1
|
Shiau S, Zumpano F, Wang Z, Shah J, Tien PC, Ross RD, Sharma A, Yin MT. Epigenetic Aging and Musculoskeletal Outcomes in a Cohort of Women Living With HIV. J Infect Dis 2024; 229:1803-1811. [PMID: 38366369 PMCID: PMC11175700 DOI: 10.1093/infdis/jiae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The relationship between accelerated epigenetic aging and musculoskeletal outcomes in women with HIV (WWH) has not been studied. METHODS We measured DNA methylation age using the Infinium MethylationEPIC BeadChip in a cohort from the Women's Interagency HIV Study (n = 190) with measures of bone mineral density (BMD) and physical function. We estimated 6 biomarkers of epigenetic aging-epigenetic age acceleration (EAA), extrinsic EAA, intrinsic EAA, GrimAge, PhenoAge, and DNA methylation-estimated telomere length-and evaluated associations of epigenetic aging measures with BMD and physical function. We also performed epigenome-wide association studies to examine associations of DNA methylation signatures with BMD and physical function. RESULTS This study included 118 WWH (mean age, 49.7 years; 69% Black) and 72 without HIV (mean age, 48.9 years; 69% Black). WWH had higher EAA (mean ± SD, 1.44 ± 5.36 vs -1.88 ± 5.07; P < .001) and lower DNA methylation-estimated telomere length (7.13 ± 0.31 vs 7.34 ± 0.23, P < .001) than women without HIV. There were no significant associations between accelerated epigenetic aging and BMD. Rather, measures of accelerated epigenetic aging were associated with lower physical function. CONCLUSIONS Accelerated epigenetic aging was observed in WWH as compared with women without HIV and was associated with lower physical function in both groups.
Collapse
Affiliation(s)
- Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Francesca Zumpano
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Ziyi Wang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Jayesh Shah
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Phyllis C Tien
- Department of Medicine, Veterans Affairs Medical Center
- Department of Medicine, University of California San Francisco
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Michael T Yin
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
2
|
Harrison TC, Blozis SA, Taylor J, Mukherjee N, Ortega LC, Blanco N, Garcia AA, Brown SA. Mixed-Methods Study of Disability Self-Management in Mexican Americans With Osteoarthritis. Nurs Res 2024; 73:203-215. [PMID: 38652692 PMCID: PMC11045046 DOI: 10.1097/nnr.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Health disparities in osteoarthritis (OA) outcomes exist both in the occurrence and treatment of functional limitation and disability for Mexican Americans. Although the effect of self-management of chronic illness is well established, studies demonstrate little attention to self-management of function or disability, despite the strong potential effect on both and, consequently, on patients' lives. OBJECTIVE The purpose of this study pilot was to develop and test key variable relationships for a measure of disability self-management among Mexican Americans. METHODS In this sequential, two-phased, mixed-methods, biobehavioral pilot study of Mexican American women and men with OA, a culturally tailored measure of disability self-management was created, and initial relationships among key variables were explored. RESULTS First, a qualitative study of 19 adults of Mexican American descent born in Texas (United States) or Mexico was conducted. The Mexican American Disability Self-Management Scale was created using a descriptive content analysis of interview data. The scale was tested and refined, resulting in 18 items and a descriptive frequency of therapeutic management efforts. Second, correlations between study variables were estimated: Disability and function were negatively correlated. Disability correlated positively with social support and activity effort. Disability correlated negatively with disability self-management, pain, and C-reactive protein. Function was positively correlated with age, pain, and depression. Liver enzymes (alanine transaminase) correlated positively with pain and anxiety. DISCUSSION This mixed-methods study indicates directions for further testing and interventions for disability outcomes among Mexican Americans.
Collapse
Affiliation(s)
| | | | | | - Nandini Mukherjee
- College of Public Health the University of Arkansas for Medical Sciences
| | | | - Nancy Blanco
- School of Nursing Universidad de Guanajuato
- School of Nursing The University of Texas at Austin
| | | | | |
Collapse
|
3
|
Sun X, Chen W, Razavi AC, Shi M, Pan Y, Li C, Argos M, Layden BT, Daviglus ML, He J, Carmichael OT, Bazzano LA, Kelly TN. Associations of Epigenetic Age Acceleration With CVD Risks Across the Lifespan: The Bogalusa Heart Study. JACC Basic Transl Sci 2024; 9:577-590. [PMID: 38984046 PMCID: PMC11228118 DOI: 10.1016/j.jacbts.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 07/11/2024]
Abstract
Although epigenetic age acceleration (EAA) might serve as a molecular signature of childhood cardiovascular disease (CVD) risk factors and further promote midlife subclinical CVD, few studies have comprehensively examined these life course associations. This study sought to test whether childhood CVD risk factors predict EAA in adulthood and whether EAA mediates the association between childhood CVD risks and midlife subclinical disease. Among 1,580 Bogalusa Heart Study participants, we estimated extrinsic EAA, intrinsic EAA, PhenoAge acceleration (PhenoAgeAccel), and GrimAge acceleration (GrimAgeAccel) during adulthood. We tested prospective associations of longitudinal childhood body mass index (BMI), blood pressure, lipids, and glucose with EAAs using linear mixed effects models. After confirming EAAs with midlife carotid intima-media thickness and carotid plaque, structural equation models examined mediating effects of EAAs on associations of childhood CVD risk factors with subclinical CVD measures. After stringent multiple testing corrections, each SD increase in childhood BMI was significantly associated with 0.6-, 0.9-, and 0.5-year increases in extrinsic EAA, PhenoAgeAccel, and GrimAgeAccel, respectively (P < 0.001 for all 3 associations). Likewise, each SD increase in childhood log-triglycerides was associated with 0.5- and 0.4-year increases in PhenoAgeAccel and GrimAgeAccel (P < 0.001 for both), respectively, whereas each SD increase in childhood high-density lipoprotein cholesterol was associated with a 0.3-year decrease in GrimAgeAccel (P = 0.002). Our findings indicate that PhenoAgeAccel mediates an estimated 27.4% of the association between childhood log-triglycerides and midlife carotid intima-media thickness (P = 0.022). Our data demonstrate that early life CVD risk factors may accelerate biological aging and promote subclinical atherosclerosis.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Alexander C Razavi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Medical College of Soochow University, Jiangsu, China
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | | | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Bourdon C, Etain B, Spano L, Belzeaux R, Leboyer M, Delahaye-Duriez A, Ibrahim EC, Lutz PE, Gard S, Schwan R, Polosan M, Courtet P, Passerieux C, Bellivier F, Marie-Claire C. Accelerated aging in bipolar disorders: An exploratory study of six epigenetic clocks. Psychiatry Res 2023; 327:115373. [PMID: 37542794 DOI: 10.1016/j.psychres.2023.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Bipolar disorder (BD) is a chronic and severe psychiatric disorder associated with significant medical morbidity and reduced life expectancy. In this study, we assessed accelerated epigenetic aging in individuals with BD using various DNA methylation (DNAm)-based markers. For this purpose, we used five epigenetic clocks (Horvath, Hannum, EN, PhenoAge, and GrimAge) and a DNAm-based telomere length clock (DNAmTL). DNAm profiles were obtained using Infinium MethylationEPIC Arrays from whole-blood samples of 184 individuals with BD. We also estimated blood cell counts based on DNAm levels for adjustment. Significant correlations between chronological age and each epigenetic age estimated using the six different clocks were observed. Following adjustment for blood cell counts, we found that the six epigenetic AgeAccels (age accelerations) were significantly associated with the body mass index. GrimAge AgeAccel was significantly associated with male sex, smoking status and childhood maltreatment. DNAmTL AgeAccel was significantly associated with smoking status. Overall, this study showed that distinct epigenetic clocks are sensitive to different aspects of aging process in BD. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings of potential determinants of an accelerated epigenetic aging in BD.
Collapse
Affiliation(s)
- Céline Bourdon
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France.
| | - Bruno Etain
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, F-75010, France; Fondation Fondamental, F-94010, Créteil, France
| | - Luana Spano
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| | - Raoul Belzeaux
- Pôle Universitaire de Psychiatrie, CHU de Montpellier, France; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France; Université Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France
| | - Marion Leboyer
- Fondation Fondamental, F-94010, Créteil, France; Université Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | | | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, 13005 Marseille, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, F-67000 Strasbourg, France
| | - Sébastien Gard
- Fondation Fondamental, F-94010, Créteil, France; Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Raymund Schwan
- Fondation Fondamental, F-94010, Créteil, France; Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Mircea Polosan
- Fondation Fondamental, F-94010, Créteil, France; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble, Institut Neurosciences, Grenoble, France
| | - Philippe Courtet
- Fondation Fondamental, F-94010, Créteil, France; IGF, Univ. Montpellier France, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Christine Passerieux
- Fondation Fondamental, F-94010, Créteil, France; Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'adulte et d'addictologie, Le Chesnay, France; DisAP-DevPsy-CESP, INSERM UMR1018, Université de Versailles Saint-Quentin-En-Yvelines, Université Paris-Saclay, Villejuif, France
| | - Frank Bellivier
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, F-75010, France; Fondation Fondamental, F-94010, Créteil, France
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| |
Collapse
|
5
|
Neville CE, Young IS, Kee F, Hogg RE, Scott A, Burns F, Woodside JV, McGuinness B. Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA): health assessment protocol, participant profile and patterns of participation. BMC Public Health 2023; 23:466. [PMID: 36899371 PMCID: PMC9999338 DOI: 10.1186/s12889-023-15355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) is a prospective, longitudinal study of a representative cohort of older adults living in Northern Ireland, United Kingdom. Its aim is to explore the social, behavioural, economic and biological factors of ageing and how these factors change as people age. The study has been designed to maximize comparability with other international studies of ageing thereby facilitating cross-country comparisons. This paper provides an overview of the design and methodology of the health assessment which was carried out as part of Wave 1. METHODS Three thousand, six hundred and fifty five community dwelling adults, aged 50 years and over participated in the health assessment as part of Wave 1 of NICOLA. The health assessment included a battery of measurements across various domains that addressed key indicators of ageing namely: physical function, vision and hearing, cognitive function, and cardiovascular health. This manuscript describes the scientific rationale for the choice of assessments, provides an overview of the core objective measures carried out in the health assessment and describes the differences in characteristics of participants who took part in the health assessment compared to those who did not take part. RESULTS The manuscript highlights the importance of incorporating objective measures of health in population based studies as a means of complementing subjective measures and as a way to advance our understanding of the ageing process. The findings contextualize NICOLA as a data resource within Dementias Platform UK (DPUK), the Gateway to Global Ageing (G2G) and other existing networks of population based longitudinal studies of ageing. CONCLUSION This manuscript can help inform design considerations for other population based studies of ageing and facilitate cross-country comparative analysis of key life-course factors affecting healthy ageing such as educational attainment, diet, the accumulation of chronic conditions (including Alzheimer's disease, dementia and cardiovascular disease) as well as welfare and retirement policies.
Collapse
Affiliation(s)
- Charlotte E Neville
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom.
| | - Ian S Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| | - Frank Kee
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom.
| | - Ruth E Hogg
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| | - Angela Scott
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| | - Frances Burns
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| | - Jayne V Woodside
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, BT12 6BJ, Belfast, United Kingdom
| |
Collapse
|
6
|
Paparazzo E, Geracitano S, Lagani V, Bartolomeo D, Aceto MA, D’Aquila P, Citrigno L, Bellizzi D, Passarino G, Montesanto A. A Blood-Based Molecular Clock for Biological Age Estimation. Cells 2022; 12:cells12010032. [PMID: 36611826 PMCID: PMC9818068 DOI: 10.3390/cells12010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the last decade, extensive efforts have been made to identify biomarkers of biological age. DNA methylation levels of ELOVL fatty acid elongase 2 (ELOVL2) and the signal joint T-cell receptor rearrangement excision circles (sjTRECs) represent the most promising candidates. Although these two non-redundant biomarkers echo important biological aspects of the ageing process in humans, a well-validated molecular clock exploiting these powerful candidates has not yet been formulated. The present study aimed to develop a more accurate molecular clock in a sample of 194 Italian individuals by re-analyzing the previously obtained EVOLV2 methylation data together with the amount of sjTRECs in the same blood samples. The proposed model showed a high prediction accuracy both in younger individuals with an error of about 2.5 years and in older subjects where a relatively low error was observed if compared with those reported in previously published studies. In conclusion, an easy, cost-effective and reliable model to measure the individual rate and the quality of aging in human population has been proposed. Further studies are required to validate the model and to extend its use in an applicative context.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal 23952, Saudi Arabia
| | - Denise Bartolomeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Luigi Citrigno
- National Research Council (CNR)—Institute for Biomedical Research and Innovation—(IRIB), 87050 Mangone, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (G.P.); (A.M.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (G.P.); (A.M.)
| |
Collapse
|
7
|
Fuggle NR, Laskou F, Harvey NC, Dennison EM. A review of epigenetics and its association with ageing of muscle and bone. Maturitas 2022; 165:12-17. [PMID: 35841774 DOI: 10.1016/j.maturitas.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
Abstract
Ageing is defined as the 'increasing frailty of an organism with time that reduces the ability of that organism to deal with stress'. It has been suggested that epigenetics may underlie the observation that some individuals appear to age faster than others. Epigenetics is the study of changes which occur in an organism due to changes in expression of the genetic code rather than changes to the genetic code itself; that is, epigenetic mechanisms impact upon the function of DNA without changing the DNA sequence. It is important to recognise that epigenetic changes, in contrast to genetic changes, can vary according to different cell types and therefore can demonstrate significant tissue-specificity. There are different types of epigenetic mechanisms: histone modification, non-coding RNAs and DNA methylation. Epigenetic clocks have been developed using statistical techniques to identify the optimal combination of CpG sites (from methylation arrays) to correlate with chronological age. This review considers how epigenetic factors may affect rates of ageing of muscle and bone and provides an overview of current understanding in this area. We discuss studies using first-generation epigenetic clocks, as well as the second-generation iterations, which appear to show stronger associations with the ageing muscle phenotype. We also review epigenome-wide association studies that have been performed in various tissues examining relationships with osteoporosis and fracture. It is hoped that an understanding of this area will lead to interventions that might prevent or reduce rates of musculoskeletal ageing in later life.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - F Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - E M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
8
|
A set of common buccal CpGs that predict epigenetic age and associate with lifespan-regulating genes. iScience 2022; 25:105304. [PMID: 36304118 PMCID: PMC9593711 DOI: 10.1016/j.isci.2022.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 10/02/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic aging clocks are computational models that use DNA methylation sites to predict age. Since cheek swabs are non-invasive and painless, collecting DNA from buccal tissue is highly desirable. Here, we review 11 existing clocks that have been applied to buccal tissue. Two of these were exclusively trained on adults and, while moderately accurate, have not been used to capture health-relevant differences in epigenetic age. Using 130 common CpGs utilized by two or more existing buccal clocks, we generate a proof-of-concept predictor in an adult methylomic dataset. In addition to accurately estimating age (r = 0.95 and mean absolute error = 3.88 years), this clock predicted that Down syndrome subjects were significantly older relative to controls. A literature and database review of CpG-associated genes identified numerous genes (e.g., CLOCK, ELOVL2, and VGF) and molecules (e.g., alpha-linolenic acid, glycine, and spermidine) reported to influence lifespan and/or age-related disease in model organisms. 130 CpGs have been used by two or more aging clocks applied to human buccal tissue Common CpG genes are linked to the adaptive immune system and telomere maintenance Common CpGs can be used to build a novel, proof-of-concept epigenetic aging clock Several compounds associated with common CpG genes regulate lifespan in animals
Collapse
|
9
|
Franzago M, Pilenzi L, Di Rado S, Vitacolonna E, Stuppia L. The epigenetic aging, obesity, and lifestyle. Front Cell Dev Biol 2022; 10:985274. [PMID: 36176280 PMCID: PMC9514048 DOI: 10.3389/fcell.2022.985274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence of obesity has dramatically increased worldwide over the past decades. Aging-related chronic conditions, such as type 2 diabetes and cardiovascular disease, are more prevalent in individuals with obesity, thus reducing their lifespan. Epigenetic clocks, the new metrics of biological age based on DNA methylation patterns, could be considered a reflection of the state of one's health. Several environmental exposures and lifestyle factors can induce epigenetic aging accelerations, including obesity, thus leading to an increased risk of age-related diseases. The insight into the complex link between obesity and aging might have significant implications for the promotion of health and the mitigation of future disease risk. The present narrative review takes into account the interaction between epigenetic aging and obesity, suggesting that epigenome may be an intriguing target for age-related physiological changes and that its modification could influence aging and prolong a healthy lifespan. Therefore, we have focused on DNA methylation age as a clinical biomarker, as well as on the potential reversal of epigenetic age using a personalized diet- and lifestyle-based intervention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| | - Sara Di Rado
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
10
|
Schmitz LL, Zhao W, Ratliff SM, Goodwin J, Miao J, Lu Q, Guo X, Taylor KD, Ding J, Liu Y, Levine M, Smith JA. The Socioeconomic Gradient in Epigenetic Ageing Clocks: Evidence from the Multi-Ethnic Study of Atherosclerosis and the Health and Retirement Study. Epigenetics 2022; 17:589-611. [PMID: 34227900 PMCID: PMC9235889 DOI: 10.1080/15592294.2021.1939479] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetic clocks have been widely used to predict disease risk in multiple tissues or cells. Their success as a measure of biological ageing has prompted research on the connection between epigenetic pathways of ageing and the socioeconomic gradient in health and mortality. However, studies examining social correlates of epigenetic ageing have yielded inconsistent results. We conducted a comprehensive, comparative analysis of associations between various dimensions of socioeconomic status (SES) (education, income, wealth, occupation, neighbourhood environment, and childhood SES) and eight epigenetic clocks in two well-powered US ageing studies: The Multi-Ethnic Study of Atherosclerosis (MESA) (n = 1,211) and the Health and Retirement Study (HRS) (n = 4,018). In both studies, we found robust associations between SES measures in adulthood and the GrimAge and DunedinPoAm clocks (Bonferroni-corrected p-value < 0.01). In the HRS, significant associations with the Levine and Yang clocks were also evident. These associations were only partially mediated by smoking, alcohol consumption, and obesity, which suggests that differences in health behaviours alone cannot explain the SES gradient in epigenetic ageing in older adults. Further analyses revealed concurrent associations between polygenic risk for accelerated intrinsic epigenetic ageing, SES, and the Levine clock, indicating that genetic risk and social disadvantage may contribute additively to faster biological aging.
Collapse
Affiliation(s)
- Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Julia Goodwin
- Department of Sociology, University of Wisconsin-Madison, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA
- Department of Statistics, University of Wisconsin-Madison, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, USA
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, School of Medicine, Wake Forest University, USA
| | - Yongmei Liu
- Department of Medicine, School of Medicine, Duke University, USA
| | - Morgan Levine
- Department of Pathology, School of Medicine, Yale University, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, USA
| |
Collapse
|
11
|
Tzemah-Shahar R, Hochner H, Iktilat K, Agmon M. What can we learn from physical capacity about biological age? A systematic review. Ageing Res Rev 2022; 77:101609. [PMID: 35306185 DOI: 10.1016/j.arr.2022.101609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To systematically investigate the relationship between objective measures of physical capacity (e.g., cardio-respiratory fitness or daily step count) and biological age, measured in different ways. DATA SOURCE PubMed; SCOPUS - Elsevier API; and Web of Science - ISI 1984-present, as well as contextual search engines used to identify additional relevant publications. STUDY SELECTION Cross-sectional and longitudinal studies that assessed the association between objectively measured physical capacity and biological aging in adult individuals (age>18). RESULTS Analysis of 28 studies demonstrated that physical capacity is positively associated with biological aging; the most dominant measures of physical capacity are muscular strength or gait speed. The majority of the studies estimated biological aging by a single methodology - either Leukocyte Telomere Length or DNA methylation levels. CONCLUSIONS This systematic review of the objective physical capacity measures used to estimate aging finds that the current literature is limited insofar as it overlooks the potential contribution of many feasible markers. We recommend measuring physical capacity in the context of aging using a wide range of modifiable behavioral markers, beyond simple muscle strength or simple gait speed. Forming a feasible and diversified method for estimating physical capacity through which it will also be possible to estimate biological aging in wide population studies is essential for the development of interventions that may alleviate the burden of age-related disease.
Collapse
Affiliation(s)
- Roy Tzemah-Shahar
- The Cheryl Spencer Institute for Nursing Research, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| | - Hagit Hochner
- Epidemiology unit, Hebrew University School of Public Health, Jerusalem, Israel
| | - Khalil Iktilat
- Department of Gerontology, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| | - Maayan Agmon
- The Cheryl Spencer Institute for Nursing Research, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Föhr T, Törmäkangas T, Lankila H, Viljanen A, Rantanen T, Ollikainen M, Kaprio J, Sillanpää E. The association between epigenetic clocks and physical functioning in older women: a three-year follow-up. J Gerontol A Biol Sci Med Sci 2021; 77:1569-1576. [PMID: 34543398 PMCID: PMC9373966 DOI: 10.1093/gerona/glab270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/16/2023] Open
Abstract
Background Epigenetic clocks are composite markers developed to predict chronological age or mortality risk from DNA methylation (DNAm) data. The present study investigated the associations between 4 epigenetic clocks (Horvath’s and Hannum’s DNAmAge and DNAm GrimAge and PhenoAge) and physical functioning during a 3-year follow-up. Method We studied 63- to 76-year-old women (N = 413) from the Finnish Twin Study on Aging. DNAm was measured from blood samples at baseline. Age acceleration (AgeAccel), that is, discrepancy between chronological age and DNAm age, was determined as residuals from linear model. Physical functioning was assessed under standardized laboratory conditions at baseline and at follow-up. A cross-sectional analysis was performed with path models, and a longitudinal analysis was conducted with repeated measures linear models. A nonrandom missing data analysis was performed. Results In comparison to the other clocks, GrimAgeAccel was more strongly associated with physical functioning. At baseline, GrimAgeAccel was associated with lower performance in the Timed Up and Go (TUG) test and the 6-minute walk test. At follow-up, significant associations were observed between GrimAgeAccel and lowered performance in the TUG, 6-minute and 10-m walk tests, and knee extension and ankle plantar flexion strength tests. Conclusions The DNAm GrimAge, a novel estimate of biological aging, associated with decline in physical functioning over the 3-year follow-up in older women. However, associations between chronological age and physical function phenotypes followed similar pattern. Current epigenetic clocks do not provide strong benefits in predicting the decline of physical functioning at least during a rather short follow-up period and restricted age range.
Collapse
Affiliation(s)
- Tiina Föhr
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Timo Törmäkangas
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Hannamari Lankila
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Anne Viljanen
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Elina Sillanpää
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Tekola-Ayele F. Invited Commentary: Epigenetic Clocks and Obesity-Towards the Next Frontier Using Integrative Approaches and Early-Life Models. Am J Epidemiol 2021; 190:994-997. [PMID: 33693471 DOI: 10.1093/aje/kwaa252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Why people of the same age show differences in age-related functional decline and whether biological aging can be slowed down through lifestyle changes and therapeutics are active research topics. Molecular tools that predict biological age based on DNA methylation markers, known as epigenetic clocks, are facilitating these efforts. In this issue, Kresovich et al. (Am J Epidemiol. 2021;190(6):984-993) investigated a cohort of non-Hispanic White women, demonstrating positive relationships between adiposity measures and the ticking rate of epigenetic clocks in blood. This commentary emphasizes that integrating molecular and genetic epidemiology approaches is crucial to dissecting the complex relationship between obesity and epigenetic aging. The early-life period is explored as a unique opportunity to gain novel insights into links between developmental processes and aging in later life. Last, the landscape of the next frontier in aging research is described in light of the imperative for transdisciplinary approaches to outline a shared vision and public health implementation dilemmas.
Collapse
|
15
|
Combined healthy lifestyle score and risk of epigenetic aging: a discordant monozygotic twin study. Aging (Albany NY) 2021; 13:14039-14052. [PMID: 34032609 PMCID: PMC8202852 DOI: 10.18632/aging.203022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/02/2021] [Indexed: 01/24/2023]
Abstract
We investigated whether lifestyle influences epigenetic aging in 143 monozygotic twin pairs discordant for the combined healthy lifestyle score. Twins were scored for four lifestyle factors as unhealthy or healthy; non-smoker, moderate drinker, adequate fruit and vegetable intake, and sufficient physical activity. The combined healthy lifestyle score was calculated for each participant by summing the binary score for each factor. Individual and co-twin analyses were used to assess the relationship between single or combined lifestyle scores, along with DNA methylation age acceleration (AA) calculated using Horvath’s and Li’s epigenetic clocks, focusing on AA and intrinsic epigenetic age acceleration (IEAA) measures. Compared with the twins that scored no or one healthy lifestyle point, those who scored four healthy lifestyle points had lower Li_IEAA with similar results observed in the co-twin analysis. No significant relationships were found in analyses based on Horvath’s clock, although the direction of correlations was consistent with that determined using Li’s clock. Smoking and drinking did not significantly affect DNA methylation AA; however, physical activity and intake of vegetables and fruits did, although the influence varied depending on the epigenetic clock. Our findings suggest that a healthy lifestyle may be an important way to delay aging and prevent age-related diseases.
Collapse
|
16
|
George A, Hardy R, Castillo Fernandez J, Kelly Y, Maddock J. Life course socioeconomic position and DNA methylation age acceleration in mid-life. J Epidemiol Community Health 2021; 75:1084-1090. [PMID: 33906906 PMCID: PMC8515099 DOI: 10.1136/jech-2020-215608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/01/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
Background Ageing biomarkers can help us better understand how well-established socioeconomic position (SEP) disparities in ageing occur. A promising new set of DNAm methylation (DNAm)-based ageing biomarkers indicate through their age acceleration (AA) measures if biological ageing is slower or faster than chronological ageing. Few studies have investigated the association between SEP and DNAm AA. Methods We used linear regression to examine the sex-adjusted relationships between childhood social class, adult social class, intergenerational social class change, education and adult household earnings with first (Horvath AA and Hannum AA) and second generation (PhenoAge AA and GrimAge AA) DNAm AA markers using data from the MRC National Survey of Health and Development. Results In the first-generation biomarkers, there was little evidence of any associations with Horvath AA but associations of childhood social class and income with Hannum AA were observed. Strong associations were seen between greater disadvantage in childhood and adult SEP and greater AA in the second generation biomarkers. For example, those with fathers in an unskilled occupational social class in childhood had 3.6 years greater PhenoAge AA (95% CI 1.8 to 5.4) than those with fathers from a professional social class. Individuals without qualifications had higher AA compared with those with higher education (4.1 years greater GrimAge AA (95% CI 3.1 to 5.0)). Conclusion Our findings highlight the importance of exposure to social disadvantage in childhood to the biological ageing process. The second generation clocks appear to be more sensitive to the accumulation of social disadvantage across the life course.
Collapse
Affiliation(s)
- Anitha George
- Department of Epidemiology & Public Health, UCL, London, UK
| | | | | | - Yvonne Kelly
- Department of Epidemiology & Public Health, UCL, London, UK
| | - Jane Maddock
- MRC Unit for Lifelong Health and Ageing, Faculty of Population Health, UCL, London, UK
| |
Collapse
|
17
|
Petersen CL, Christensen BC, Batsis JA. Weight management intervention identifies association of decreased DNA methylation age with improved functional age measures in older adults with obesity. Clin Epigenetics 2021; 13:46. [PMID: 33653394 PMCID: PMC7927264 DOI: 10.1186/s13148-021-01031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Assessing functional ability is an important component of understanding healthy aging. Objective measures of functional ability include grip strength, gait speed, sit-to-stand time, and 6-min walk distance. Using samples from a weight loss clinical trial in older adults with obesity, we examined the association between changes in physical function and DNA-methylation-based biological age at baseline and 12 weeks in 16 individuals. Peripheral blood DNA methylation was measured (pre/post) with the Illumina HumanMethylationEPIC array and the Hannum, Horvath, and PhenoAge DNA methylation age clocks were used. Linear regression models adjusted for chronological age and sex tested the relationship between DNA methylation age and grip strength, gait speed, sit-to-stand, and 6-min walk. Results Participant mean weight loss was 4.6 kg, and DNA methylation age decreased 0.8, 1.1, and 0.5 years using the Hannum, Horvath, and PhenoAge DNA methylation clocks respectively. Mean grip strength increased 3.2 kg. Decreased Hannum methylation age was significantly associated with increased grip strength (β = −0.30, p = 0.04), and increased gait speed (β = 0.02, p = 0.05), in adjusted models. Similarly, decreased methylation age using the PhenoAge clock was associated with significantly increased gait speed (β = 0.02, p = 0.04). A decrease in Horvath DNA methylation age and increase in physical functional ability did not demonstrate a significant association. Conclusions The observed relationship between increased physical functional ability and decreased biological age using DNA methylation clocks demonstrate the potential utility of DNA methylation clocks to assess interventional approaches to improve health in older obese adults. Trial registration: National Institute on Aging (NIA), NCT03104192. Posted April 7, 2017, https://clinicaltrials.gov/ct2/show/NCT03104192
Collapse
Affiliation(s)
- Curtis L Petersen
- The Dartmouth Institute for Health Policy, Williamson Translational Research Bld, 5., 1 Medical Center Drive, Lebanon, NH, 03766, USA. .,Quantitative Biomedical Sciences Program, Dartmouth, Hanover, NH, USA.
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology at Dartmouth, Lebanon, NH, USA
| | - John A Batsis
- The Dartmouth Institute for Health Policy, Williamson Translational Research Bld, 5., 1 Medical Center Drive, Lebanon, NH, 03766, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Section of General Internal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Division of Geriatric Medicine, School of Medicine, and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Klempel N, Blackburn NE, McMullan IL, Wilson JJ, Smith L, Cunningham C, O’Sullivan R, Caserotti P, Tully MA. The Effect of Chair-Based Exercise on Physical Function in Older Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1902. [PMID: 33669357 PMCID: PMC7920319 DOI: 10.3390/ijerph18041902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Physical activity is an important determinant of health in later life. The public health restrictions in response to COVID-19 have interrupted habitual physical activity behaviours in older adults. In response, numerous exercise programmes have been developed for older adults, many involving chair-based exercise. The aim of this systematic review was to synthesise the effects of chair-based exercise on the health of older adults. Ovid Medline, EMBASE, CINAHL, AMED, PyscInfo and SPORTDiscus databases were searched from inception to 1 April 2020. Chair-based exercise programmes in adults ≥50 years, lasting for at least 2 weeks and measuring the impact on physical function were included. Risk of bias of included studies were assessed using Cochrane risk of bias tool v2. Intervention content was described using TiDieR Criteria. Where sufficient studies (≥3 studies) reported data on an outcome, a random effects meta-analysis was performed. In total, 25 studies were included, with 19 studies in the meta-analyses. Seventeen studies had a low risk of bias and five had a high risk of bias. In this systematic review including 1388 participants, results demonstrated that chair-based exercise programmes improve upper extremity (handgrip strength: MD = 2.10; 95% CI = 0.76, 3.43 and 30 s arm curl test: MD = 2.82; 95% CI = 1.34, 4.31) and lower extremity function (30 s chair stand: MD 2.25; 95% CI = 0.64, 3.86). The findings suggest that chair-based exercises are effective and should be promoted as simple and easily implemented activities to maintain and develop strength for older adults.
Collapse
Affiliation(s)
- Natalie Klempel
- Institute of Nursing and Health Research, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK; (N.K.); (N.E.B.); (I.L.M.); (J.J.W.)
| | - Nicole E. Blackburn
- Institute of Nursing and Health Research, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK; (N.K.); (N.E.B.); (I.L.M.); (J.J.W.)
| | - Ilona L. McMullan
- Institute of Nursing and Health Research, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK; (N.K.); (N.E.B.); (I.L.M.); (J.J.W.)
| | - Jason J. Wilson
- Institute of Nursing and Health Research, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK; (N.K.); (N.E.B.); (I.L.M.); (J.J.W.)
- Sport and Exercise Sciences Research Institute, School of Sport, Newtownabbey BT37 0QB, UK
- Institute of Mental Health Sciences, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Conor Cunningham
- Institute of Public Health, City Exchange, 11–13 Gloucester St, Belfast BT1 4LS, UK;
| | - Roger O’Sullivan
- The Bamford Centre for Mental Health & Wellbeing Ulster University, Coleraine BT52 1SA, UK;
| | - Paolo Caserotti
- Centre for Active and Healthy Ageing, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Mark A. Tully
- Institute of Mental Health Sciences, School of Health Sciences, Ulster University, Newtownabbey BT37 0QB, UK
| |
Collapse
|
19
|
Bae CY, Piao M, Kim M, Im Y, Kim S, Kim D, Choi J, Cho KH. Biological age and lifestyle in the diagnosis of metabolic syndrome: the NHIS health screening data, 2014-2015. Sci Rep 2021; 11:444. [PMID: 33431923 PMCID: PMC7801435 DOI: 10.1038/s41598-020-79256-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Metabolic syndrome (MS) is diagnosed using absolute criteria that do not consider age and sex, but most studies have shown that the prevalence of MS increases with age in both sexes. Thus, the evaluation of MS should consider sex and age. We aimed to develop a new index that considers the age and sex for evaluating an individual's relative overall MS status. Data of 16,518,532 subjects (8,671,838 males and 7,846,694 females) who completed a validated health survey of the National Health Insurance Service of the Republic of Korea (2014‒2015) were analyzed to develop an MS-biological age model. Principal component score analysis using waist circumference, pulse pressure, fasting blood sugar, triglyceride levels, and high-density lipoprotein level, but not age, as independent variables were performed to derive an index of health status and biological age. In both sexes, the age according to the MS-biological age model increased with rising smoking and alcohol consumption habits and decreased with rising physical activity. Particularly, smoking and drinking affected females, whereas physical activity affected males. The MS-biological age model can be a supplementary tool for evaluating and managing MS, quantitatively measuring the effect of lifestyle changes on MS, and motivating patients to maintain a healthy lifestyle.
Collapse
Affiliation(s)
| | - Meihua Piao
- grid.412484.f0000 0001 0302 820XOffice of Hospital Information, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Miyoung Kim
- MediAge Research Center, Sungnam, Republic of Korea
| | - Yoori Im
- MediAge Research Center, Sungnam, Republic of Korea
| | | | - Donguk Kim
- Department of Big Data, National Health Insurance Corporation, Wonju, Republic of Korea
| | - Junho Choi
- grid.416665.60000 0004 0647 2391Department of Family Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Kyung Hee Cho
- grid.416665.60000 0004 0647 2391Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
20
|
Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A Systematic Review and Meta-analysis of Environmental, Lifestyle, and Health Factors Associated With DNA Methylation Age. J Gerontol A Biol Sci Med Sci 2020; 75:481-494. [PMID: 31001624 DOI: 10.1093/gerona/glz099] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (DNAm) algorithms of biological age provide a robust estimate of an individual's chronological age and can predict their risk of age-related disease and mortality. This study reviewed the evidence that environmental, lifestyle and health factors are associated with the Horvath and Hannum epigenetic clocks. A systematic search identified 61 studies. Chronological age was correlated with DNAm age in blood (median .83, range .13-.99). In a meta-analysis body mass index (BMI) was associated with increased DNAm age (Hannum β: 0.07, 95% CI 0.04 to 0.10; Horvath β: 0.06, 95% CI 0.02 to 0.10), but there was no association with smoking (Hannum β: 0.12, 95% CI -0.50 to 0.73; Horvath β:0.18, 95% CI -0.10 to 0.46). DNAm age was positively associated with frailty (three studies, n = 3,093), and education was negatively associated with the Hannum estimate of DNAm age specifically (four studies, n = 13,955). For most other exposures, findings were too inconsistent to draw conclusions. In conclusion, BMI was positively associated with biological aging measured using DNAm, with some evidence that frailty also increased aging. More research is needed to provide conclusive evidence regarding other exposures. This field of research has the potential to provide further insights into how to promote slower biological aging and ultimately prolong healthy life.
Collapse
Affiliation(s)
- Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France
| | - Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jun Loong
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter D Fransquet
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Wood NM, Trebilco T, Cohen-Woods S. Scars of childhood socioeconomic stress: A systematic review. Neurosci Biobehav Rev 2020; 118:397-410. [PMID: 32795493 DOI: 10.1016/j.neubiorev.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022]
Abstract
Childhood socioeconomic position (SEP) is associated with the development of adult psychological outcomes, with DNA methylation (DNAm) as a mechanism to potentially explain these changes. We present the first systematic review synthesising the literature investigating childhood SEP and DNAm. Thirty-two publications were included. Seventeen studies focused on candidate genes, typically focusing on genes implicated with the stress response and/or development of psychiatric conditions. These studies typically investigated different regions of the genes, which revealed inconsistent results. Six studies calculated epigenetic age, with a small number revealing an elevated significant association with childhood SEP. Epigenome-wide studies revealed altered patterns of DNAm which varied between the nine studies. This research area is emerging and demonstrated great variance in findings with no clear patterns identified across studies. Multiple methodological shortcomings are identified, including at the phenotypic level where construct validity of childhood SEP is highly inconsistent, with studies using a wide range of measures. Larger cohorts will be required with international collaborations to strengthen this research area.
Collapse
Affiliation(s)
- Natasha M Wood
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
| | - Thomas Trebilco
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
| | - Sarah Cohen-Woods
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia; Órama Institute, Flinders University, Adelaide, SA, Australia; Flinders Centre for Innovation in Cancer, Adelaide, SA, Australia.
| |
Collapse
|
22
|
Koop BE, Reckert A, Becker J, Han Y, Wagner W, Ritz-Timme S. Epigenetic clocks may come out of rhythm-implications for the estimation of chronological age in forensic casework. Int J Legal Med 2020; 134:2215-2228. [PMID: 32661599 PMCID: PMC7578121 DOI: 10.1007/s00414-020-02375-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
There is a growing perception that DNA methylation may be influenced by exogenous and endogenous parameters. Knowledge of these factors is of great relevance for the interpretation of DNA-methylation data for the estimation of chronological age in forensic casework. We performed a literature review to identify parameters, which might be of relevance for the prediction of chronological age based on DNA methylation. The quality of age predictions might particularly be influenced by lifetime adversities (chronic stress, trauma/post-traumatic stress disorder (PTSD), violence, low socioeconomic status/education), cancer, obesity and related diseases, infectious diseases (especially HIV and Cytomegalovirus (CMV) infections), sex, ethnicity and exposure to toxins (alcohol, smoking, air pollution, pesticides). Such factors may alter the DNA methylation pattern and may explain the partly high deviations between epigenetic age and chronological age in single cases (despite of low mean absolute deviations) that can also be observed with “epigenetic clocks” comprising a high number of CpG sites. So far, only few publications dealing with forensic age estimation address these confounding factors. Future research should focus on the identification of further relevant confounding factors and the development of models that are “robust” against the influence of such biological factors by systematic investigations under targeted inclusion of diverse and defined cohorts.
Collapse
Affiliation(s)
- Barbara Elisabeth Koop
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | - Alexandra Reckert
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Becker
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen Faculty of Medicine, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen Faculty of Medicine, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
23
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
24
|
Gensous N, Garagnani P, Santoro A, Giuliani C, Ostan R, Fabbri C, Milazzo M, Gentilini D, di Blasio AM, Pietruszka B, Madej D, Bialecka-Debek A, Brzozowska A, Franceschi C, Bacalini MG. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. GeroScience 2020; 42:687-701. [PMID: 31981007 PMCID: PMC7205853 DOI: 10.1007/s11357-019-00149-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mediterranean diet has been proposed to promote healthy aging, but its effects on aging biomarkers have been poorly investigated. We evaluated the impact of a 1-year Mediterranean-like diet in a pilot study including 120 elderly healthy subjects from the NU-AGE study (60 Italians, 60 Poles) by measuring the changes in their epigenetic age, assessed by Horvath's clock. We observed a trend towards epigenetic rejuvenation of participants after nutritional intervention. The effect was statistically significant in the group of Polish females and in subjects who were epigenetically older at baseline. A genome-wide association study of epigenetic age changes after the intervention did not return significant (adjusted p value < 0.05) loci. However, we identified small-effect alleles (nominal p value < 10-4), mapping in genes enriched in pathways related to energy metabolism, regulation of cell cycle, and of immune functions. Together, these findings suggest that Mediterranean diet can promote epigenetic rejuvenation but with country-, sex-, and individual-specific effects, thus highlighting the need for a personalized approach to nutritional interventions.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86, Stockholm, Sweden.
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Maddalena Milazzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Dawid Madej
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Bialecka-Debek
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Brzozowska
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky Univeristy, Nizhny Novgorod, Russia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | |
Collapse
|
25
|
Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, Ploubidis GB, Goodman A, Kuh D, Bell JT, Hardy R. DNA Methylation Age and Physical and Cognitive Aging. J Gerontol A Biol Sci Med Sci 2020; 75:504-511. [PMID: 31630156 PMCID: PMC8414926 DOI: 10.1093/gerona/glz246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND DNA methylation (DNAm) age acceleration (AgeAccel) has been shown to be predictive of all-cause mortality but it is unclear what functional aspect(s) of aging it captures. We examine associations between four measures of AgeAccel in adults aged 45-87 years and physical and cognitive performance and their age-related decline. METHODS AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, and AgeAccelGrim were calculated in the Medical Research Council National Survey of Health and Development (NSHD), National Child Development Study (NCDS) and TwinsUK. Three measures of physical (grip strength, chair rise speed, and forced expiratory volume in one second [FEV1]) and two measures of cognitive (episodic memory and mental speed) performance were assessed. RESULTS AgeAccelPheno and AgeAccelGrim, but not AgeAccelHannum and AgeAccelHorvath were related to performance in random effects meta-analyses (n = 1,388-1,685). For example, a 1-year increase in AgeAccelPheno or AgeAccelGrim was associated with a 0.01 mL (95% confidence interval [CI]: 0.01, 0.02) or 0.03 mL (95% CI: 0.01, 0.05) lower mean FEV1 respectively. In NSHD, AgeAccelPheno and AgeAccelGrim at 53 years were associated with age-related decline in performance between 53 and 69 years as tested by linear mixed models (p < .05). In a subset of NSHD participants (n = 482), there was little evidence that change in any AgeAccel measure was associated with change in performance conditional on baseline performance. CONCLUSIONS We found little evidence to support associations between the first generation of DNAm-based biomarkers of aging and age-related physical or cognitive performance in midlife to early old age. However, there was evidence that the second generation biomarkers, AgeAccelPheno and AgeAccelGrim, could act as makers of an individual's healthspan as proposed.
Collapse
Affiliation(s)
- Jane Maddock
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK
- CLOSER, UCL Institute of Education, University College London, UK
- Address correspondence to: Jane Maddock, PhD, MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK.
| | | | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK
| | - Rachel Cooper
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK
| | - Ken K Ong
- MRC Epidemiology Unit and Department of Paediatrics, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, UK
| | - George B Ploubidis
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, UK
| | - Alissa Goodman
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, UK
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, UK
- CLOSER, UCL Institute of Education, University College London, UK
| |
Collapse
|
26
|
Fraszczyk E, Luijten M, Spijkerman AMW, Snieder H, Wackers PFK, Bloks VW, Nicoletti CF, Nonino CB, Crujeiras AB, Buurman WA, Greve JW, Rensen SS, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. The effects of bariatric surgery on clinical profile, DNA methylation, and ageing in severely obese patients. Clin Epigenetics 2020; 12:14. [PMID: 31959221 PMCID: PMC6972025 DOI: 10.1186/s13148-019-0790-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Severe obesity is a growing, worldwide burden and conventional therapies including radical change of diet and/or increased physical activity have limited results. Bariatric surgery has been proposed as an alternative therapy showing promising results. It leads to substantial weight loss and improvement of comorbidities such as type 2 diabetes. Increased adiposity is associated with changes in epigenetic profile, including DNA methylation. We investigated the effect of bariatric surgery on clinical profile, DNA methylation, and biological age estimated using Horvath's epigenetic clock. RESULTS To determine the impact of bariatric surgery and subsequent weight loss on clinical traits, a cohort of 40 severely obese individuals (BMI = 30-73 kg/m2) was examined at the time of surgery and at three follow-up visits, i.e., 3, 6, and 12 months after surgery. The majority of the individuals were women (65%) and the mean age at surgery was 45.1 ± 8.1 years. We observed a significant decrease over time in BMI, fasting glucose, HbA1c, HOMA-IR, insulin, total cholesterol, triglycerides, LDL and free fatty acids levels, and a significant small increase in HDL levels (all p values < 0.05). Epigenome-wide association analysis revealed 4857 differentially methylated CpG sites 12 months after surgery (at Bonferroni-corrected p value < 1.09 × 10-7). Including BMI change in the model decreased the number of significantly differentially methylated CpG sites by 51%. Gene set enrichment analysis identified overrepresentation of multiple processes including regulation of transcription, RNA metabolic, and biosynthetic processes in the cell. Bariatric surgery in severely obese patients resulted in a decrease in both biological age and epigenetic age acceleration (EAA) (mean = - 0.92, p value = 0.039). CONCLUSIONS Our study shows that bariatric surgery leads to substantial BMI decrease and improvement of clinical outcomes observed 12 months after surgery. These changes explained part of the association between bariatric surgery and DNA methylation. We also observed a small, but significant improvement of biological age. These epigenetic changes may be modifiable by environmental lifestyle factors and could be used as potential biomarkers for obesity and in the future for obesity related comorbidities.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul F K Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla B Nonino
- Laboratory of Nutrigenomics Studies, Department of Health Sciences, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Wim A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jan Willem Greve
- Department of Surgery, Zuyderland Medical Center Heerlen, Dutch Obesity Clinic South, Heerlen, The Netherlands.,Department of Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
27
|
Li C, Wang Z, Hardy T, Huang Y, Hui Q, Crusto CA, Wright ML, Taylor JY, Sun YV. Association of Obesity with DNA Methylation Age Acceleration in African American Mothers from the InterGEN Study. Int J Mol Sci 2019; 20:ijms20174273. [PMID: 31480455 PMCID: PMC6747309 DOI: 10.3390/ijms20174273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/04/2022] Open
Abstract
African American women are affected by earlier onset of age-associated health deteriorations and obesity disproportionally, but little is known about the mechanism linking body mass index (BMI) and biological aging among this population. DNA methylation age acceleration (DNAm AA), measuring the difference between DNA methylation age and chronological age, is a novel biomarker of the biological aging process, and predicts aging-related disease outcomes. The present study estimated cross-tissue DNA methylation age acceleration using saliva samples from 232 African American mothers. Cross-sectional regression analyses were performed to assess the association of BMI with DNAm AA. The average chronological age and DNA methylation age were 31.67 years, and 28.79 years, respectively. After adjusting for smoking, hypertension diagnosis history, and socioeconomic factors (education, marital status, household income), a 1 kg/m2 increase in BMI is associated with 0.14 years increment of DNAm AA (95% CI: (0.08, 0.21)). The conclusion: in African American women, high BMI is independently associated with saliva-based DNA methylation age acceleration, after adjusting for smoking, hypertension, and socioeconomic status. This finding supports that high BMI accelerates biological aging, and plays a key role in age-related disease outcomes among African American women.
Collapse
Affiliation(s)
- Chengchen Li
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Theresa Hardy
- New York University Rory Meyers College of Nursing, 433 First Avenue, New York, NY 10010, USA
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Cindy A Crusto
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
- Department of Psychology, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield, Pretoria 0002, South Africa
| | - Michelle L Wright
- School of Nursing, University of Texas at Austin, 1710 Red River Street, Austin, TX 78712, USA
- Department of Women's Health, Dell Medical School, University of Texas at Austin, 1701 Trinity Street, Austin, TX 78705, USA
| | - Jacquelyn Y Taylor
- New York University Rory Meyers College of Nursing, 433 First Avenue, New York, NY 10010, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA.
- Atlanta VA Healthcare System, 1670 Clairmont Road, Decatur, GA 30033, USA.
- Department of Biomedical Informatics, Emory University School of Medicine, 1648 Pierce Dr. NE, Atlanta, GA 30307, USA.
| |
Collapse
|
28
|
Gensous N, Bacalini MG, Franceschi C, Meskers CGM, Maier AB, Garagnani P. Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans. Front Physiol 2019; 10:996. [PMID: 31427991 PMCID: PMC6688482 DOI: 10.3389/fphys.2019.00996] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human aging is accompanied by a decline in muscle mass and muscle function, which is commonly referred to as sarcopenia. Sarcopenia is associated with detrimental clinical outcomes, such as a reduced quality of life, frailty, an increased risk of falls, fractures, hospitalization, and mortality. The exact underlying mechanisms of sarcopenia are poorly delineated and the molecular mechanisms driving the development and progression of this disorder remain to be uncovered. Previous studies have described age-related differences in gene expression, with one study identifying an age-specific expression signature of sarcopenia, but little is known about the influence of epigenetics, and specially of DNA methylation, in its pathogenesis. In this review, we will focus on the available knowledge in literature on the characterization of DNA methylation profiles during skeletal muscle aging and the possible impact of physical activity and nutrition. We will consider the possible use of the recently developed DNA methylation-based biomarkers of aging called epigenetic clocks in the assessment of physical performance in older individuals. Finally, we will discuss limitations and future directions of this field.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Carel G M Meskers
- Amsterdam UMC, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Everson TM, Marsit CJ, Michael O'Shea T, Burt A, Hermetz K, Carter BS, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, Soliman A, DellaGrotta SA, Dansereau LM, Padbury JF, Lester BM. Epigenome-wide Analysis Identifies Genes and Pathways Linked to Neurobehavioral Variation in Preterm Infants. Sci Rep 2019; 9:6322. [PMID: 31004082 PMCID: PMC6474865 DOI: 10.1038/s41598-019-42654-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Neonatal molecular biomarkers of neurobehavioral responses (measures of brain-behavior relationships), when combined with neurobehavioral performance measures, could lead to better predictions of long-term developmental outcomes. To this end, we examined whether variability in buccal cell DNA methylation (DNAm) associated with neurobehavioral profiles in a cohort of infants born less than 30 weeks postmenstrual age (PMA) and participating in the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study (N = 536). We tested whether epigenetic age, age acceleration, or DNAm levels at individual loci differed between infants based on their NICU Network Neurobehavioral Scale (NNNS) profile classifications. We adjusted for recruitment site, infant sex, PMA, and tissue heterogeneity. Infants with an optimally well-regulated NNNS profile had older epigenetic age compared to other NOVI infants (β1 = 0.201, p-value = 0.026), but no significant difference in age acceleration. In contrast, infants with an atypical NNNS profile had differential methylation at 29 CpG sites (FDR < 10%). Some of the genes annotated to these CpGs included PLA2G4E, TRIM9, GRIK3, and MACROD2, which have previously been associated with neurological structure and function, or with neurobehavioral disorders. These findings contribute to the existing evidence that neonatal epigenetic variations may be informative for infant neurobehavior.
Collapse
Affiliation(s)
- Todd M Everson
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Amber Burt
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Karen Hermetz
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, United States
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Elisabeth C McGowan
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, United States
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, United States
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Antoine Soliman
- Department of Pediatrics, Miller Children's and Women's Hospital Long Beach, Long Beach, CA, United States
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
| | - James F Padbury
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
| | - Barry M Lester
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Brown Alpert Medical School, Providence, RI, United States
| |
Collapse
|
30
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|
31
|
Masser DR, Hadad N, Porter H, Stout MB, Unnikrishnan A, Stanford DR, Freeman WM. Analysis of DNA modifications in aging research. GeroScience 2018; 40:11-29. [PMID: 29327208 PMCID: PMC5832665 DOI: 10.1007/s11357-018-0005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.
Collapse
Affiliation(s)
- Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter Porter
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
32
|
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174:18-29. [PMID: 29337038 DOI: 10.1016/j.mad.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is the most important risk factor for major human lifestyle diseases, including cancer, neurological and cardiometabolic disorders. Due to the complex interplay between genetics, lifestyle and environmental factors, some individuals seem to age faster than others, whereas centenarians seem to have a slower aging process. Therefore, a biochemical biomarker reflecting the relative biological age would be helpful to predict an individual's health status and aging disease risk. Although it is already known for years that cumulative epigenetic changes occur upon aging, DNA methylation patterns were only recently used to construct an epigenetic clock predictor for biological age, which is a measure of how well your body functions compared to your chronological age. Moreover, the epigenetic DNA methylation clock signature is increasingly applied as a biomarker to estimate aging disease susceptibility and mortality risk. Finally, the epigenetic clock signature could be used as a lifestyle management tool to monitor healthy aging, to evaluate preventive interventions against chronic aging disorders and to extend healthy lifespan. Dissecting the mechanism of the epigenetic aging clock will yield valuable insights into the aging process and how it can be manipulated to improve health span.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|