild-Type Mice but Not in Mouse Models of Fetal Growth Restriction. Front Physiol 2018; 9:1141. [PMID: 30158878 PMCID: PMC6104307 DOI: 10.3389/fphys.2018.01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Fetal growth restriction (FGR) presents with an increased risk of stillbirth and childhood and adulthood morbidity. Melatonin, a neurohormone and antioxidant, has been suggested as having therapeutic benefit in FGR. We tested the hypothesis that melatonin would increase fetal growth in two mouse models of FGR which together represent a spectrum of the placental phenotypes in this complication: namely the endothelial nitric oxide synthase knockout mouse (eNOS-/-) which presents with abnormal uteroplacental blood flow, and the placental specific Igf2 knockout mouse (P0+/-) which demonstrates aberrant placental morphology akin to human FGR. Melatonin (5 μg/ml) was administered via drinking water from embryonic day (E)12.5 in C57Bl/6J wild-type (WT), eNOS-/-, and P0+/- mice. Melatonin supplementation significantly increased fetal weight in WT, but not eNOS-/- or P0+/- mice at E18.5. Melatonin did, however, significantly increase abdominal circumference in P0+/- mice. Melatonin had no effect on placental weight in any group. Uterine arteries from eNOS-/- mice demonstrated aberrant function compared with WT but melatonin treatment did not affect uterine artery vascular reactivity in either of these genotypes. Umbilical arteries from melatonin treated P0+/- mice demonstrated increased relaxation in response to the nitric oxide donor SNP compared with control. The increased fetal weight in WT mice and abdominal circumference in P0+/-, together with the lack of any effect in eNOS-/-, suggest that the presence of eNOS is required for the growth promoting effects of melatonin. This study supports further work on the possibility of melatonin as a treatment for FGR.
Collapse
Affiliation(s)
- Lewis J Renshall
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Hannah L Morgan
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Hymke Moens
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - David Cansfield
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Sarah L Finn-Sell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Teresa Tropea
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Susan Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| |
Collapse
|
20
|
Wixey JA, Chand KK, Pham L, Colditz PB, Bjorkman ST. Therapeutic potential to reduce brain injury in growth restricted newborns. J Physiol 2018; 596:5675-5686. [PMID: 29700828 DOI: 10.1113/jp275428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Brain injury in intrauterine growth restricted (IUGR) infants is a major contributing factor to morbidity and mortality worldwide. Adverse outcomes range from mild learning difficulties, to attention difficulties, neurobehavioral issues, cerebral palsy, epilepsy, and other cognitive and psychiatric disorders. While the use of medication to ameliorate neurological deficits in IUGR neonates has been identified as warranting urgent research for several years, few trials have been reported. This review summarises clinical trials focusing on brain protection in the IUGR newborn as well as therapeutic interventions trialled in animal models of IUGR. Therapeutically targeting mechanisms of brain injury in the IUGR neonate is fundamental to improving long-term neurodevelopmental outcomes. Inflammation is a key mechanism in neonatal brain injury; and therefore an appealing target. Ibuprofen, an anti-inflammatory drug currently used in the preterm neonate, may be a potential therapeutic candidate to treat brain injury in the IUGR neonate. To better understand the potential of ibuprofen and other therapeutic agents to be neuroprotective in the IUGR neonate, long-term follow-up information of neurodevelopmental outcomes must be studied. Where agents such as ibuprofen are shown to be effective, have a good safety profile and are relatively inexpensive, they can be widely adopted and lead to improved outcomes.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Lily Pham
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| |
Collapse
|
21
|
Domínguez Rubio AP, Correa F, Aisemberg J, Dorfman D, Bariani MV, Rosenstein RE, Zorrilla Zubilete M, Franchi AM. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J Pineal Res 2017; 63. [PMID: 28776755 DOI: 10.1111/jpi.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023]
Abstract
Preterm birth is a major contributor to early and delayed physical and cognitive impairment. Epidemiological and experimental data indicate that maternal infections are a significant and preventable cause of preterm birth. Recently, melatonin has been suggested to exert neuroprotective effects in several models of brain injury. Here, we sought to investigate whether the administration of melatonin is able to prevent lipopolysaccharide (LPS)-induced fetal brain damage in a model of LPS-induced preterm labor. For this purpose, 15-day pregnant BALB/c mice received intraperitoneally 2 doses of LPS or vehicle: the first one at 10:00 hours (0.26 mg/kg) and the second at 13:00 hours (0.52 mg/kg). On day 14 of pregnancy, a group of mice was subcutaneously implanted with a pellet of 25 mg melatonin. This experimental protocol resulted in 100% of preterm birth and pup death in the LPS group and a 50% of term birth and pup survival in the melatonin + LPS group. In the absence of melatonin, fetuses from LPS-treated mothers showed histological signs of brain damage, microglial/macrophage activation, and higher levels of IL-1β, inducible nitric oxide synthase (NOS), and neuronal NOS mRNAs as well as increased histone acetyltransferase activity and histone H3 hyperacetylation. In contrast, antenatal administration of melatonin prevented LPS-induced fetal brain damage. Moreover, when behavioral traits were analyzed in the offspring from control, melatonin, and melatonin + LPS, no significant differences were found, suggesting that melatonin prevented LPS-induced long-term neurodevelopmental impairments. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent fetal brain damage and its long-term consequences induced by maternal inflammation.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ruth Estela Rosenstein
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Zorrilla Zubilete
- Laboratorio de Neuropsicofarmacología del Estrés, Departamento de Farmacología, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Cureton N, Korotkova I, Baker B, Greenwood S, Wareing M, Kotamraju VR, Teesalu T, Cellesi F, Tirelli N, Ruoslahti E, Aplin JD, Harris LK. Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. Theranostics 2017; 7:3715-3731. [PMID: 29109771 PMCID: PMC5667343 DOI: 10.7150/thno.19678] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
Fetal growth restriction (FGR) in pregnancy is commonly caused by impaired uteroplacental blood flow. Vasodilators enhance uteroplacental perfusion and fetal growth in humans and animal models; however, detrimental maternal and fetal side effects have been reported. We hypothesised that targeted uteroplacental delivery of a vasodilator would enhance drug efficacy and reduce the risks associated with drug administration in pregnancy. Phage screening identified novel peptides that selectively accumulated in the uteroplacental vasculature of pregnant mice. Following intravenous injection, the synthetic peptide CNKGLRNK selectively bound to the endothelium of the uterine spiral arteries and placental labyrinth in vivo; CNKGLRNK-decorated liposomes also selectively bound to these regions. The nitric oxide donor 2-[[4-[(nitrooxy)methyl]benzoyl]thio]-benzoic acid methyl ester (SE175) induced significant relaxation of mouse uterine arteries and human placental arteries in vitro; thus, SE175 was encapsulated into these targeted liposomes and administered to healthy pregnant C57BL/6J mice or endothelial nitric oxide synthase knockout (eNOS-/-) mice, which exhibit impaired uteroplacental blood flow and FGR. Liposomes containing SE175 (0.44mg/kg) or PBS were administered on embryonic (E) days 11.5, 13.5, 15.5 and 17.5; fetal and placental weights were recorded at term and compared to mice injected with free PBS or SE175. Targeted uteroplacental delivery of SE175 had no effect on fetal weight in C57BL/6J mice, but significantly increased fetal weight and mean spiral artery diameter, and decreased placental weight, indicative of improved placental efficiency, in eNOS-/- mice; free SE175 had no effect on fetal weight or spiral artery diameter. Targeted, but not free SE175 also significantly reduced placental expression of 4-hydroxynonenal, cyclooxygenase-1 and cyclooxygenase-2, indicating a reduction in placental oxidative stress. These data suggest that exploiting vascular targeting peptides to selectively deliver SE175 to the uteroplacental vasculature may represent a novel treatment for FGR resulting from impaired uteroplacental perfusion.
Collapse
Affiliation(s)
- Natalie Cureton
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Iana Korotkova
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Bernadette Baker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Susan Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Venkata R Kotamraju
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA and Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | - Tambet Teesalu
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA and Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA and Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
- Division of Pharmacy and Optometry, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
23
|
Polglase GR, Barbuto J, Allison BJ, Yawno T, Sutherland AE, Malhotra A, Schulze KE, Wallace EM, Jenkin G, Ricardo SD, Miller SL. Effects of antenatal melatonin therapy on lung structure in growth-restricted newborn lambs. J Appl Physiol (1985) 2017; 123:1195-1203. [PMID: 28819007 DOI: 10.1152/japplphysiol.00783.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress arising from suboptimal placental function contributes to a multitude of pathologies in infants compromised by fetal growth restriction (FGR). FGR infants are at high risk for respiratory dysfunction after birth and poor long-term lung function. Our objective was to investigate the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. Placental insufficiency and FGR was surgically induced in 13 fetal sheep at ∼105 days of gestation by ligation of a single umbilical artery. Maternal intravenous melatonin infusion was commenced in seven of the ewes 4 h after surgery and continued until birth. Lambs delivered normally at term and lungs were collected 24 h after birth for histological assessment of lung structure and injury and compared with appropriately grown control lambs (n = 8). FGR fetuses were hypoxic and had lower glucose during gestation compared with controls. Melatonin administration prevented chronic hypoxia. Within the lung, FGR caused reduced secondary septal crest density and altered elastin deposition compared with controls. Melatonin administration had no effect on the changes to lung structure induced by FGR. We conclude that chronic FGR disrupts septation of the developing alveoli, which is not altered by melatonin administration. These findings suggest that oxidative stress is not the mechanism driving altered lung structure in FGR neonates. Melatonin administration did not prevent disrupted airway development but also had no apparent adverse effects on fetal lung development.NEW & NOTEWORTHY Fetal growth restriction (FGR) results in poor respiratory outcomes, which may be caused by oxidation in utero. We investigated the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. FGR disrupted septation of the developing alveoli, which is not altered by melatonin administration. Oxidative stress may not be the mechanism driving altered lung structure in FGR neonates.
Collapse
Affiliation(s)
- Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jade Barbuto
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University Clayton, Victoria, Australia; and
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy, Biochemistry, and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; .,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Zhao M, Li Y, Xu L, Hickey A, Groom K, Stone PR, Chamley LW, Chen Q. Melatonin prevents preeclamptic sera and antiphospholipid antibodies inducing the production of reactive nitrogen species and extrusion of toxic trophoblastic debris from first trimester placentae. Placenta 2017; 58:17-24. [PMID: 28962691 DOI: 10.1016/j.placenta.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The exact cause of preeclampsia is unknown. However a "toxin" from the placenta triggers the condition via activation of the maternal endothelium. Extracellular vesicles (EVs) from the syncytiotrophoblast, may be an endothelial-activating toxin. Antiphospholipid antibodies (aPL) and preeclamptic sera both induce the production of endothelial cell-activating EVs by mechanisms which may produce excess free-radicals in the placenta. Melatonin is produced by the human placenta and has both direct and indirect anti-free-radical properties and may therefore counter the effects of aPL and preeclamptic sera. METHODS First trimester placental explants were exposed to preeclamptic sera or aPL in the presence or absence of melatonin. Nitrosylative damage was assessed in the explants by immunohistochemistry and the effect of EVs from these explants on endothelial cell activation determined by ICAM-1. Release of nitrosylated proteins from the explants was also measured. RESULTS Placental explants showed reduced secretion of melatonin after treatment with preeclamptic sera. Nitrosylated proteins were more abundant in placentae that had been treated with aPL or preeclamptic sera and EVs from such placentae induced endothelial cell activation. Adding melatonin to the aPL or preeclamptic sera reversed the protein nitrosylation and production of endothelial-activating EVs. DISCUSSION Our data are consistent with reports that the levels of circulating melatonin are reduced in preeclampsia and suggest that aPL and factors in preeclamptic sera induce free-radical-mediated damage in the placenta leading to the production of endothelial-activating EVs. Melatonin reversing production of endothelial-activating EVs indicates that melatonin may have therapeutic benefits in women with preeclampsia and/or aPL.
Collapse
Affiliation(s)
- Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Yanyun Li
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lance Xu
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Anthony Hickey
- School of Biological Science, The University of Auckland, New Zealand
| | - Katie Groom
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
25
|
Abstract
Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta - effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta.
Collapse
Affiliation(s)
- Colin P Sibley
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Corrales A, Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Diego M, Wilhem Filho D, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome. Behav Brain Res 2017; 334:142-154. [PMID: 28743603 DOI: 10.1016/j.bbr.2017.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Eduardo B Parisotto
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verónica Vidal
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Marian Diego
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Danilo Wilhem Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emilio J Sanchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
27
|
Ireland KE, Maloyan A, Myatt L. Melatonin Improves Mitochondrial Respiration in Syncytiotrophoblasts From Placentas of Obese Women. Reprod Sci 2017; 25:120-130. [PMID: 28443479 DOI: 10.1177/1933719117704908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal obesity is associated with increased oxidative stress but decreased placental mitochondrial respiration and expression of mitochondrial electron transport chain (ETC) complexes I to V. Melatonin acts as an antioxidant and prevents oxidative stress-induced changes in cytotrophoblasts. Placentas were collected at term by cesarean delivery from obese (first trimester body mass index [BMI] ≥30, n = 10) or lean (BMI < 25, n = 6) women. Cytotrophoblasts were isolated and allowed to syncytialize for 72 hours with or without melatonin (0.1-100 µM) for the last 24 hours. Mitochondrial respiratory parameters were measured in a Seahorse XF24. Expression of ETC complexes I to V and antioxidant enzymes was measured by Western blot. Maternal clinical characteristics of patients were similar except for BMI. No significant improvement in mitochondrial respiration occurred with addition of melatonin to trophoblasts of lean women. However, in trophoblasts from obese women, melatonin (10 and 100 µmol/L) significantly increased maximal respiration ( P = .01 and P = .009, respectively) and spare capacity ( P = .02 and P = .003, respectively) compared to the untreated control. No differences were detected in the expression of ETC complexes and superoxide dismutase 1 or 2 in trophoblasts treated with melatonin. The expression of glutathione peroxidase, which was significantly greater in trophoblast of obese compared to lean women ( P < .05), was decreased back to the level seen in trophoblast of lean women with addition of melatonin ( P = .02). Improved spare respiratory capacity, the cellular reserve, could impart a protective effect to the placenta and fetus in an adverse intrauterine environment or in response to additional stressors.
Collapse
Affiliation(s)
- Kayla E Ireland
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alina Maloyan
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,3 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,4 Department of Obstetrics and Gynecology, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, Lancaster GA. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ 2016; 355:i5239. [PMID: 27777223 PMCID: PMC5076380 DOI: 10.1136/bmj.i5239] [Citation(s) in RCA: 1587] [Impact Index Per Article: 176.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Sandra M Eldridge
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - Claire L Chan
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - Michael J Campbell
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christine M Bond
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, Scotland, UK
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lehana Thabane
- Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Gillian A Lancaster
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| |
Collapse
|
29
|
Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, Lancaster GA. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud 2016; 2:64. [PMID: 27965879 PMCID: PMC5154046 DOI: 10.1186/s40814-016-0105-8] [Citation(s) in RCA: 708] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023] Open
Abstract
The Consolidated Standards of Reporting Trials (CONSORT) statement is a guideline designed to improve the transparency and quality of the reporting of randomised controlled trials (RCTs). In this article we present an extension to that statement for randomised pilot and feasibility trials conducted in advance of a future definitive RCT. The checklist applies to any randomised study in which a future definitive RCT, or part of it, is conducted on a smaller scale, regardless of its design (eg, cluster, factorial, crossover) or the terms used by authors to describe the study (eg, pilot, feasibility, trial, study). The extension does not directly apply to internal pilot studies built into the design of a main trial, non-randomised pilot and feasibility studies, or phase II studies, but these studies all have some similarities to randomised pilot and feasibility studies and so many of the principles might also apply. The development of the extension was motivated by the growing number of studies described as feasibility or pilot studies and by research that has identified weaknesses in their reporting and conduct. We followed recommended good practice to develop the extension, including carrying out a Delphi survey, holding a consensus meeting and research team meetings, and piloting the checklist. The aims and objectives of pilot and feasibility randomised studies differ from those of other randomised trials. Consequently, although much of the information to be reported in these trials is similar to those in randomised controlled trials (RCTs) assessing effectiveness and efficacy, there are some key differences in the type of information and in the appropriate interpretation of standard CONSORT reporting items. We have retained some of the original CONSORT statement items, but most have been adapted, some removed, and new items added. The new items cover how participants were identified and consent obtained; if applicable, the prespecified criteria used to judge whether or how to proceed with a future definitive RCT; if relevant, other important unintended consequences; implications for progression from pilot to future definitive RCT, including any proposed amendments; and ethical approval or approval by a research review committee confirmed with a reference number. This article includes the 26 item checklist, a separate checklist for the abstract, a template for a CONSORT flowchart for these studies, and an explanation of the changes made and supporting examples. We believe that routine use of this proposed extension to the CONSORT statement will result in improvements in the reporting of pilot trials. Editor's note: In order to encourage its wide dissemination this article is freely accessible on the BMJ and Pilot and Feasibility Studies journal websites.
Collapse
Affiliation(s)
- Sandra M. Eldridge
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - Claire L. Chan
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - Michael J. Campbell
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christine M. Bond
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, Scotland, UK
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lehana Thabane
- Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario Canada
| | | |
Collapse
|
30
|
González-Candia A, Veliz M, Araya C, Quezada S, Ebensperger G, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep. Am J Obstet Gynecol 2016; 215:245.e1-7. [PMID: 26902986 DOI: 10.1016/j.ajog.2016.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.
Collapse
|
31
|
Sagrillo-Fagundes L, Clabault H, Laurent L, Hudon-Thibeault AA, Salustiano EMA, Fortier M, Bienvenue-Pariseault J, Wong Yen P, Sanderson JT, Vaillancourt C. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption. J Vis Exp 2016. [PMID: 27500522 DOI: 10.3791/54228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.
Collapse
|
32
|
Abstract
BACKGROUND Melatonin is an antioxidant with anti-inflammatory and anti-apoptotic effects. Animal studies have supported a fetal neuroprotective role for melatonin when administered maternally. It is important to assess whether melatonin, given to the mother, can reduce the risk of neurosensory disabilities (including cerebral palsy) and death, associated with fetal brain injury, for the preterm or term compromised fetus. OBJECTIVES To assess the effects of melatonin when used for neuroprotection of the fetus. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2016). SELECTION CRITERIA We planned to include randomised controlled trials and quasi-randomised controlled trials comparing melatonin given to women in pregnancy (regardless of the route, timing, dose and duration of administration) for fetal neuroprotection with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of melatonin. DATA COLLECTION AND ANALYSIS Two review authors planned to independently assess trial eligibility, trial quality and extract the data. MAIN RESULTS We found no randomised trials for inclusion in this review. One study is ongoing. AUTHORS' CONCLUSIONS As we did not identify any randomised trials for inclusion in this review, we are unable to comment on implications for practice at this stage.Although evidence from animals studies has supported a fetal neuroprotective role for melatonin when administered to the mother during pregnancy, no trials assessing melatonin for fetal neuroprotection in pregnant women have been completed to date. However, there is currently one ongoing randomised controlled trial (with an estimated enrolment target of 60 pregnant women) which examines the dose of melatonin, administered to women at risk of imminent very preterm birth (less than 28 weeks' gestation) required to reduce brain damage in the white matter of the babies that were born very preterm.Further high-quality research is needed and research efforts should directed towards trials comparing melatonin with either no intervention (no treatment or placebo), or with alternative agents aimed at providing fetal neuroprotection (such as magnesium sulphate for the very preterm infant). Such trials should evaluate maternal and infant short- and longer-term outcomes (including neurosensory disabilities such as cerebral palsy), and consider the costs of care.
Collapse
Affiliation(s)
- Dominic Wilkinson
- University of OxfordOxford Uehiro Centre for Practical EthicsOxfordUK
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Euan M Wallace
- Monash UniversityThe Ritchie CentreMelbourneVictoriaAustralia3168
| | | |
Collapse
|
33
|
Eldridge SM, Lancaster GA, Campbell MJ, Thabane L, Hopewell S, Coleman CL, Bond CM. Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework. PLoS One 2016; 11:e0150205. [PMID: 26978655 PMCID: PMC4792418 DOI: 10.1371/journal.pone.0150205] [Citation(s) in RCA: 769] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms 'pilot' and 'feasibility' in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms 'feasibility' or 'pilot' as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term 'feasibility' in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention.
Collapse
Affiliation(s)
- Sandra M. Eldridge
- Centre for Primary Care and Public Health, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Gillian A. Lancaster
- Department of Mathematics and Statistics, Lancaster University, Lancaster, Lancashire, United Kingdom
| | - Michael J. Campbell
- School of Health and Related Research, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Lehana Thabane
- Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Claire L. Coleman
- Centre for Primary Care and Public Health, Queen Mary University of London, London, United Kingdom
| | - Christine M. Bond
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
34
|
Hobson SR, Mockler JC, Lim R, Alers NO, Miller SL, Wallace EM. Melatonin for treating pre-eclampsia. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian R Hobson
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Joanne C Mockler
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Rebecca Lim
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Nicole O Alers
- Monash University; The Ritchie Centre; Melbourne Australia
| | | | - Euan M Wallace
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| |
Collapse
|
35
|
Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res 2016; 60:16-26. [PMID: 26444711 PMCID: PMC4832387 DOI: 10.1111/jpi.12283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
36
|
Marseglia L, D'Angelo G, Manti S, Reiter RJ, Gitto E. Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia. Reprod Sci 2015; 23:970-7. [PMID: 26566856 DOI: 10.1177/1933719115612132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM Reactive oxygen species play an important role in the pathogenesis of several diseases during gestation and the perinatal period. During pregnancy, increased oxygen demand augments the rate of production of free radicals. Oxidative stress is involved in pregnancy disorders including preeclampsia and intrauterine fetal growth retardation (IUGR). Moreover, increased levels of oxidative stress and reduced antioxidative capacities may contribute to the pathogenesis of perinatal asphyxia. Melatonin, an efficient antioxidant agent, diffuses through biological membranes easily and exerts pleiotropic actions on every cell and appears to be essential for successful gestation. This narrative review summarizes current knowledge concerning the role of melatonin in reducing complications during human pregnancy and in the perinatal period. RESULTS Melatonin levels are altered in women with abnormally functioning placentae during preeclampsia and IUGR. Short-term melatonin therapy is highly effective and safe in reducing complications during pregnancy and in the perinatal period. Because melatonin has been shown to be safe for both mother and fetus, it could be an attractive therapy in pregnancy and is considered a promising neuroprotective agent in perinatal asphyxia. CONCLUSION We believe that the use of melatonin treatment during the late fetal and early neonatal period might result in a wide range of health benefits, improved quality of life, and may help limit complications during the critical periods prior to, and shortly after, delivery.
Collapse
Affiliation(s)
- Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Gabriella D'Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Sara Manti
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Oyston CJ, Stanley JL, Baker PN. Potential targets for the treatment of preeclampsia. Expert Opin Ther Targets 2015; 19:1517-30. [DOI: 10.1517/14728222.2015.1088004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón-Ferré M, Herrera EA, Giussani DA. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J Pineal Res 2015; 59:80-90. [PMID: 25908097 PMCID: PMC4528231 DOI: 10.1111/jpi.12242] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Beth J Allison
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Kimberley J Botting
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Maria Serón-Ferré
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications. Int J Mol Sci 2015; 16:12907-24. [PMID: 26062129 PMCID: PMC4490478 DOI: 10.3390/ijms160612907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Complications of pregnancy represent a significant disease burden, with both immediate and lasting consequences for mother and baby. Two key pregnancy complications, fetal growth restriction (FGR) and preeclampsia (PE), together affect around 10%–15% of all pregnancies worldwide. Despite this high incidence, there are currently no therapies available to treat these pregnancy disorders. Early delivery remains the only intervention to reduce the risk of severe maternal complications and/or stillbirth of the baby; however early delivery itself is associated with increased risk of neonatal mortality and morbidity. As such, there is a pressing need to develop new and effective treatments that can prevent or treat FGR and PE. Animal models have been essential in identifying and screening potential new therapies in this field. In this review, we address recent progress that has been made in developing therapeutic strategies for pregnancy disorders, some of which are now entering clinical trials.
Collapse
|
40
|
Yiallourou SR, Wallace EM, Miller SL, Horne RSC. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy? Sleep Med Rev 2015; 26:64-73. [PMID: 26140865 DOI: 10.1016/j.smrv.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/28/2022]
Abstract
Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies.
Collapse
Affiliation(s)
- Stephanie R Yiallourou
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia.
| | - Euan M Wallace
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
41
|
Kuklina EM. Melatonin as potential inducer of Th17 cell differentiation. Med Hypotheses 2014; 83:404-6. [PMID: 25064379 DOI: 10.1016/j.mehy.2014.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022]
Abstract
The subset of T lymphocytes producing IL-17 (Th17) plays a key role in the immune system. It has been implicated in host defense, inflammatory diseases, tumorigenesis, autoimmune diseases, and transplant rejection. Careful analysis of the data available holds that Th17 cell subpopulation should be under the direct control of pineal hormone melatonin: the key Th17 differentiation factor RORα serves in the meantime as a high-affinity melatonin receptor. Since the levels of melatonin have diurnal and seasonal variation, as well as substantial deviations in some physiological or pathological conditions, melatonin-dependent regulation of Th17 cells should implicate multiform manifestation, such as influencing the outcome of infectious challenge or determining predisposition, etiology and progression of immune-related morbidities. Another important reason to raise a point of the new melatonin effects is current considering the possibilities of its clinical trials. Especially, the differentiation of Th17 upon melatonin treatment must aggravate the current recession in autoimmune diseases or induce serious complications in pregnancy.
Collapse
Affiliation(s)
- Elena M Kuklina
- Laboratory of Immunoregulation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Goleva Str. 13, Perm, Russian Federation.
| |
Collapse
|
42
|
Spencer RN, Carr DJ, David AL. Treatment of poor placentation and the prevention of associated adverse outcomes--what does the future hold? Prenat Diagn 2014; 34:677-84. [PMID: 24799349 PMCID: PMC4265258 DOI: 10.1002/pd.4401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/14/2022]
Abstract
Poor placentation, which manifests as pre-eclampsia and fetal growth restriction, is a major pregnancy complication. The underlying cause is a deficiency in normal trophoblast invasion of the spiral arteries, associated with placental inflammation, oxidative stress, and an antiangiogenic state. Peripartum therapies, such as prenatal maternal corticosteroids and magnesium sulphate, can prevent some of the adverse neonatal outcomes, but there is currently no treatment for poor placentation itself. Instead, management relies on identifying the consequences of poor placentation in the mother and fetus, with iatrogenic preterm delivery to minimise mortality and morbidity. Several promising therapies are currently under development to treat poor placentation, to improve fetal growth, and to prevent adverse neonatal outcomes. Interventions such as maternal nitric oxide donors, sildenafil citrate, vascular endothelial growth factor gene therapy, hydrogen sulphide donors, and statins address the underlying pathology, while maternal melatonin administration may provide fetal neuroprotection. In the future, these may provide a range of synergistic therapies for pre-eclampsia and fetal growth restriction, depending on the severity and gestation of onset.
Collapse
Affiliation(s)
- RN Spencer
- Institute for Women's Health, University College LondonLondon, UK
| | - DJ Carr
- Institute for Women's Health, University College LondonLondon, UK
| | - AL David
- Institute for Women's Health, University College LondonLondon, UK
| |
Collapse
|
43
|
Tare M, Parkington HC, Wallace EM, Sutherland AE, Lim R, Yawno T, Coleman HA, Jenkin G, Miller SL. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J Physiol 2014; 592:2695-709. [PMID: 24710061 DOI: 10.1113/jphysiol.2014.270934] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with impaired cardiac function in childhood and is linked to short- and long-term morbidities. Placental dysfunction underlies most IUGR, and causes fetal oxidative stress which may impact on cardiac development. Accordingly, we investigated whether antenatal melatonin treatment, which possesses antioxidant properties, may afford cardiovascular protection in these vulnerable fetuses. IUGR was induced in sheep fetuses using single umbilical artery ligation on day 105-110 of pregnancy (term 147). Study 1: melatonin (2 mg h(-1)) was administered i.v. to ewes on days 5 and 6 after surgery. On day 7 fetal heart function was assessed using a Langendorff apparatus. Study 2: a lower dose of melatonin (0.25 mg h(-1)) was administered continuously following IUGR induction and the ewes gave birth normally at term. Lambs were killed when 24 h old and coronary vessels studied. Melatonin significantly improved fetal oxygenation in vivo. Contractile function in the right ventricle and coronary flow were enhanced by melatonin. Ischaemia-reperfusion-induced infarct area was 3-fold greater in IUGR hearts than in controls and this increase was prevented by melatonin. In isolated neonatal coronary arteries, endothelium-dependent nitric oxide (NO) bioavailability was reduced in IUGR, and was rescued by modest melatonin treatment. Melatonin exposure also induced the emergence of an indomethacin-sensitive vasodilation. IUGR caused marked stiffening of the coronary artery and this was prevented by melatonin. Maternal melatonin treatment reduces fetal hypoxaemia, improves heart function and coronary blood flow and rescues cardio-coronary deficit induced by IUGR.
Collapse
Affiliation(s)
- Marianne Tare
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Harold A Coleman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Miller SL, Yawno T, Alers NO, Castillo-Melendez M, Supramaniam VG, VanZyl N, Sabaretnam T, Loose JM, Drummond GR, Walker DW, Jenkin G, Wallace EM. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction. J Pineal Res 2014; 56:283-94. [PMID: 24456220 DOI: 10.1111/jpi.12121] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
Abstract
Fetal intrauterine growth restriction (IUGR) is a serious pregnancy complication associated with increased rates of perinatal morbidity and mortality, and ultimately with long-term neurodevelopmental impairments. No intervention currently exists that can improve the structure and function of the IUGR brain before birth. Here, we investigated whether maternal antenatal melatonin administration reduced brain injury in ovine IUGR. IUGR was induced in pregnant sheep at 0.7 gestation and a subset of ewes received melatonin via intravenous infusion until term. IUGR, IUGR + melatonin (IUGR + MLT) and control lambs were born naturally, neonatal behavioral assessment was used to examine neurological function and at 24 hr after birth the brain was collected for the examination of neuropathology. Compared to control lambs, IUGR lambs took significantly longer to achieve normal neonatal lamb behaviors, such as standing and suckling. IUGR brains showed widespread cellular and axonal lipid peroxidation, and white matter hypomyelination and axonal damage. Maternal melatonin administration ameliorated oxidative stress, normalized myelination and rescued axonopathy within IUGR lamb brains, and IUGR + MLT lambs demonstrated significant functional improvements including a reduced time taken to attach to and suckle at the udder after birth. Based on these observations, we began a pilot clinical trial of oral melatonin administration to women with an IUGR fetus. Maternal melatonin was not associated with adverse maternal or fetal effects and it significantly reduced oxidative stress, as evidenced by reduced malondialdehyde levels, in the IUGR + MLT placenta compared to IUGR alone. Melatonin should be considered for antenatal neuroprotective therapy in human IUGR.
Collapse
Affiliation(s)
- Suzanne L Miller
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Vic., Australia; Department of Obstetrics & Gynaecology, Southern Clinical School, Monash University, Clayton, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|