1
|
Asare EO, Al-Mamun MA, Armah GE, Lopman BA, Pitzer VE. Impact of dosing schedules on performance of rotavirus vaccines in Ghana. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309591. [PMID: 38978639 PMCID: PMC11230340 DOI: 10.1101/2024.06.27.24309591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Available live-oral rotavirus vaccines are associated with low to moderate performance in low- and middle-income settings. There is limited evidence relating to how the vaccine dosing schedule might be adjusted to improve vaccine performance in these settings. Methods We used mathematical models fitted to rotavirus surveillance data for children <5 years of age from three different hospitals in Ghana (Korle-Bu Teaching Hospital in Accra, Komfo Anokye Teaching Hospital in Kumasi and War Memorial Hospital in Navrongo) to project the impact of rotavirus vaccination over a 10-year period (April 2012-March 2022). We quantified and compared the impact of the previous vaccination program in Ghana to the model-predicted impact for other vaccine dosing schedules across the three hospitals and the entire country, under different assumptions about vaccine protection. To project the rotavirus vaccine impact over Ghana, we sampled from the range of model parameters for Accra and Navrongo, assuming that these two settings represent the "extremes" of rotavirus epidemiology within Ghana. Results For the previously implemented 6/10-week monovalent Rotarix vaccine (RV1) schedule, the model-estimated average annual incidence of moderate-to-severe rotavirus-associated gastroenteritis (RVGE) ranged between 1,151 and 3,002 per 100,000 people per year over the 10-year period for the three sites. Compared to no vaccination, the model-estimated median percentage reductions in RVGE ranged from 28-85% and 12-71% among children <1 year and <5 years of age respectively, with the highest and lowest percentage reductions predicted using model parameters estimated for Accra and Navrongo, respectively. The median predicted reductions in RVGE for the whole country ranged from 57-66% and 35-45% among children <1 year and <5 years of age, respectively. The 1/6/10- and 6/10/14-week schedules provided the best and comparable reductions in RVGE compared to the original 6/10-week schedule, whereas there was no improvement in impact for the 10/14-week schedule. Conclusions We found that administering an additional dose of RV1 might be an effective strategy to improve rotavirus vaccine impact, particularly in settings with low vaccine effectiveness. The results could be extrapolated to other countries using a 2-dose vaccine schedule with low to moderate vaccine performance.
Collapse
Affiliation(s)
- Ernest O Asare
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Mohammad A Al-Mamun
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, USA
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT USA
| |
Collapse
|
2
|
Cunningham-Oakes E, Bronowski C, Chinyama E, Jere KC, Sindhu KNC, Kang G, Iturriza-Gómara M, Darby AC, Parker EPK. Increased bacterial taxonomic and functional diversity is associated with impaired rotavirus vaccine immunogenicity in infants from India and Malawi. BMC Microbiol 2023; 23:354. [PMID: 37980461 PMCID: PMC10656894 DOI: 10.1186/s12866-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The immunogenicity and effectiveness of oral rotavirus vaccines (ORVs) against severe rotavirus-associated gastroenteritis are impaired in low- and middle-income countries (LMICs) where the burden of disease is highest. Determining risk factors for impaired ORV response may help identify strategies to enhance vaccine effectiveness. In this study, we use metagenomic sequencing to provide a high-resolution taxonomic analysis of stool samples collected at 6 weeks of age (coinciding with the first ORV dose) during a prospective study of ORV immunogenicity in India and Malawi. We then analyse the functional capacity of the developing microbiome in these cohorts. Microbiome composition differed significantly between countries, although functional capacity was more similar than taxonomic composition. Our results confirm previously reported findings that the developing microbiome is more diverse in taxonomic composition in ORV non-seroconverters compared with seroconverters, and we additionally demonstrate a similar pattern in functional capacity. Although taxonomic or functional feature abundances are poor predictors of ORV response, we show that skews in the direction of associations within these microbiome data can be used to identify consistent markers of ORV response across LMIC infant cohorts. We also highlight the systemic under-representation of reference genes from LMICs that limit functional annotation in our study (7% and 13% annotation at pathway and enzyme commission level, respectively). Overall, higher microbiome diversity in early life may act as marker for impaired ORV response in India and Malawi, whilst a holistic perspective of functional capacity may be hidden in the "dark matter" of the microbiome.
Collapse
Affiliation(s)
- Edward Cunningham-Oakes
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Liverpool, UK.
| | - Christina Bronowski
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - End Chinyama
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, 312225, Malawi
| | - Khuzwayo C Jere
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, 312225, Malawi
- Department of Medical Laboratory Sciences, School of Life Sciences and Allied Health Professions, Kamuza University of Health Sciences, Blantyre, 312225, Malawi
| | | | - Gagandeep Kang
- Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Miren Iturriza-Gómara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218, Geneva, Switzerland
| | - Alistair C Darby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Edward P K Parker
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Mandolo J, Parker EPK, Bronowski C, Sindhu KNC, Darby AC, Cunliffe NA, Kang G, Iturriza-Gómara M, Kamng’ona AW, Jere KC. Association Between Maternal Breastmilk Microbiota Composition and Rotavirus Vaccine Response in African, Asian, and European Infants: A Prospective Cohort Study. J Infect Dis 2023; 228:637-645. [PMID: 37364376 PMCID: PMC10469347 DOI: 10.1093/infdis/jiad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Maternal breastmilk is a source of pre- and pro-biotics that impact neonatal gut microbiota colonization. Because oral rotavirus vaccines (ORVs) are administered at a time when infants are often breastfed, breastmilk microbiota composition may have a direct or indirect influence on vaccine take and immunogenicity. METHODS Using standardized methods across sites, we compared breastmilk microbiota composition in relation to geographic location and ORV response in cohorts prospectively followed from birth to 18 weeks of age in India (n = 307), Malawi (n = 119), and the United Kingdom ([UK] n = 60). RESULTS Breastmilk microbiota diversity was higher in India and Malawi than the UK across 3 longitudinal samples spanning weeks of life 1 to 13. Dominant taxa such as Streptococcus and Staphylococcus were consistent across cohorts; however, significant geographic differences were observed in the prevalence and abundance of common and rare genera throughout follow up. No consistent associations were identified between breastmilk microbiota composition and ORV outcomes including seroconversion, vaccine shedding after dose 1, and postvaccination rotavirus-specific immunoglobulin A level. CONCLUSIONS Our findings suggest that breastmilk microbiota composition may not be a key factor in shaping trends in ORV response within or between countries.
Collapse
Affiliation(s)
- Jonathan Mandolo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Edward P K Parker
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christina Bronowski
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Alistair C Darby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nigel A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health and Care Research Global Health Research Group on Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Gagandeep Kang
- Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Miren Iturriza-Gómara
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), Geneva, Switzerland
| | - Arox W Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Biomedical Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Khuzwayo C Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- Department of Medical Laboratory Sciences, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
4
|
Anti-rotavirus Properties and Mechanisms of Selected Gram-Positive and Gram-Negative Probiotics on Polarized Human Colonic (HT-29) Cells. Probiotics Antimicrob Proteins 2023; 15:107-128. [PMID: 35034323 DOI: 10.1007/s12602-021-09884-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Probiotics have been investigated to improve the universal rotavirus (RV) vaccination as well as to ameliorate the RV infection. However, underlying mechanisms how probiotics mediate beneficial effects needs more investigation. Thus, in the present study, we used polarized HT-29 cells to assess the anti-RV properties of Gram-positive, (Lactobacillus acidophilus, Lacticaseibacillus rhamnosus GG, and Bifidobacterium subsp. Lactis Bb12) and Gram negative, (Escherichia coli Nissle 1917) probiotics and study their underlying mechanisms. Our results showed that pre-treatment of HT-29 cells for 4 h with probiotics, significantly reduced (p < 0.05) human RV replication and this effect was most pronounced for E. coli Nissle followed by L. acidophilus and L. rhamnosus GG. Strikingly, only pre-treatment with live bacteria or their supernatants demonstrated anti-RV properties. Except Gram negative E. coli Nissle, the Gram-positive probiotics tested did not bind to RV. Ingenuity pathway analysis of tight junction (TJ)- and innate immune-associated genes indicated that E. coli Nissle or E. coli Nissle + RV treatments improved cell-cell adhesion and cell contact, while L. acidophilus or L. acidophilus + RV treatments also activated cell-cell contact but inhibited cell movement functions. RV alone inhibited migration of cells event. Additionally, E. coli Nissle activated pathways such as the innate immune and inflammatory responses via production of TNF, while RV infection activated NK cells and inflammatory responses. In conclusion, E. coli Nissle's ability to bind RV, modulate expression of TJ events, innate immune and inflammatory responses, via specific upstream regulators may explain superior anti-RV properties of E. coli Nissle. Therefore, prophylactic use of E. coli Nissle might help to reduce the RV disease burden in infants in endemic areas.
Collapse
|
5
|
Impact of maternal and pre-existing antibodies on immunogenicity of inactivated rotavirus vaccines. Vaccine 2022; 40:3843-3850. [DOI: 10.1016/j.vaccine.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
|
6
|
Cable J, Rappuoli R, Klemm EJ, Kang G, Mutreja A, Wright GJ, Pizza M, Castro SA, Hoffmann JP, Alter G, Carfi A, Pollard AJ, Krammer F, Gupta RK, Wagner CE, Machado V, Modjarrad K, Corey L, B Gilbert P, Dougan G, Lurie N, Bjorkman PJ, Chiu C, Nemes E, Gordon SB, Steer AC, Rudel T, Blish CA, Sandberg JT, Brennan K, Klugman KP, Stuart LM, Madhi SA, Karp CL. Innovative vaccine approaches-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1511:59-86. [PMID: 35029310 DOI: 10.1111/nyas.14739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.
Collapse
Affiliation(s)
| | | | | | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ankur Mutreja
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK.,Department of Biology, Hull York Medical School, and York Biomedical Research Institute, University of York, York, UK
| | | | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joseph P Hoffmann
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, Massachusetts.,Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Florian Krammer
- The Tisch Cancer Institute and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) and Department of Medicine, University of Cambridge, Cambridge, UK.,Africa Health Research Institute, Durban, South Africa
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Viviane Machado
- Measles and Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lawrence Corey
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicole Lurie
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway.,Harvard Medical School, Boston, Massachusetts
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Elisa Nemes
- Division of Immunology, Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Andrew C Steer
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Department of General Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Thomas Rudel
- Microbiology Biocenter, University of Würzburg, Würzburg, Germany
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford Immunology Program, Stanford University School of Medicine, Stanford, California.,Chan Zuckerberg Biohub, San Francisco, California
| | - John Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kiva Brennan
- National Children's Research Centre, Crumlin and School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lynda M Stuart
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington.,Bill & Melinda Gates Foundation, Seattle, Washington
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
7
|
Parker EPK, Bronowski C, Sindhu KNC, Babji S, Benny B, Carmona-Vicente N, Chasweka N, Chinyama E, Cunliffe NA, Dube Q, Giri S, Grassly NC, Gunasekaran A, Howarth D, Immanuel S, Jere KC, Kampmann B, Lowe J, Mandolo J, Praharaj I, Rani BS, Silas S, Srinivasan VK, Turner M, Venugopal S, Verghese VP, Darby AC, Kang G, Iturriza-Gómara M. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat Commun 2021; 12:7288. [PMID: 34911947 PMCID: PMC8674366 DOI: 10.1038/s41467-021-27074-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Gastrointestinal Microbiome
- Humans
- Immunity, Maternally-Acquired
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- India
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/microbiology
- Infant, Newborn, Diseases/prevention & control
- Infant, Newborn, Diseases/virology
- Malawi
- Male
- Milk, Human/chemistry
- Milk, Human/immunology
- Pregnancy
- Prospective Studies
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus/physiology
- Rotavirus Infections/blood
- Rotavirus Infections/microbiology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/virology
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/immunology
- United Kingdom
- Vaccine Efficacy
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Edward P K Parker
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Christina Bronowski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | | | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Blossom Benny
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Noelia Carmona-Vicente
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nedson Chasweka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Queen Dube
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Annai Gunasekaran
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Deborah Howarth
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sushil Immanuel
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
- Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre, 3, Malawi
| | - Beate Kampmann
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jenna Lowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jonathan Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Sophia Silas
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Vivek Kumar Srinivasan
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Mark Turner
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L8 7SS, UK
| | - Srinivasan Venugopal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Valsan Philip Verghese
- Department of Child Health, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Miren Iturriza-Gómara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK.
- Centre for Vaccine Innovation and Access, PATH, Geneva, Switzerland.
| |
Collapse
|
8
|
Kim AH, Armah G, Dennis F, Wang L, Rodgers R, Droit L, Baldridge MT, Handley SA, Harris VC. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe 2021; 30:110-123.e5. [PMID: 34932985 PMCID: PMC8763403 DOI: 10.1016/j.chom.2021.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023]
Abstract
Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV’s diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs. Longitudinal analysis of microbiota of Ghanaian infants receiving rotavirus vaccine Streptococcus and Enterobacteriaceae taxa positively associate with RVV seroconversion Enterovirus B, Cosavirus A, and phage richness negatively associate with RVV serostatus
Collapse
|
9
|
Church JA, Rukobo S, Govha M, Gough EK, Chasekwa B, Lee B, Carmolli MP, Panic G, Giallourou N, Ntozini R, Mutasa K, McNeal MM, Majo FD, Tavengwa NV, Swann JR, Moulton LH, Kirkpatrick BD, Humphrey JH, Prendergast AJ. Associations between biomarkers of environmental enteric dysfunction and oral rotavirus vaccine immunogenicity in rural Zimbabwean infants. EClinicalMedicine 2021; 41:101173. [PMID: 34825149 PMCID: PMC8605235 DOI: 10.1016/j.eclinm.2021.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oral rotavirus vaccines (RVV) are poorly immunogenic in low-income countries. Environmental enteric dysfunction (EED) resulting from poor water, sanitation and hygiene (WASH) may contribute. We therefore tested associations between EED and RVV immunogenicity, and evaluated the effect of improved WASH on EED. METHODS We measured nine biomarkers of EED among Zimbabwean infants born to mothers enrolled in a cluster-randomised 2 × 2 factorial trial of improved WASH and improved feeding between November 2012 and March 2015 (NCT01824940). We used multivariable regression to determine associations between EED biomarkers and RVV seroconversion, seropositivity and geometric mean titer. Log-binomial regression was used to evaluate the effect of improved WASH on EED. FINDINGS Among 303 infants with EED biomarkers and immunogenicity data, plasma intestinal fatty-acid binding protein and stool myeloperoxidase were positively associated with RVV seroconversion; adjusted RR 1.63 (95%CI 1.04, 2.57) and 1.29 (95%CI 1.01, 1.65), respectively. There were no other associations between RVV immunogenicity and either individual biomarkers or EED domains (intestinal permeability, intestinal damage, intestinal inflammation and microbial translocation). EED biomarkers did not differ between randomised WASH and non-WASH groups. INTERPRETATION We found no evidence that EED was associated with poor RVV immunogenicity. Contrary to our hypothesis, there was weak evidence that EED was associated with increased seroconversion. EED biomarkers were not affected by a package of household-level WASH interventions.
Collapse
Affiliation(s)
- James A Church
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
- Corresponding authors at: Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan K Gough
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Benjamin Lee
- Departments of Pediatrics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marya P Carmolli
- Departments of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gordana Panic
- Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Natasa Giallourou
- Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Florence D. Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V. Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jonathan R. Swann
- Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Beth D Kirkpatrick
- Departments of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Corresponding authors at: Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
10
|
Babji S, Sindhu KN, Selvarajan S, Ramani S, Venugopal S, Khakha SA, Hemavathy P, Ganesan SK, Giri S, Reju S, Gopalakrishnan K, Ninan B, Iturriza-Gomara M, Srikanth P, Kang G. Persistence of G10P[11] neonatal rotavirus infections in southern India. J Clin Virol 2021; 144:104989. [PMID: 34607240 PMCID: PMC8556361 DOI: 10.1016/j.jcv.2021.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Background: Neonatal rotavirus infections are predominantly caused by distinct genotypes restricted to this age-group and are mostly asymptomatic. Method: Stool samples from neonates admitted for >48 h in neonatal intensive care units (NICUs) in Vellore (2014–2015) and Chennai (2015–2016) in southern India, and from neonates born at hospitals in Vellore but not admitted to NICUs (2015–2016) were tested for rotavirus by ELISA and genotyped by hemi-nested RT-PCR. Results: Of 791 neonates, 150 and 336 were recruited from Vellore and Chennai NICUs, and 305 were born in five hospitals in Vellore. Positivity rates in the three settings were 49.3% (74/150), 29.5% (99/336) and 54% (164/305), respectively. G10P[11] was the commonly identified genotype in 87.8% (65/74), 94.9% (94/99) and 98.2% (161/164) of the neonates in Vellore and Chennai NICUs, and those born at Vellore hospitals, respectively. Neonates delivered by lower segment cesarian section (LSCS) at Vellore hospitals, not admitted to NICUs, had a significantly higher odds of acquiring rotavirus infection compared to those delivered vaginally [p = 0.002, OR = 2.4 (1.4–4.3)]. Conclusions: This report demonstrates the persistence of G10P[11] strain in Vellore and Chennai, indicating widespread neonatal G10P[11] strain in southern India and their persistence over two decades, leading to interesting questions about strain stability.
Collapse
Affiliation(s)
- Sudhir Babji
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - Sribal Selvarajan
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Sasirekha Ramani
- Baylor College of Medicine, Houston, TX, United States of America
| | - Srinivasan Venugopal
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Shainey Alokit Khakha
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Priya Hemavathy
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Santhosh Kumar Ganesan
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sidhartha Giri
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sudhabharathi Reju
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Krithika Gopalakrishnan
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Binu Ninan
- Department of Neonatology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Miren Iturriza-Gomara
- NIHR Health Protection Research Unit in Gastrointestinal Infections at University of Liverpool, Liverpool, United Kingdom of Great Britain
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| |
Collapse
|
11
|
Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y, Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies. JAMA Pediatr 2021; 175:e210347. [PMID: 33970192 PMCID: PMC8111566 DOI: 10.1001/jamapediatrics.2021.0347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Rotavirus vaccines have been introduced worldwide, and the clinical association of different rotavirus vaccines with reduction in rotavirus gastroenteritis (RVGE) after introduction are noteworthy. OBJECTIVE To evaluate the comparative benefit, risk, and immunogenicity of different rotavirus vaccines by synthesizing randomized clinical trials (RCTs) and observational studies. DATA SOURCES Relevant studies published in 4 databases: Embase, PubMed, the Cochrane Library, and Web of Science were searched until July 1, 2020, using search terms including "rotavirus" and "vaccin*." STUDY SELECTION Randomized clinical trials and cohort and case-control studies involving more than 100 children younger than 5 years that reported the effectiveness, safety, or immunogenicity of rotavirus vaccines were included. DATA EXTRACTION AND SYNTHESIS A random-effects model was used to calculate relative risks (RRs), odds ratios (ORs), risk differences, and 95% CIs. Adjusted indirect treatment comparison was performed to assess the differences in the protection of Rotarix and RotaTeq. MAIN OUTCOMES AND MEASURES The primary outcomes were RVGE, severe RVGE, and RVGE hospitalization. Safety-associated outcomes involved serious adverse events, intussusception, and mortality. RESULTS A meta-analysis of 20 RCTs and 38 case-control studies revealed that Rotarix (RV1) significantly reduced RVGE (RR, 0.316 [95% CI, 0.224-0.345]) and RVGE hospitalization risk (OR, 0.347 [95% CI, 0.279-0.432]) among children fully vaccinated; RotaTeq (RV5) had similar outcomes (RVGE: RR, 0.350 [95% CI, 0.275-0.445]; RVGE hospitalization risk: OR, 0.272 [95% CI, 0.197-0.376]). Rotavirus vaccines also demonstrated higher protection against severe RVGE. Additionally, no significant differences in the protection of RV1 and RV5 against rotavirus disease were noted in adjusted indirect comparisons. Moderate associations were found between reduced RVGE risk and Rotavac (RR, 0.664 [95% CI, 0.548-0.804]), Rotasiil (RR, 0.705 [95% CI, 0.605-0.821]), and Lanzhou lamb rotavirus vaccine (RR, 0.407 [95% CI, 0.332-0.499]). All rotavirus vaccines demonstrated no risk of serious adverse events. A positive correlation was also found between immunogenicity and vaccine protection (eg, association of RVGE with RV1: coefficient, -1.599; adjusted R2, 99.7%). CONCLUSIONS AND RELEVANCE The high protection and low risk of serious adverse events for rotavirus vaccines in children who were fully vaccinated emphasized the importance of worldwide introduction of rotavirus vaccination. Similar protection provided by Rotarix and RotaTeq relieves the pressure of vaccines selection for health care authorities.
Collapse
Affiliation(s)
- Zi-Wei Sun
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Ling Lu
- Department of Laboratory Medicine, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hemant Goyal
- The Wright Center of Graduate Medical Education, Scranton, Pennsylvania
| | - Ye Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Danchin MH, Bines JE, Watts E, Cowley D, Pavlic D, Lee KJ, Huque H, Kirkwood C, Nirwati H, At thobari J, Dewi Satria C, Soenarto Y, Oktaria V. Rotavirus specific maternal antibodies and immune response to RV3-BB rotavirus vaccine in central java and yogyakarta, Indonesia. Vaccine 2020; 38:3235-3242. [DOI: 10.1016/j.vaccine.2020.02.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/25/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022]
|
13
|
Degiuseppe JI, Stupka JA. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine 2019; 38:733-740. [PMID: 31771863 DOI: 10.1016/j.vaccine.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND During the last decade, most of Latin American and the Caribbean (LAC) countries have implemented oral live rotavirus vaccines in their national vaccination programs with remarkable results. However, it has been suggested that massive vaccination could lead to the replacement of circulating genotypes or the emergence of new variants or neutralizing antibodies escape mutants, which may reduce the effectiveness of the vaccine. The objective was to analyze the genetic diversity of Group A rotavirus before and after the introduction of universal vaccination in LAC. METHODS We conducted a systematic review of studies published in PubMed, Scielo and LILACS. There were considered only LAC countries with rotavirus massive vaccination strategy which had described circulating genotypes data in children under 5 years of age, either for surveillance or vaccine effectiveness purposes, from 2001 to 2017. Systematic review stages were carried out following the recommendations of PRISMA. RESULTS Of the 18 countries that included any of the two licensed rotavirus vaccines in their national schedules since 2006, only 7 (~39%) presented studies of RVA genetic diversity before and after implementation, and met the inclusion criteria. Four of them (Argentina, Brazil, Colombia and Nicaragua) experienced a rapid switch from Wa-like to DS-1-like strains. Also, G1P[8] association, considered the most predominant worldwide in the pre-vaccination era, decreased significantly and was only frequently detected in Venezuela and Nicaragua. No defined pattern of emergence at high frequencies of unusual associations was observed in the post vaccination period, except for some evidence of G9P[4] in Colombia, G3P[6] and G1P[4] in Nicaragua. CONCLUSIONS Even though the evidence shows a DS-1-like change trend, data from studies conducted in Latin America and the Caribbean are diverse and still not sufficient to assess the impact of vaccines on viral ecology or if genetic diversity is influenced by natural mechanisms of fluctuation.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina.
| | - Juan Andrés Stupka
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| |
Collapse
|
14
|
Wang S, Peng R, Qin S, Liu Y, Yang H, Ma J. Effects of oligosaccharide-sialic acid (OS) compound on maternal-newborn gut microbiome, glucose metabolism and systematic immunity in pregnancy: protocol for a randomised controlled study. BMJ Open 2019; 9:e026583. [PMID: 31511279 PMCID: PMC6738717 DOI: 10.1136/bmjopen-2018-026583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION The gut microbiota participates in multiple human biological processes, including metabolism and immune responses. During pregnancy, the dynamics of gut microbiota is involved in physiological adaptation. The disturbed profile of microbiome is associated with maternal complications, such as gestational diabetes mellitus (GDM), which further transfers to the offspring and influence their metabolic and immunological functions in the long term. Prebiotics targeting the gut microbiota and modulating metabolic and immune functions have been shown to be effective in non-pregnant populations with metabolic syndrome. Hence, we propose the use of a prebiotic supplement, oligosaccharide-sialic acid (OS) from the first trimester until delivery in pregnant women, can benefit maternal/new-born gut microbiome, glucose metabolism and innate immunity. METHODS AND ANALYSIS In this prospective double-blinded randomised clinical trial, recruited singleton pregnancies will be stratified by body mass index (BMI) and randomly assigned to consume the OS preparation or placebo daily from the first trimester. At seven later time points (before and after recruitment in the first trimester, in the middle and third trimesters, before delivery, at birth and 42 days postpartum), compliance will be evaluated and/or biological samples will be collected. Along with maternal clinical information, questionnaires on lifestyle and infant development will be recorded. The primary outcomes are the effect of OS on the maternal-offspring gut microbiome and GDM incidence. The secondary outcomes are maternal glycolipid biochemical parameters, cytokine profiles, weight gain during pregnancy and infant morbidities, growth and development. The study aims to validate the effects of OS on reducing maternal morbidity within different BMI groups. The multiple dimensional dataset generated from the study includes clinical and lifestyle-related information, various biological markers and associated protective or risk factors for morbidity and prognosis. An extended follow-up through 42 days after birth could further explore the intrauterine influence on the long-term health of offspring. ETHICS AND DISSEMINATION This protocol has been approved by Peking University First Hospital, National Unit of Clinical Trial Ethics Committee (reference number: 164). The results are expected to be published in scientific manuscripts by 2021. TRIAL REGISTRATION NUMBER ChiCTR1800017192.
Collapse
Affiliation(s)
- Shuxian Wang
- OBGYN, Peking University First Hospital, Beijing, China
| | - Rui Peng
- OBGYN, Peking University First Hospital, Beijing, China
| | - Shengtang Qin
- OBGYN, Peking University First Hospital, Beijing, China
| | - Yu Liu
- OBGYN, Peking University First Hospital, Beijing, China
| | - Huixia Yang
- OBGYN, Peking University First Hospital, Beijing, China
| | - Jingmei Ma
- OBGYN, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Clark A, van Zandvoort K, Flasche S, Sanderson C, Bines J, Tate J, Parashar U, Jit M. Efficacy of live oral rotavirus vaccines by duration of follow-up: a meta-regression of randomised controlled trials. THE LANCET. INFECTIOUS DISEASES 2019; 19:717-727. [PMID: 31178289 PMCID: PMC6595176 DOI: 10.1016/s1473-3099(19)30126-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The duration of protection offered by rotavirus vaccines varies across the world, and this variation is important to understanding and predicting the effects of the vaccines. There is now a large body of evidence on the efficacy of live oral rotavirus vaccines in different settings, but these data have never been synthesised to obtain robust estimates of efficacy by duration of follow-up. Our aim is to estimate the efficacy of live oral rotavirus vaccines at each point during follow-up and by mortality stratum. METHODS In our meta-regression study, we identified all randomised controlled trials of rotavirus vaccines published until April 4, 2018, using the results of a Cochrane systematic review, and cross checked these studies against those identified by another systematic review. We excluded trials that were based on special populations, trials without an infant schedule, and trials without clear reporting of numbers of enrolled infants and events in different periods of follow-up. For all reported periods of follow-up, we extracted the mean duration of follow-up (time since administration of the final dose of rotavirus vaccination), the number of enrolled infants, and case counts for rotavirus-positive severe gastroenteritis in both non-vaccinated and vaccinated groups. We used a Bayesian hierarchical Poisson meta-regression model to estimate the pooled cumulative vaccine efficacy (VE) and its waning with time for three mortality strata. We then converted these VE estimates into instantaneous VE (iVE). FINDINGS In settings with low mortality (15 observations), iVE pooled for infant schedules of Rotarix and RotaTeq was 98% (95% credibility interval 93-100) 2 weeks following the final dose of vaccination and 94% (87-98) after 12 months. In medium-mortality settings (11 observations), equivalent estimates were 82% (74-92) after 2 weeks and 77% (67-84) after 12 months. In settings with high mortality (24 observations), there were five different vaccines with observation points for infant schedules. The pooled iVE was 66% (48-81) after 2 weeks of follow-up and 44% (27-59) after 12 months. INTERPRETATION Rotavirus vaccine efficacy is lower and wanes more rapidly in high-mortality settings than in low-mortality settings, but the earlier peak age of disease in high-mortality settings means that live oral rotavirus vaccines are still likely to provide substantial benefit. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Andrew Clark
- London School of Hygiene and Tropical Medicine, London, UK.
| | | | - Stefan Flasche
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Julie Bines
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jacqueline Tate
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Jit
- London School of Hygiene and Tropical Medicine, London, UK; Modelling and Economics Unit, Public Health England, London, UK
| |
Collapse
|
16
|
Stedman A, Maluquer de Motes C, Lesellier S, Dalley D, Chambers M, Gutierrez-Merino J. Lactic acid Bacteria isolated from European badgers (Meles meles) reduce the viability and survival of Bacillus Calmette-Guerin (BCG) vaccine and influence the immune response to BCG in a human macrophage model. BMC Microbiol 2018; 18:74. [PMID: 30005620 PMCID: PMC6044090 DOI: 10.1186/s12866-018-1210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/27/2018] [Indexed: 02/08/2023] Open
Abstract
Background Bovine tuberculosis (bTB) caused by Mycobacterium bovis is the most serious endemic disease affecting livestock in the UK. The European badger (Meles meles) is the most important wildlife reservoir of bTB transmission to cattle, making eradication particularly difficult. In this respect, oral vaccination with the attenuated M. bovis vaccine Bacillus Calmette-Guerin (BCG) has been suggested as a wide-scale intervention to reduce bTB infection in badgers. However, experimental studies show variable protection. Among the possibilities for this variation is that the resident gut bacteria may influence the success of oral vaccination in badgers; either through competitive exclusion and/or inhibition, or via effects on the host immune system. In order to explore this possibility, we have tested whether typical gut commensals such as Lactic Acid Bacteria (LAB) have the capacity to impact on the viability and survival rate of BCG and to modulate the immune response to BCG using an in vitro model. Results Twelve LAB isolated from badger faeces displayed inhibitory activity to BCG that was species-dependent. Weissella had a bacteriostatic effect, whereas isolates of enterococci, lactobacilli and pediococci had a more bactericidal activity. Furthermore, BCG-induced activation of the pro-inflammatory transcription factor NF-κB in human THP-1 macrophages was modulated by LAB in a strain-dependent manner. Most pediococci enhanced NF-κB activation but one strain had the opposite effect. Interestingly, isolates of enterococci, lactobacilli and weissella had different effects as immunomodulators of BCG-induced macrophage responses as some had no significant influence on NF-κB activation, but others increased it significantly. Conclusions Our in vitro results show that LAB isolated from badgers exhibit significant inhibitory activity against BCG and influence the immune activation mediated by BCG in a human macrophage assay. These findings suggest that gut commensal bacteria could play a role in influencing the outcome of oral BCG vaccination. Inactivated cells of LAB, or LAB that are bacteriostatic but have a synergistic immunostimulatory effect with BCG, could be potential adjuvants to be used for oral vaccination in badgers. Further work is needed to take into account the complex nature of the gut microbiome, specific immunity of the badger and the in vivo context. Electronic supplementary material The online version of this article (10.1186/s12866-018-1210-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK.,The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Sandrine Lesellier
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Deanna Dalley
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Mark Chambers
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK.,School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
| | | |
Collapse
|
17
|
Whittaker E, Goldblatt D, McIntyre P, Levy O. Neonatal Immunization: Rationale, Current State, and Future Prospects. Front Immunol 2018; 9:532. [PMID: 29670610 PMCID: PMC5893894 DOI: 10.3389/fimmu.2018.00532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette-Guérin (BCG), may offer single shot protection, potentially in part via heterologous ("non-specific") beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, in vitro platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to neonatal immunization.
Collapse
Affiliation(s)
- Elizabeth Whittaker
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, United Kingdom
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children’s Hospital Network and University of Sydney, Sydney, NSW, Australia
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Monedero V, Buesa J, Rodríguez-Díaz J. The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut. Viruses 2018; 10:v10020096. [PMID: 29495275 PMCID: PMC5850403 DOI: 10.3390/v10020096] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the major etiological agents of viral acute gastroenteritis worldwide. Host genetic factors, the histo-blood group antigens (HBGA), are associated with RV and NoV susceptibility and recent findings additionally point to HBGA as a factor modulating the intestinal microbial composition. In vitro and in vivo experiments in animal models established that the microbiota enhances RV and NoV infection, uncovering a triangular interplay between RV and NoV, host glycobiology, and the intestinal microbiota that ultimately influences viral infectivity. Studies on the microbiota composition in individuals displaying different RV and NoV susceptibilities allowed the identification of potential bacterial biomarkers, although mechanistic data on the virus-host-microbiota relation are still needed. The identification of the bacterial and HBGA interactions that are exploited by RV and NoV would place the intestinal microbiota as a new target for alternative therapies aimed at preventing and treating viral gastroenteritis.
Collapse
Affiliation(s)
- Vicente Monedero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA, CSIC), Av Catedrático Agustín Escardino, 7, 46980 Paterna, Spain.
| | - Javier Buesa
- Departament of Microbiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain.
| | - Jesús Rodríguez-Díaz
- Departament of Microbiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain.
| |
Collapse
|
19
|
Abstract
Approximately 40 years have passed since the discovery of the rotavirus and 10 years since the introduction and progressive dissemination of rotavirus vaccines worldwide. Currently, 92 countries have introduced rotavirus vaccines into national or subnational programs with evident impact in disease reduction. Two vaccines have been widely used, and four additional vaccines have been licensed and are being used in defined regions. In this context, one main issue that remains unsolved is the lower vaccine efficacy/effectiveness in low-income countries. An additional partially answered issue relates to rotavirus strain circulation in vaccinated populations. These issues are discussed in this review. The most imperative challenge ahead is to fulfill the WHO’s recommendation to introduce rotavirus vaccines in all countries.
Collapse
Affiliation(s)
- Miguel O'Ryan
- Institute of Biomedical Sciences and Millenium Institute of Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|