1
|
Brakemeier EL, Karl S, Stapel S, Meyer-Lindenberg A. [Psyche in Climate Crisis? An Update on Ecological Psychiatry and Psychotherapy]. Dtsch Med Wochenschr 2025; 150:521-532. [PMID: 40199469 DOI: 10.1055/a-2447-2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The human-caused climate crisis is advancing relentlessly and poses a global threat. But to what extent is our psyche also in crisis due to climate change? This article explores the profound impacts of the climate crisis and environmental destruction on mental health, advocating for a comprehensive, ecologically-oriented approach to psychiatry and psychotherapy.
Collapse
|
2
|
Huang X, Steinmetz J, Marsh EK, Aravkin AY, Ashbaugh C, Murray CJL, Yang F, Ji JS, Zheng P, Sorensen RJD, Wozniak S, Hay SI, McLaughlin SA, Garcia V, Brauer M, Burkart K. A systematic review with a Burden of Proof meta-analysis of health effects of long-term ambient fine particulate matter (PM 2.5) exposure on dementia. NATURE AGING 2025:10.1038/s43587-025-00844-y. [PMID: 40119171 DOI: 10.1038/s43587-025-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Previous studies have indicated increased dementia risk associated with fine particulate matter (PM2.5) exposure; however, the findings are inconsistent. In this systematic review, we assessed the association between long-term PM2.5 exposure and dementia outcomes using the Burden of Proof meta-analytic framework, which relaxes log-linear assumptions to better characterize relative risk functions and quantify unexplained between-study heterogeneity (PROSPERO, ID CRD42023421869). Here we report a meta-analysis of 28 longitudinal cohort studies published up to June 2023 that investigated long-term PM2.5 exposure and dementia outcomes. We derived risk-outcome scores (ROSs), highly conservative measures of effect size and evidence strength, mapped onto a 1-5-star rating from 'weak and/or inconsistent evidence' to 'very strong and/or consistent evidence'. We identified a significant nonlinear relationship between PM2.5 exposure and dementia, with a minimum 14% increased risk averaged across PM2.5 levels between 4.5 and 26.9 µg m-3 (the 15th to 85th percentile exposure range across included studies), relative to a reference of 2.0 µg m-3 (n = 49, ROS = 0.13, two stars). We found a significant association of PM2.5 with Alzheimer's disease (n = 12, ROS = 0.32, three stars) but not with vascular dementia. Our findings highlight the potential impact of air pollution on brain aging.
Collapse
Affiliation(s)
- Xinmei Huang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jaimie Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Elizabeth K Marsh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Y Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Charlie Ashbaugh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Fanghan Yang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John S Ji
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Sarah Wozniak
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Vanessa Garcia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrin Burkart
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Zhang S, Chen Z, Du Z, Wang S, Chen D, Ruan X, Lin Z, Zheng Z, Li K, Chen X, Wu Z, Qin Q, Zhang M, Zhu S, Wu S, Zeng F, Wang Y, Zhang W. The causal links between long-term exposure to major chemical components of PM 2.5 and overall outpatient visits in mainland China: A nationwide study in the difference-in-differences framework. J Adv Res 2025:S2090-1232(25)00139-0. [PMID: 40037429 DOI: 10.1016/j.jare.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/05/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION Although the adverse health effects of PM2.5 exposure has been well documented, evidence of its adverse effect on overall outpatient visits was still limited. Besides, the adverse health effects of PM2.5 exposure get complicated due to various components within the particles. So far, little is known about the relationship between PM2.5 components and overall outpatient visits. OBJECTIVES This study aims to evaluate the causal relationships between long-term exposure to primary chemical components of PM2.5 and outpatient visits, while estimating the mixture effect and relative contribution of the components. METHODS Based on nationwide provincial-level surveillance data of outpatient visits in China and well-validated simulations of PM2.5 components concentration, we employed the Difference-In-Differences (DID) approach to evaluate the causal relationships between long-term exposure to primary chemical components of PM2.5 and outpatient visits, and used a Bayesian Weighted Quantile Sum (BWQS) regression to assess the mixture effect of the components. RESULTS We found a 20.44% increase in the risk (IR%) of outpatient visits following each InterQuartile Range (IQR) increment in PM2.5 concentration. Our estimation further suggested a 17.07%, 15.91%, and 14.04% increase in the risk of outpatient visits for organic matter, sulfate, and nitrate, but non-significant increases for other components. However, when considering the inter-components correlation, sulfate and black carbon contributed most (42.3% and 28.1%, respectively) to the overall mixture effect of PM2.5 which was indicated by a 4.84% increase (95%CI: 1.92%, 7.83%) in the risk of outpatient visits following every unit increase in the overall BWQS index. Additionally, stratified analyses showed a stronger association among aged provinces and provinces with lower education rates. CONCLUSION Our findings would improve understanding of the individual and mixture impact of major chemical components of PM2.5 and may contribute to more targeted and optimized environmental programs for pollution control.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Zhibing Chen
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Zhicheng Du
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Shenghao Wang
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Dan Chen
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Xingling Ruan
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Ziqiang Lin
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Zihan Zheng
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Kunying Li
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Xudan Chen
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Zhishen Wu
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Qing Qin
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Man Zhang
- Department of Nosocomial Infection Management, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Shuming Zhu
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Shaomin Wu
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Fangfang Zeng
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Ying Wang
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China.
| | - Wangjian Zhang
- Department of Medical Statistics and Center for Health Information Research and Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China.
| |
Collapse
|
4
|
Kokubun K, Nemoto K, Ikaga T, Yamakawa Y. Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment. Neuroimage 2025; 308:121033. [PMID: 39870260 DOI: 10.1016/j.neuroimage.2025.121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain. Among these, significant correlations between the local environment and whole-brain and cerebellar GMV, PTR, and SS FA remained after Bonferroni correction. Additionally, the positive relationship between the local environment and whole-brain GMV was further supported by principal component analysis (PCA). This is the first study to demonstrate that healthy adult brain structure, as indicated by GMV and FA values, can be influenced by the local environment.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Ikaga
- Institute for Built Environment and Carbon Neutral for SDGs, Chiyoda, Tokyo, Japan
| | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan
| |
Collapse
|
5
|
Xie C, Xia X, Wang K, Yan J, Bai L, Guo L, Li X, Wu S. Ambient Air Pollution and Parkinson's Disease and Alzheimer's Disease: An Updated Meta-Analysis. TOXICS 2025; 13:139. [PMID: 39997954 PMCID: PMC11861764 DOI: 10.3390/toxics13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Previous epidemiological evidence regarding the associations between ambient air pollution and two major neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), remains inconclusive. OBJECTIVE This study aimed to evaluate the associations between long-term and short-term exposure to PM2.5 and PM10 (i.e., particulate matter with an aerodynamic diameter of, or smaller than, 2.5 μm or 10 μm), nitrogen dioxide (NO2), ozone, sulfur dioxide, and carbon monoxide and the risks of AD and PD. METHODS A random-effects model was used to summarize individual effect estimates in the meta-analysis. A subgroup meta-analysis was further conducted to explore the potential sources of heterogeneity. RESULTS In total, 42 eligible studies were included. For each 5 μg/m3 increase in long-term PM2.5 exposure, the odds ratios (ORs) were 1.16 (95% CI: 1.04, 1.30; I2 = 95%) and 1.10 (95% CI: 1.03, 1.17; I2 = 95%) for AD and PD, respectively. For each 5 μg/m3 increase in short-term PM2.5 exposure, the OR was 1.01 (95% CI: 1.002, 1.01; I2 = 77%) for PD. For each 1 ppb increase in long-term NO2 exposure, the OR was 1.01 (95% CI: 1.0002, 1.02; I2 = 79%) for PD. CONCLUSION Ambient air pollution, particularly PM2.5, may contribute to the increased risks of neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xi Xia
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liqiong Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xiaoxue Li
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
- 2021RU006 Research Unit of Disaster Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
- Beijing Key Laboratory of Disaster Medicine, Beijing 100039, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
6
|
Dong S, Braun D, Wu X, Yitshak-Sade M, Blacker D, Kioumourtzoglou MA, Schwartz J, Mork D, Dominici F, Zanobetti A. The impacts of air pollution on mortality and hospital readmission among Medicare beneficiaries with Alzheimer's disease and Alzheimer's disease-related dementias: a national retrospective cohort study in the USA. Lancet Planet Health 2025; 9:e114-e123. [PMID: 39986315 PMCID: PMC11970897 DOI: 10.1016/s2542-5196(25)00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Alzheimer's disease and Alzheimer's disease-related dementias (AD/ADRD) are prevalent neurodegenerative disorders, posing a critical worldwide public health challenge. Ambient air pollution has been identified as a potential risk factor for AD progression based on toxicological and epidemiological studies. We aimed to evaluate the impacts of air pollution-including fine particulate matter (PM2·5), nitrogen dioxide (NO2), summer ozone (O3), and oxidant-on readmission or death among Medicare enrollees previously hospitalised with an AD/ADRD diagnosis code. METHODS We constructed a population-based nationwide retrospective cohort including all Medicare fee-for-service beneficiaries (aged ≥65 years) in the contiguous USA (2000-16) hospitalised with AD/ADRD, and followed them up from the year after their first hospitalisation until (1) year of death (mortality cohort) and (2) year of second hospitalisation for any cause (readmission cohort). We calculated annual average PM2·5, NO2, summer O3, and oxidant concentrations for each individual at their residential ZIP code in each year after their first hospitalisation with AD/ADRD. We applied Cox proportional hazard models for the mortality and readmission cohorts stratifying on individual risk factors and adjusting for socioeconomic status, seasonal temperatures, and relative humidity. FINDINGS Our cohort consisted of 5 544 118 individuals, of whom 4 543 759 (82·0%) died and 3 880 894 (70·0%) were readmitted to the hospital during the study period. The average follow-up times were 3·34 years (SD 2·60) for the mortality cohort and 1·98 years (SD 1·65) for the readmission cohort. In both the mortality and readmission cohorts we found significant associations with each pollutant. For an IQR increase in NO2, we found a hazard ratio (HR) for mortality of 1·012 (95% CI 1·009-1·015) and an HR for readmission of 1·110 (1·104-1·117). In the readmission cohort, we found an HR of 1·084 (1·079-1·089) for an IQR increase (3·87 μg/m3) in PM2·5. The results slightly decreased in multi-pollutant models. The results of effect modification for mortality and readmission varied by pollutant, but higher risks were found among Black males and among those eligible for Medicaid in general. INTERPRETATION We provide new evidence that among a susceptible population with previous AD/ADRD-related hospitalisations, annual air pollution exposure since first hospitalisation is associated with risk of readmission and death. FUNDING National Institute on Aging.
Collapse
Affiliation(s)
- Shuxin Dong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiao Wu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, MA, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Johnson H, Longden J, Cameron G, Waiter GD, Waldron FM, Gregory JM, Spence H. Machine learning identifies routine blood tests as accurate predictive measures of pollution-dependent poor cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632396. [PMID: 39868217 PMCID: PMC11761678 DOI: 10.1101/2025.01.10.632396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Several modifiable risk factors for dementia and related neurodegenerative diseases have been identified including education level, socio-economic status, and environmental exposures - however, how these population-level risks relate to individual risk remains elusive. To address this, we assess over 450 potential risk factors in one deeply clinically and demographically phenotyped cohort using random forest classifiers to determine predictive markers of poor cognitive function. This study aims to understand early risk factors for dementia by identifying predictors of poor cognitive performance amongst a comprehensive battery of imaging, blood, atmospheric pollutant and socio-economic measures. Methods Random forest modelling was used to determine significant predictors of poor cognitive performance in a cohort of 324 individuals (age 61.6 ± 4.8 years; 150 males, 174 females) without extant neurological disease. 457 features were assessed including brain imaging measures of volume and iron deposition, blood measures of anaemia, inflammation, and heavy metal levels, social deprivation indicators and atmospheric pollution exposure. Results Routinely assessed markers of anaemia including mean corpuscular haemoglobin concentration were identified as robust predictors of poor general cognition, where both extremes (low and high) were associated with poor cognitive performance. The strongest, most consistent predictors of poor cognitive performance were environmental measures of atmospheric pollution, in particular, lead, carbon monoxide, and particulate matter. Feature analysis demonstrated a significant negative relationship between low mean corpuscular haemoglobin concentration and high levels of atmospheric pollutants highlighting the potential of routinely assessed blood tests as a predictive measure of pollution-dependent cognitive functioning, at an individual level. Conclusions Taken together, these data demonstrate how routine, inexpensive medical testing and local authority initiatives could help to identify and protect at-risk individuals. These findings highlight the potential to identify individuals for targeted, cost effective medical and social interventions to improve population cognitive health.
Collapse
Affiliation(s)
| | - James Longden
- Theoretical Biophysics, Institute for Biology, Humboldt University of Berlin, Germany
| | - Gary Cameron
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Fergal M. Waldron
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Jenna M. Gregory
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Holly Spence
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| |
Collapse
|
8
|
Brakemeier EL, Karl S, Stapel S, Meyer-Lindenberg A. [Psyche in Climate Crisis?An Update on Ecological Psychiatry and Psychotherapy]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2025; 93:57-70. [PMID: 39793588 DOI: 10.1055/a-2444-5039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
The human-caused climate crisis is advancing relentlessly and poses a global threat. But to what extent is our psyche also in crisis due to climate change? This article explores the profound impacts of the climate crisis and environmental destruction on mental health, advocating for a comprehensive, ecologically-oriented approach to psychiatry and psychotherapy.
Collapse
|
9
|
Zhu Q, Lyu Y, Huang K, Zhou J, Wang W, Steenland K, Chang HH, Ebelt S, Shi X, Liu Y. Air Pollution and Cognitive Impairment Among the Chinese Elderly Population: An Analysis of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). GEOHEALTH 2025; 9:e2024GH001023. [PMID: 39776607 PMCID: PMC11705411 DOI: 10.1029/2024gh001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 01/11/2025]
Abstract
Cognitive impairment and dementia have long been recognized as growing public health threats. Studies have found that air pollution is a potential risk factor for dementia, but the literature remains inconclusive. This study aimed to evaluate the association between three major air pollutants (i.e., PM2.5, O3, and NO2) and cognitive impairment among the Chinese elderly population. Study participants were selected from the Chinese Longitudinal Health Longevity Survey (CLHLS) after 2005. We define cognitive impairment as a Chinese Mini-Mental-State Exam (CMMSE) score <24. The associations of air pollution with cognitive impairment and CMMSE score were evaluated with a logistic regression model and a linear mixed-effect model with random intercepts, respectively. A total of 3,887 participants were enrolled in this study. Of the 2,882 participants who completed at least one follow-up visit, 931 eventually developed cognitive impairment. In single-pollutant models, we found that yearly average PM2.5 and NO2 as well as warm season O3, were positively associated with cognitive impairment. NO2 remained positively associated with cognitive impairment in the multi-pollutant model. The linear mixed-effect models revealed that warm season O3 and yearly average NO2 were significantly associated with decreased CMMSE scores. Our research has established a positive association between cognitive impairment and air pollution in China. These findings underscore the imperative for the next iteration of China's Air Pollution Prevention and Control Action Plan to broaden its focus to encompass gaseous air pollutants since mitigating single air pollutant is insufficient to protect the aging population.
Collapse
Affiliation(s)
- Qingyang Zhu
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Yuebin Lyu
- China CDC Key Laboratory of Environment and Population HealthChinese Center for Disease Control and PreventionNational Institute of Environmental HealthBeijingChina
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology & Department of EpidemiologyFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population HealthChinese Center for Disease Control and PreventionNational Institute of Environmental HealthBeijingChina
| | - Wenhao Wang
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Kyle Steenland
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Howard H. Chang
- Department of Biostatistics and BioinformaticsRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population HealthChinese Center for Disease Control and PreventionNational Institute of Environmental HealthBeijingChina
| | - Yang Liu
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| |
Collapse
|
10
|
Huang L, Hu X, Liu J, Wang J, Zhou Y, Li G, Dong G, Dong H. Air pollution is linked to cognitive decline independent of hypersensitive C-reactive protein: insights from middle-aged and older Chinese. Environ Health 2024; 23:111. [PMID: 39707297 DOI: 10.1186/s12940-024-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Long-term air pollution exposure and inflammation are considered to be associated with cognitive decline. However, whether air pollution exposure related cognitive decline is dependent on inflammation remains uncertain. MATERIALS AND METHODS The present study collected data from China Health and Retirement Longitudinal Study (CHARLS) at baseline in 2011, with a follow up period in 2015. Concentration of air pollutants (particles with diameters ≤ 1.0 μm [PM1], ≤ 2.5 μm [PM2.5], ≤ 10 μm [PM10], nitrogen dioxide [NO2] and ozone [O3]) were obtained from China High Air Pollutants (CHAP) dataset. Hypersensitive C-reactive protein (hs-CRP), a systemic inflammation marker, was measured in blood of subjects and cognitive function was assessed by standardized questionnaire. RESULTS A total of 6434 participants were included in the study. Lower exposure to PM2.5, PM1, PM10 and NO2 were associated with mitigated cognitive decline. The odds ratios (ORs) for air pollutants changes and cognitive decline and 95% confidence intervals (CIs) were as follows: PM2.5-0.934(0.925, 0.943), PM1- 0.945 (0.935,0.955), PM10-0.977(0.972,0.982) and NO2-0.962(0.950,0.975), respectively. Hs-CRP showed no significant correlation with cognitive decline or change in levels of air pollution. The interaction regression analyses, both unadjusted and adjusted, did not uncover any significant correlation between hs-CRP and air pollution with respect to cognitive decline. Bootstrap test exhibited no significant mediating effect of hs-CRP on the relationship between any air pollutants and cognitive decline, the indirect effects of hs-CRP in conjunction with exposure to different air pollutants were all found to be non-significant, with the following bootstrap CIs and p-values: PM2.5-1.000([1.000,1.000], P = 0.480),PM1-1.000([1.000,1.000], P = 0.230),PM10-1.000([1.000,1.000], P = 0.650), O3-1.000([1.000,1.000], P = 0.470), ΔNO2-1.000([1.000,1.000], P = 0.830) . CONCLUSION Ambient air pollution exposure was linked to cognitive decline independent of hs-CRP level.
Collapse
Affiliation(s)
- Li Huang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jia Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiajia Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guang Li
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Nyingchi People's Hospital, Nyingchi, Tibet, 860003, China.
| |
Collapse
|
11
|
Zhang H, Wang Y, Li H, Zhu Q, Ma T, Liu Y, Steenland K. The role of the components of PM 2.5 in the incidence of Alzheimer's disease and related disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.10.24318725. [PMID: 39711731 PMCID: PMC11661324 DOI: 10.1101/2024.12.10.24318725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background The associations of PM 2.5 mass and various adverse health outcomes have been widely investigated. However, fewer studies focused on the potential health impacts of PM 2.5 components, especially for dementia and Alzheimer's diseases (AD). Methods We constructed a nationwide population-based open cohort study among Medicare beneficiaries aged 65 or older during 2000-2018. This dataset was linked with the predicted levels of 15 PM 2.5 components, including 5 major mass contributors (EC, OC, NH 4 + , NO 3 - , SO 4 2- ) and 10 trace elements (Br, Ca, Cu, Fe, K, Ni, Pb, Si, V, Zn) across contiguous US territory. Data were aggregated by ZIP code, calendar year and individual level demographics. Two mixture analysis methods, weighted quantile sum regression (WQS) and quantile g-computation (qgcomp), were used with quasi-Poisson models to analyze the health effects of the total mixture of PM 2.5 components on dementia and AD, as well as the relative contribution of individual components. Results Exposure to PM 2.5 components over the previous 5 years was significantly associated with increased risks of both dementia and AD, with stronger associations observed for AD. SO 4 2- , OC, Cu were identified with large contributions to the combined positive association of the mixture from both WQS and qgcomp models. Conclusion We found positive associations between the 15 PM 2.5 components and the incidence of dementia and AD. Our findings suggest that reducing PM 2.5 emissions from traffic and fossil fuel combustion could help mitigate the growing burden of dementia and Alzheimer's disease.
Collapse
|
12
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Marin-Castañeda LA, Gonzalez-Garibay G, Garcia-Quintana I, Pacheco-Aispuro G, Rubio C. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: a brief review. Front Aging Neurosci 2024; 16:1494356. [PMID: 39529750 PMCID: PMC11552306 DOI: 10.3389/fnagi.2024.1494356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dementia encompasses a spectrum of neurodegenerative disorders significantly impacting global health, with environmental factors increasingly recognized as crucial in their etiology. Among these, ozone, has been identified as a potential exacerbator of neurodegenerative processes, particularly in Alzheimer's disease (AD). Ozone exposure induces the production of reactive oxygen species (ROS), which penetrate the BBB, leading to oxidative damage in neuronal cells. This oxidative stress is closely linked with mitochondrial dysfunction and lipid peroxidation, processes that are foundational to the pathology observed in dementia, such as neuronal death and protein aggregation. Furthermore, ozone triggers chronic neuroinflammation, exacerbating these neurodegenerative processes and perpetuating a cycle of CNS damage. Recent studies highlight the role of peripheral biomarkers like High Mobility Group Box 1 (HMGB1) and Triggering Receptor Expressed on Myeloid cells 2 (TREM2) in mediating ozone's effects. Disruption of these and other identified proteins by ozone exposure impairs microglial function and response to amyloid plaques, suggesting a novel pathway through which ozone may influence AD pathology via immune dysregulation. This review discusses the concept of a bidirectional lung-brain axis, illustrating that systemic responses to air pollutants like ozone may reflect and contribute to neurodegenerative processes in the CNS. By delineating these mechanisms, we emphasize the critical need for integrating environmental health management into strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | | | | | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| |
Collapse
|
14
|
Yang CH, Wu CH, Luo KH, Chang HC, Wu SC, Chuang HY. Use of machine learning algorithms to determine the relationship between air pollution and cognitive impairment in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116885. [PMID: 39151371 DOI: 10.1016/j.ecoenv.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Air pollution has become a major global threat to human health. Urbanization and industrialization over the past few decades have increased the air pollution. Plausible connections have been made between air pollutants and dementia. This study used machine learning algorithms (k-nearest neighbors, random forest, gradient-boosted decision trees, eXtreme gradient boosting, and CatBoost) to investigate the association between cognitive impairment and air pollution. Data from the Taiwan Biobank and 75 air-pollution-monitoring stations in Taiwan were analyzed to determine individual levels of exposure to air pollutants. The pollutants examined were particulate matter with a diameter of ≤ 2.5 μm (PM2.5), nitrogen dioxide, nitric oxide, carbon monoxide, and ozone. The results revealed that the most strongly correlated with cognitive impairment were ozone, PM2.5, and carbon monoxide levels with adjustment of educational level, age, and household income. The model based on these factors achieved accuracy as high as 0.97 for detecting cognitive impairment, indicating a positive association between air pollutions and cognitive impairment.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chih-Hsien Wu
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Kuei-Hau Luo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan.
| | - Huang-Chih Chang
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83341, Taiwan; Ph.D Program in Environmental and Occupational Medicine, and Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sz-Chiao Wu
- Epidemiology in the Public Health Program, College of Health, Oregon State University, Oregon 97331, USA.
| | - Hung-Yi Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan; Ph.D Program in Environmental and Occupational Medicine, and Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Occupational and Environmental Medicine, Kaohsiung Medicine University Hospital, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
15
|
Soeterboek J, Deckers K, van Boxtel MPJ, Backes WH, Eussen SJPM, van Greevenbroek MMJ, Jansen JFA, Koster A, Schram MT, Stehouwer CDA, Wesselius A, Lakerveld J, Bosma H, Köhler S. Association of ambient air pollution with cognitive functioning and markers of structural brain damage: The Maastricht study. ENVIRONMENT INTERNATIONAL 2024; 192:109048. [PMID: 39383768 DOI: 10.1016/j.envint.2024.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Given the absence of curative interventions and the rising global incidence of dementia, research is increasingly focusing on lifestyle factors for prevention. However, identifying shared environmental risk for dementia, next to individual factors, is crucial for optimal risk reduction strategies. Therefore, in the present study we investigated the association between air pollution, cognitive functioning, and markers of structural brain damage. METHODS We used cross-sectional data from 4,002 participants of The Maastricht Study on volumetric markers of brain integrity (white and grey matter volume, cerebrospinal fluid volume, white matter hyperintensities volume, presence of cerebral small vessel disease) and cognitive functioning (memory, executive functioning and attention, processing speed, overall cognition). Individuals were matched by postal code of residence to nationwide data on air pollution exposure (particulate matter < 2.5 μm (PM2.5), particulate matter <10 μm (PM10), nitrogen dioxide (NO2), soot). Potentia linear and non-linear associations were investigated with linear, logistic, and restricted cubic splines regression. All analyses were adjusted for demographic characteristics and a compound score of modifiable dementia risk and protective factors. RESULTS Exposure to air pollutants was not related to cognitive functioning and most brain markers. We found curvilinear relationships between high PM2.5 exposures and grey matter and cerebrospinal fluid volume. Participants in the low and high range of exposure had lower grey matter volume. Higher cerebrospinal fluid volumes were only associated with high range of exposure, independent of demographic and individual modifiable dementia risk factors. After additional post hoc analyses, controlling for urbanicity, the associations for grey matter volume became non-significant. In men only, higher exposure to all air pollutants was associated with lower white matter volumes. No significant associations with white matter hyperintensities volume or cerebral small vessel disease were observed. DISCUSSION Our findings suggest that higher PM2.5 exposure is associated with more brain atrophy.
Collapse
Affiliation(s)
- J Soeterboek
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| | - K Deckers
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - M P J van Boxtel
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - W H Backes
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S J P M Eussen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - M M J van Greevenbroek
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J F A Jansen
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Koster
- Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - M T Schram
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A Wesselius
- Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - J Lakerveld
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, VU University Amsterdam, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - H Bosma
- Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - S Köhler
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Krishnan A, Pathak A, Nicholas TB, Lee J, Waite L, Stanaway F. Racial and ethnic minority representation in dementia risk factor research: a scoping review of cohort studies. BMJ Open 2024; 14:e085592. [PMID: 39322589 PMCID: PMC11733783 DOI: 10.1136/bmjopen-2024-085592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Despite a potentially greater burden of dementia, racial and ethnic minority populations around the world may be more likely to be excluded from research examining risk factors for incident dementia. We aimed to systematically investigate and quantify racial and ethnic minority representation in dementia risk factor research. METHODS We performed a two-stage systematic search of databases-MEDLINE (Ovid SP), Embase (Ovid SP) and Scopus-from inception to March 2021 to identify population-based cohort studies looking at risk factors for dementia incidence. We included cohort studies which were population-based and incorporated a clinical dementia diagnosis. RESULTS Out of the 97 identified cohort studies, fewer than half (40 studies; 41%) reported the race or ethnicity of participants and just under one-third (29 studies; 30%) reported the inclusion of racial and ethnic minority groups. We found that inadequate reporting frequently prevented assessment of selection bias and only six studies that included racial and ethnic minority participants were at low risk for measurement bias in dementia diagnosis. In cohort studies including a multiethnic cohort, only 182 out of 337 publications incorporated race or ethnicity in data analysis-predominantly (90%) through adjustment for race or ethnicity as a confounder. Only 14 publications (4.2% of all publications reviewed) provided evidence about drivers of any observed inequalities. CONCLUSIONS Racial and ethnic minority representation in dementia risk factor research is inadequate. Comparisons of dementia risk between different racial and ethnic groups are likely hampered by significant selection and measurement bias. Moreover, the focus on 'adjusting out' the effect of race and ethnicity as a confounder prevents understanding of underlying drivers of observed inequalities. There is a pressing need to fundamentally change the way race, ethnicity and the inclusion of racial and ethnic minorities are considered in research if health inequalities are to be adequately addressed.
Collapse
Affiliation(s)
- Arjun Krishnan
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anupa Pathak
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jeffrey Lee
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Louise Waite
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney, New South Wales, Australia
- Centre for Education and Research on Ageing, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona Stanaway
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Gong X, Eminson K, Atilola GO, Jephcote C, Adams K, Captur G, Hall AP, Blangiardo M, Gulliver J, Rowlands AV, Hansell AL. Associations between Aircraft Noise, Sleep, and Sleep-Wake Cycle: Actimetric Data from the UK Biobank Cohort near Four Major Airports. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97006. [PMID: 39320086 PMCID: PMC11423769 DOI: 10.1289/ehp14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Nighttime aircraft noise may affect people's sleep, yet large-scale evidence using objective and subjective measures remains limited. OBJECTIVE Our aim was to investigate associations between nighttime aircraft noise exposure and objectively measured sleep disturbance using a large UK cohort. METHODS We used data from 105,770 UK Biobank cohort participants exposed and unexposed to aircraft noise who lived in 44 local authority districts near 4 international airports in England. We used a generalized linear regression model to examine cross-sectional associations between aircraft noise L night (23:00 hours-07:00 hours) and 7-d actimetric measures collected 2013-2015 (n = 22,102 ). We also used Logit and generalized estimating equations models to examine associations between L night and self-reported sleep measures at enrollment (2006-2010) and follow-up (2012-2013). This approach allowed us to compare and contrast the results and support potential future meta-analyses on noise-related sleep disturbance. RESULTS Cross-sectional analyses of actimetric data suggested sleep disturbance associated with L night , showing higher level of movements during the least active continuous 8-h time period [β : 0.12 milligravitational units; 95% confidence interval (CI): 0.013, 0.23]. We also saw disrupted sleep-wake cycles as indicated by index scores of lower relative amplitude (β : - 0.006 ; 95% CI: - 0.007 , - 0.005 ), poorer interdaily stability (β : - 0.010 ; 95% CI: - 0.014 , - 0.006 ), and greater intradaily variability (β : 0.021; 95% CI: 0.019, 0.023), comparing L night ≥ 55 dB with < 45 dB. Repeated cross-sectional analyses found a 52% higher odds of more frequent daytime dozing [odds ratio (OR) = 1.52 ; 95% CI: 1.32, 1.75] for L night ≥ 55 dB in comparison with < 45 dB, whereas the likelihood for more frequent sleeplessness was more uncertain (OR = 1.13 ; 95% CI: 0.92, 1.39). Higher effect sizes were seen in preidentified vulnerable groups, including individuals > 65 y of age and those with diabetes or dementia. CONCLUSION Individuals exposed to higher levels of aircraft noise experienced objectively higher levels of sleep disturbance and changes in sleep-wake cycle. https://doi.org/10.1289/EHP14156.
Collapse
Affiliation(s)
- Xiangpu Gong
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- The National Institute of Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health, University of Leicester, Leicester, UK
| | - Katie Eminson
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Glory O. Atilola
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Calvin Jephcote
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Kathryn Adams
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Gabriella Captur
- MRC Unit for Lifelong Health & Ageing, Population Science & Experimental Medicine, Faculty of Pop Health Sciences, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, London, UK
| | - Andrew P. Hall
- The Hanning Sleep Laboratory, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
- Diabetes Research Centre, Leicester Diabetes Centre, Leicester General Hospital Gwendolen Rd, Leicester, UK
- National Institute for Health Research (NIHR), Leicester Biomedical Research Centre (BRC), Leicester General Hospital, Leicester, UK
| | - Marta Blangiardo
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - John Gulliver
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- The National Institute of Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health, University of Leicester, Leicester, UK
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Alex V. Rowlands
- Diabetes Research Centre, Leicester Diabetes Centre, Leicester General Hospital Gwendolen Rd, Leicester, UK
- National Institute for Health Research (NIHR), Leicester Biomedical Research Centre (BRC), Leicester General Hospital, Leicester, UK
| | - Anna L. Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- The National Institute of Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health, University of Leicester, Leicester, UK
- National Institute for Health Research (NIHR), Leicester Biomedical Research Centre (BRC), Leicester General Hospital, Leicester, UK
| |
Collapse
|
19
|
Wang Q, Li S, Cai B, Zhong L, Liu F, Wang X, Chen T. Genetic evidence supports a causal relationship between air pollution and brain imaging-derived phenotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116664. [PMID: 38954909 DOI: 10.1016/j.ecoenv.2024.116664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Observational studies have reported associations between air pollutants and brain imaging-derived phenotypes (IDPs); however, whether this relationship is causal remains uncertain. METHODS We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causal relationships between 5 types of air pollutants (N=423,796 to 456,380 individuals) and 587 reliable IDPs (N=33,224 individuals). Two-step MR was also conducted to assess whether the identified effects are mediated through the modulation of circulating cytokines (N=8293). RESULTS We found genetic evidence supporting the association of nitrogen oxides (NOx) with mean intra-cellular volume fraction (ICVF) in the left uncinate fasciculus (IVW β=-0.42, 95 % CI -0.62 to -0.23, P=1.51×10-5) and mean fractional anisotropy (FA) in the left uncinate fasciculus (IVW β=-0.42, 95 % CI -0.62 to -0.21, P=4.89×10-5). In further two-step MR analyses, we did not find evidence that genetic predictions of any circulating cytokines mediated the association between NOx and IDPs. CONCLUSION This study provides evidence for the association between air pollutants and brain IDPs, emphasizing the importance of controlling air pollution to improve brain health.
Collapse
Affiliation(s)
- Qitong Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Shuzhu Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Benchi Cai
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Lifan Zhong
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Fang Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Xinyu Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China; Hainan Provincial Bureau of Disease Prevention and Control, Haikou 570100, China.
| |
Collapse
|
20
|
Contador I, Buch-Vicente B, del Ser T, Llamas-Velasco S, Villarejo-Galende A, Benito-León J, Bermejo-Pareja F. Charting Alzheimer's Disease and Dementia: Epidemiological Insights, Risk Factors and Prevention Pathways. J Clin Med 2024; 13:4100. [PMID: 39064140 PMCID: PMC11278014 DOI: 10.3390/jcm13144100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex and multifactorial condition without cure at present. The latest treatments, based on anti-amyloid monoclonal antibodies, have only a modest effect in reducing the progression of cognitive decline in AD, whereas the possibility of preventing AD has become a crucial area of research. In fact, recent studies have observed a decrease in dementia incidence in developed regions such as the US and Europe. However, these trends have not been mirrored in non-Western countries (Japan or China), and the contributing factors of this reduction remain unclear. The Lancet Commission has delineated a constrained classification of 12 risk factors across different life stages. Nevertheless, the scientific literature has pointed to over 200 factors-including sociodemographic, medical, psychological, and sociocultural conditions-related to the development of dementia/AD. This narrative review aims to synthesize the risk/protective factors of dementia/AD. Essentially, we found that risk/protective factors vary between individuals and populations, complicating the creation of a unified prevention strategy. Moreover, dementia/AD explanatory mechanisms involve a diverse array of genetic and environmental factors that interact from the early stages of life. In the future, studies across different population-based cohorts are essential to validate risk/protective factors of dementia. This evidence would help develop public health policies to decrease the incidence of dementia.
Collapse
Affiliation(s)
- Israel Contador
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17117 Stockholm, Sweden
| | - Bárbara Buch-Vicente
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
| | - Teodoro del Ser
- Alzheimer Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| | - Sara Llamas-Velasco
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Villarejo-Galende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Julián Benito-León
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Félix Bermejo-Pareja
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
21
|
Oudin A, Raza W, Flanagan E, Segersson D, Jalava P, Kanninen KM, Rönkkö T, Giugno R, Sandström T, Muala A, Topinka J, Sommar J. Exposure to source-specific air pollution in residential areas and its association with dementia incidence: a cohort study in Northern Sweden. Sci Rep 2024; 14:15521. [PMID: 38969679 PMCID: PMC11226641 DOI: 10.1038/s41598-024-66166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.
Collapse
Affiliation(s)
- Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden.
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Wasif Raza
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Rosalba Giugno
- Computer Science Department, University of Verona, Verona, Italy
| | - Thomas Sandström
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Ala Muala
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
23
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
24
|
Lynch KM, Bennett EE, Ying Q, Park ES, Xu X, Smith RL, Stewart JD, Liao D, Kaufman JD, Whitsel EA, Power MC. Association of Gaseous Ambient Air Pollution and Dementia-Related Neuroimaging Markers in the ARIC Cohort, Comparing Exposure Estimation Methods and Confounding by Study Site. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67010. [PMID: 38922331 PMCID: PMC11218707 DOI: 10.1289/ehp13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Evidence linking gaseous air pollution to late-life brain health is mixed. OBJECTIVE We explored associations between exposure to gaseous pollutants and brain magnetic resonance imaging (MRI) markers among Atherosclerosis Risk in Communities (ARIC) Study participants, with attention to the influence of exposure estimation method and confounding by site. METHODS We considered data from 1,665 eligible ARIC participants recruited from four US sites in the period 1987-1989 with valid brain MRI data from Visit 5 (2011-2013). We estimated 10-y (2001-2010) mean carbon monoxide (CO), nitrogen dioxide (NO 2 ), nitrogen oxides (NO x ), and 8- and 24-h ozone (O 3 ) concentrations at participant addresses, using multiple exposure estimation methods. We estimated site-specific associations between pollutant exposures and brain MRI outcomes (total and regional volumes; presence of microhemorrhages, infarcts, lacunes, and severe white matter hyperintensities), using adjusted linear and logistic regression models. We compared meta-analytically combined site-specific associations to analyses that did not account for site. RESULTS Within-site exposure distributions varied across exposure estimation methods. Meta-analytic associations were generally not statistically significant regardless of exposure, outcome, or exposure estimation method; point estimates often suggested associations between higher NO 2 and NO x and smaller temporal lobe, deep gray, hippocampal, frontal lobe, and Alzheimer disease signature region of interest volumes and between higher CO and smaller temporal and frontal lobe volumes. Analyses that did not account for study site more often yielded significant associations and sometimes different direction of associations. DISCUSSION Patterns of local variation in estimated air pollution concentrations differ by estimation method. Although we did not find strong evidence supporting impact of gaseous pollutants on brain changes detectable by MRI, point estimates suggested associations between higher exposure to CO, NO x , and NO 2 and smaller regional brain volumes. Analyses of air pollution and dementia-related outcomes that do not adjust for location likely underestimate uncertainty and may be susceptible to confounding bias. https://doi.org/10.1289/EHP13906.
Collapse
Affiliation(s)
- Katie M. Lynch
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Erin E. Bennett
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, Texas A&M University System, College Station, Texas, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, College Station, Texas, USA
| | - Richard L. Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Duanping Liao
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda C. Power
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
25
|
Wu YT, Kitwiroon N, Beevers S, Barratt B, Brayne C, Cerin E, Franklin R, Houlden V, Woods B, Zied Abozied E, Prina M, Matthews F. The longitudinal associations between ambient air pollution exposure and dementia in the UK: results from the cognitive function and ageing study II and Wales. BMC Public Health 2024; 24:1233. [PMID: 38702710 PMCID: PMC11069162 DOI: 10.1186/s12889-024-18723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Air pollution has been recognised as a potential risk factor for dementia. Yet recent epidemiological research shows mixed evidence. The aim of this study is to investigate the longitudinal associations between ambient air pollution exposure and dementia in older people across five urban and rural areas in the UK. METHODS This study was based on two population-based cohort studies of 11329 people aged ≥ 65 in the Cognitive Function and Ageing Study II (2008-2011) and Wales (2011-2013). An algorithmic diagnosis method was used to identify dementia cases. Annual concentrations of four air pollutants (NO2, O3, PM10, PM2.5) were modelled for the year 2012 and linked via the participants' postcodes. Multistate modelling was used to examine the effects of exposure to air pollutants on incident dementia incorporating death and adjusting for sociodemographic factors and area deprivation. A random-effect meta-analysis was carried out to summarise results from the current and nine existing cohort studies. RESULTS Higher exposure levels of NO2 (HR: 1.04; 95% CI: 0.94, 1.14), O3 (HR: 0.90; 95% CI: 0.70, 1.15), PM10 (HR: 1.17; 95% CI: 0.86, 1.58), PM2.5 (HR: 1.41; 95% CI: 0.71, 2.79) were not strongly associated with dementia in the two UK-based cohorts. Inconsistent directions and strengths of the associations were observed across the two cohorts, five areas, and nine existing studies. CONCLUSIONS In contrast to the literature, this study did not find clear associations between air pollution and dementia. Future research needs to investigate how methodological and contextual factors can affect evidence in this field and clarity the influence of air pollution exposure on cognitive health over the lifecourse.
Collapse
Affiliation(s)
- Yu-Tzu Wu
- Population Health Sciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK.
| | - Nutthida Kitwiroon
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Ester Cerin
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Rachel Franklin
- Centre for Urban and Regional Development Studies (CURDS), School of Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Bob Woods
- Dementia Services Development Centre, Bangor University, Bangor, Gwynedd, UK
| | - Eman Zied Abozied
- Population Health Sciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Matthew Prina
- Population Health Sciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Fiona Matthews
- Population Health Sciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| |
Collapse
|
26
|
Christensen GM, Li Z, Liang D, Ebelt S, Gearing M, Levey AI, Lah JJ, Wingo A, Wingo T, Hüls A. Association of PM 2.5 Exposure and Alzheimer Disease Pathology in Brain Bank Donors-Effect Modification by APOE Genotype. Neurology 2024; 102:e209162. [PMID: 38382009 DOI: 10.1212/wnl.0000000000209162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects β-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.
Collapse
Affiliation(s)
- Grace M Christensen
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Zhenjiang Li
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Donghai Liang
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Stefanie Ebelt
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Marla Gearing
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Allan I Levey
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - James J Lah
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Aliza Wingo
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Thomas Wingo
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Anke Hüls
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| |
Collapse
|
27
|
Fania A, Monaco A, Amoroso N, Bellantuono L, Cazzolla Gatti R, Firza N, Lacalamita A, Pantaleo E, Tangaro S, Velichevskaya A, Bellotti R. Machine learning and XAI approaches highlight the strong connection between O 3 and N O 2 pollutants and Alzheimer's disease. Sci Rep 2024; 14:5385. [PMID: 38443419 PMCID: PMC11319812 DOI: 10.1038/s41598-024-55439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia with millions of affected patients worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, investigating the risk factors that could be strongly connected to the disease onset. Despite AD, like other complex diseases, is the result of the combination of several factors, there is emerging agreement that environmental pollution should play a pivotal role in the causes of disease. In this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly available variables concerning pollution, health, society and economy to feed a Random Forest algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution (mainly O 3 and N O 2 ) contribute the most to AD mortality prediction. These results could help to shed light on the etiology of Alzheimer's disease and to confirm the urgent need to further investigate the relationship between the environment and the disease.
Collapse
Affiliation(s)
- Alessandro Fania
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy.
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Loredana Bellantuono
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126, Bologna, Italy
| | - Najada Firza
- Dipartimento di Economia e Finanza, Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy
- Catholic University Our Lady of Good Counsel, 1031, Tirana, Albania
| | - Antonio Lacalamita
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Ester Pantaleo
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126, Bari, Italy
| | | | - Roberto Bellotti
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| |
Collapse
|
28
|
Zhang S, Cao H, Chen K, Gao T, Zhao H, Zheng C, Wang T, Zeng P, Wang K. Joint Exposure to Multiple Air Pollutants, Genetic Susceptibility, and Incident Dementia: A Prospective Analysis in the UK Biobank Cohort. Int J Public Health 2024; 69:1606868. [PMID: 38426188 PMCID: PMC10901982 DOI: 10.3389/ijph.2024.1606868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives: This study aimed to evaluate the joint effects of multiple air pollutants including PM2.5, PM10, NO2, and NOx with dementia and examined the modifying effects of genetic susceptibility. Methods: This study included 220,963 UK Biobank participants without dementia at baseline. Weighted air pollution score reflecting the joint exposure to multiple air pollutants were constructed by cross-validation analyses, and inverse-variance weighted meta-analyses were performed to create a pooled effect. The modifying effect of genetic susceptibility on air pollution score was assessed by genetic risk score and APOE ε4 genotype. Results: The HR (95% CI) of dementia for per interquartile range increase of air pollution score was 1.13 (1.07∼1.18). Compared with the lowest quartile (Q1) of air pollution score, the HR (95% CI) of Q4 was 1.26 (1.13∼1.40) (P trend = 2.17 × 10-5). Participants with high air pollution score and high genetic susceptibility had higher risk of dementia compared to those with low air pollution score and low genetic susceptibility. Conclusion: Our study provides evidence that joint exposure to multiple air pollutants substantially increases the risk of dementia, especially among individuals with high genetic susceptibility.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huashuo Zhao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
29
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
30
|
Zhu Y, Shi Y, Bartell SM, Corrada MM, Manson SM, O’Connell J, Jiang L. Potential Effects of Long-Term Exposure to Air Pollution on Dementia: A Longitudinal Analysis in American Indians Aged 55 Years and Older. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:128. [PMID: 38397619 PMCID: PMC10888275 DOI: 10.3390/ijerph21020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: American Indians are disproportionately affected by air pollution, an important risk factor for dementia. However, few studies have investigated the effects of air pollution on the risk of dementia among American Indians. (2) Methods: This retrospective cohort study included a total of 26,871 American Indians who were 55+ years old in 2007, with an average follow-up of 3.67 years. County-level average air pollution data were downloaded from land-use regression models. All-cause dementia was identified using ICD-9 diagnostic codes from the Indian Health Service's (IHS) National Data Warehouse and related administrative databases. Cox models were employed to examine the association of air pollution with dementia incidence, adjusting for co-exposures and potential confounders. (3) Results: The average PM2.5 levels in the IHS counties were lower than those in all US counties, while the mean O3 levels in the IHS counties were higher than the US counties. Multivariable Cox regressions revealed a positive association between dementia and county-level O3 with a hazard ratio of 1.24 (95% CI: 1.02-1.50) per 1 ppb standardized O3. PM2.5 and NO2 were not associated with dementia risk after adjusting for all covariates. (4) Conclusions: O3 is associated with a higher risk of dementia among American Indians.
Collapse
Affiliation(s)
- Yachen Zhu
- Program in Public Health, University of California, Irvine, CA 92697, USA
| | - Yuxi Shi
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697, USA (M.M.C.)
| | - Scott M. Bartell
- Program in Public Health, University of California, Irvine, CA 92697, USA
- Department of Environmental and Occupational Health, University of California, Irvine, CA 92697, USA
| | - Maria M. Corrada
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697, USA (M.M.C.)
- Department of Neurology, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Spero M. Manson
- Centers for American Indian and Alaska Native Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.M.); (J.O.)
| | - Joan O’Connell
- Centers for American Indian and Alaska Native Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.M.); (J.O.)
| | - Luohua Jiang
- Program in Public Health, University of California, Irvine, CA 92697, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697, USA (M.M.C.)
| |
Collapse
|
31
|
Bachand AM, Dell LD. Can Incorrect Analysis of Time-Dependent Exposure Explain Associations between PM2.5 Exposure and Risk of Dementia? J Alzheimers Dis 2024; 97:1931-1937. [PMID: 38339933 DOI: 10.3233/jad-231046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Epidemiological studies have reported positive associations between long-term exposure to particulate matter of 2.5 microns or less in diameter (PM2.5) and risk of Alzheimer's disease and other clinical dementia. Many of these studies have analyzed data using Cox Proportional Hazards (PH) regression, which estimates a hazard ratio (HR) for the treatment (in this case, exposure) effect on the time-to-event outcome while adjusting for influential covariates. PM2.5 levels vary over time. As air quality standards for PM2.5 have become more stringent over time, average outdoor PM2.5 levels have decreased substantially. Objective Investigate whether a Cox PH analysis that does not properly account for exposure that varies over time could produce a biased HR of similar magnitude to the HRs reported in recent epidemiological studies of PM2.5 and dementia risk. Methods Simulation analysis. Results We found that the biased HR can affect statistical analyses that consider exposure levels at event times only, especially if PM2.5 levels decreased consistently over time. Furthermore, the direction of such bias is away from the null and of a magnitude that is consistent with the reported estimates of dementia risk in several epidemiological studies of PM2.5 exposure (HR≈1.2 to 2.0). Conclusions This bias can be avoided by correctly assigning exposure to study subjects throughout the entire follow-up period. We recommend that investigators provide a detailed description of how time-dependent exposure variables were accounted for in their Cox PH analyses when they report their results.
Collapse
|
32
|
Blanco MN, Shaffer RM, Li G, Adar SD, Carone M, Szpiro AA, Kaufman JD, Larson TV, Hajat A, Larson EB, Crane PK, Sheppard L. Traffic-related air pollution and dementia incidence in the Adult Changes in Thought Study. ENVIRONMENT INTERNATIONAL 2024; 183:108418. [PMID: 38185046 PMCID: PMC10873482 DOI: 10.1016/j.envint.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND While epidemiologic evidence links higher levels of exposure to fine particulate matter (PM2.5) to decreased cognitive function, fewer studies have investigated links with traffic-related air pollution (TRAP), and none have examined ultrafine particles (UFP, ≤100 nm) and late-life dementia incidence. OBJECTIVE To evaluate associations between TRAP exposures (UFP, black carbon [BC], and nitrogen dioxide [NO2]) and late-life dementia incidence. METHODS We ascertained dementia incidence in the Seattle-based Adult Changes in Thought (ACT) prospective cohort study (beginning in 1994) and assessed ten-year average TRAP exposures for each participant based on prediction models derived from an extensive mobile monitoring campaign. We applied Cox proportional hazards models to investigate TRAP exposure and dementia incidence using age as the time axis and further adjusting for sex, self-reported race, calendar year, education, socioeconomic status, PM2.5, and APOE genotype. We ran sensitivity analyses where we did not adjust for PM2.5 and other sensitivity and secondary analyses where we adjusted for multiple pollutants, applied alternative exposure models (including total and size-specific UFP), modified the adjustment covariates, used calendar year as the time axis, assessed different exposure periods, dementia subtypes, and others. RESULTS We identified 1,041 incident all-cause dementia cases in 4,283 participants over 37,102 person-years of follow-up. We did not find evidence of a greater hazard of late-life dementia incidence with elevated levels of long-term TRAP exposures. The estimated hazard ratio of all-cause dementia was 0.98 (95 % CI: 0.92-1.05) for every 2000 pt/cm3 increment in UFP, 0.95 (0.89-1.01) for every 100 ng/m3 increment in BC, and 0.96 (0.91-1.02) for every 2 ppb increment in NO2. These findings were consistent across sensitivity and secondary analyses. DISCUSSION We did not find evidence of a greater hazard of late-life dementia risk with elevated long-term TRAP exposures in this population-based prospective cohort study.
Collapse
Affiliation(s)
- Magali N Blanco
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, Virginia Puget Sound Health Care System, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center, Virginia Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sara D Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy V Larson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Anjum Hajat
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Xie XY, Huang LY, Cheng GR, Liu D, Hu FF, Zhang JJ, Han GB, Liu XC, Wang JY, Zhou J, Zeng DY, Liu J, Nie QQ, Song D, Yu YF, Hu CL, Fu YD, Li SY, Cai C, Cui YY, Cai WY, Li YQ, Fan RJ, Wan H, Xu L, Ou YM, Chen XX, Zhou YL, Chen YS, Li JQ, Wei Z, Wu Q, Mei YF, Tan W, Song SJ, Zeng Y. Association Between Long-Term Exposure to Ambient Air Pollution and the Risk of Mild Cognitive Impairment in a Chinese Urban Area: A Case-Control Study. J Alzheimers Dis 2024; 98:941-955. [PMID: 38489185 DOI: 10.3233/jad-231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background As a prodromal stage of dementia, significant emphasis has been placed on the identification of modifiable risks of mild cognitive impairment (MCI). Research has indicated a correlation between exposure to air pollution and cognitive function in older adults. However, few studies have examined such an association among the MCI population inChina. Objective We aimed to explore the association between air pollution exposure and MCI risk from the Hubei Memory and Aging Cohort Study. Methods We measured four pollutants from 2015 to 2018, 3 years before the cognitive assessment of the participants. Logistic regression models were employed to calculate odds ratios (ORs) to assess the relationship between air pollutants and MCI risk. Results Among 4,205 older participants, the adjusted ORs of MCI risk for the highest quartile of PM2.5, PM10, O3, and SO2 were 1.90 (1.39, 2.62), 1.77 (1.28, 2.47), 0.56 (0.42, 0.75), and 1.18 (0.87, 1.61) respectively, compared with the lowest quartile. Stratified analyses indicated that such associations were found in both males and females, but were more significant in older participants. Conclusions Our findings are consistent with the growing evidence suggesting that air pollution increases the risk of mild cognitive decline, which has considerable guiding significance for early intervention of dementia in the older population. Further studies in other populations and broader geographical areas are warranted to validate these findings.
Collapse
Affiliation(s)
- Xin-Yan Xie
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lin-Ya Huang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Gui-Rong Cheng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Fei-Fei Hu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing-Jing Zhang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Gang-Bin Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xiao-Chang Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Yi Wang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Zhou
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Qian-Qian Nie
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Song
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Ya-Fu Yu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Chen-Lu Hu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Yi-Di Fu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Shi-Yue Li
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Cai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Yang Cui
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Wan-Ying Cai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Yi-Qing Li
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Ren-Jia Fan
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Wan
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yang-Ming Ou
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xing-Xing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan-Ling Zhou
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Shan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Quan Li
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Fei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shao-Jun Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Rodrigues JFR, Rodrigues LP, de Araújo Filho GM. Alzheimer's Disease and Suicide: An Integrative Literature Review. Curr Alzheimer Res 2024; 20:758-768. [PMID: 38409712 DOI: 10.2174/0115672050292472240216052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Suicide has been described in patients with Alzheimer's disease. Some promising medications for treating Alzheimer's disease have had their studies suspended because they increase the risk of suicide. Understanding the correlations between suicide and Alzheimer's disease is essential in an aging world. METHODS A search was carried out on electronic websites (PubMed and Scielo) using the MeSH Terms "suicide" and "Alzheimer" (1986-2023). Of a total of 115 articles, 26 were included in this review. RESULTS Depression and the allele ε4 of Apolipoprotein (APOE4) were demonstrated to be the main risk factors for suicide in patients with Alzheimer's disease. CONCLUSION Adequately delineating which elderly people are vulnerable to suicide is important so that new treatments for Alzheimer's disease can be successful. This review showed a need for new studies to investigate the interface between Alzheimer's disease and suicide.
Collapse
Affiliation(s)
- Juliano Flávio Rubatino Rodrigues
- Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Unimed Bauru Cooperativa de Trabalho Médico, Bauru, SP, Brazil
| | - Livia Peregrino Rodrigues
- Faculdade de Medicina de Barbacena (FAME), Barbacena, MG, Brazil
- Faculdade de Medicina da Universidade de Marília (UNIMAR), Marília, SP, Brazil
| | | |
Collapse
|
35
|
Huang L, Ma J, Jiang F, Zhang S, Lan Y, Zhang Y. Relationship Between Work-Related Noise Exposure and Cognitive Impairment: A Cross-Sectional Study in China. J Alzheimers Dis 2024; 100:151-161. [PMID: 38848172 DOI: 10.3233/jad-240061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Noise exposure and the risk of cognitive impairment are currently major public health issues. Objective This study aimed to analyze the relationship between noise exposure and early impairment of cognitive function from the perspective of occupational epidemiology and to provide evidence for the long-term prevention and treatment of dementia in the context of aging. Methods This study was conducted in China between May and August 2021. The independent variables were the type of hazardous factors, duration of noise exposure, perceived noise intensity, and cumulative noise exposure (CNE). The dependent variable was cognitive function, which was measured using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Multiple linear and logistic regression were used to analyze the relationship between noise exposure and cognitive function and to establish an effect curve. Results The detection rates of cognitive dysfunction using the MMSE and MoCA were 1.1% and 36.2%, respectively. The predicted MMSE and MoCA scores showed a downward trend within the CNE value ranging from 90-140 dB.time. Each unit increase in CNE decreased cognitive function scores by 0.025 (0.037, 0.013) and 0.020 (0.037, 0.003) points,respectively. Conclusions From the perspective of occupational epidemiology, these findings reveal a potential link between long-term noise exposure and early cognitive impairment.
Collapse
Affiliation(s)
- Lei Huang
- Department of Postgraduate Students, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingxuan Ma
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fugui Jiang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yajia Lan
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Chen GC, Nyarko Hukportie D, Wan Z, Li FR, Wu XB. The Association Between Exposure to Air Pollution and Dementia Incidence: The Modifying Effect of Smoking. J Gerontol A Biol Sci Med Sci 2023; 78:2309-2317. [PMID: 36373950 DOI: 10.1093/gerona/glac228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The influence of overall air pollution on dementia risk and the potential effect modification by other risk factors remain to be clarified. METHODS We included 459 844 UK residents who were free of dementia and had data on the exposure to particulate matter (PM)2.5, PM2.5-10, PM10, NO2, and NOx during baseline recruitment. The combined exposure to various PMs and NOx was estimated by using an air pollution score. Hazard ratios (HRs) and 95% confidence intervals (CIs) for incident dementia were estimated by multivariable Cox models. RESULTS During a median 11.7 years follow-up, 5 905 incident cases of all-cause dementia were identified. With the exception of PM2.5-10, all other air pollutants were separately associated with a higher risk of all-cause dementia (all p-trend < .001) with generally similar associations for dementia subtypes. An increasing air pollution score was associated with higher risks of all-cause as well as individual dementia outcomes, with adjusted HRs (95% CI) of 1.27 (1.18, 1.37) for all-cause dementia, 1.27 (1.14, 1.43) for Alzheimer's disease, and 1.35 (1.16, 1.57) for vascular dementia when comparing the highest with the lowest quartile of the score (all p-trend < .001). These associations of air pollution score with dementia and its subtypes were observed among never and former smokers but not among current smokers (all p-interaction
< .030). CONCLUSION Air pollution was associated with a higher risk of dementia among nonsmokers but not current smokers. Additional studies are required to confirm our findings and to explore the potential mechanisms underlying the possible effect modification by smoking status.
Collapse
Affiliation(s)
- Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Nyarko Hukportie
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Salerno PR, Dong W, Motairek I, Makhlouf MH, Saifudeen M, Moorthy S, Dalton JE, Perzynski AT, Rajagopalan S, Al-Kindi S. Alzheimer`s disease mortality in the United States: Cross-sectional analysis of county-level socio-environmental factors. Arch Gerontol Geriatr 2023; 115:105121. [PMID: 37437363 DOI: 10.1016/j.archger.2023.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Geographical disparities in mortality among Alzheimer`s disease (AD) patients have been reported and complex sociodemographic and environmental determinants of health (SEDH) may be contributing to this variation. Therefore, we aimed to explore high-risk SEDH factors possibly associated with all-cause mortality in AD across US counties using machine learning (ML) methods. METHODS We performed a cross-sectional analysis of individuals ≥65 years with any underlying cause of death but with AD in the multiple causes of death certificate (ICD-10,G30) between 2016 and 2020. Outcomes were defined as age-adjusted all-cause mortality rates (per 100,000 people). We analyzed 50 county-level SEDH and Classification and Regression Trees (CART) was used to identify specific county-level clusters. Random Forest, another ML technique, evaluated variable importance. CART`s performance was validated using a "hold-out" set of counties. RESULTS Overall, 714,568 individuals with AD died due to any cause across 2,409 counties during 2016-2020. CART identified 9 county clusters associated with an 80.1% relative increase of mortality across the spectrum. Furthermore, 7 SEDH variables were identified by CART to drive the categorization of clusters, including High School Completion (%), annual Particulate Matter 2.5 Level in Air, live births with Low Birthweight (%), Population under 18 years (%), annual Median Household Income in US dollars ($), population with Food Insecurity (%), and houses with Severe Housing Cost Burden (%). CONCLUSION ML can aid in the assimilation of intricate SEDH exposures associated with mortality among older population with AD, providing opportunities for optimized interventions and resource allocation to reduce mortality among this population.
Collapse
Affiliation(s)
- Pedro Rvo Salerno
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Weichuan Dong
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Issam Motairek
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mohamed He Makhlouf
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | | | - Skanda Moorthy
- Case Western Reserve University, Cleveland, OH, United States
| | - Jarrod E Dalton
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Adam T Perzynski
- MetroHealth Medical Center, Center for Healthcare Research and Policy, Cleveland, OH, United States
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
38
|
Belsky DW, Baccarelli AA. To promote healthy aging, focus on the environment. NATURE AGING 2023; 3:1334-1344. [PMID: 37946045 DOI: 10.1038/s43587-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
To build health equity for an aging world marked by dramatic disparities in healthy lifespan between countries, regions and population groups, research at the intersections of biology, toxicology and the social and behavioral sciences points the way: to promote healthy aging, focus on the environment. In this Perspective, we suggest that ideas and tools from the emerging field of geroscience offer opportunities to advance the environmental science of aging. Specifically, the capacity to measure the pace and progress of biological processes of aging within individuals from relatively young ages makes it possible to study how changing environments can change aging trajectories from early in life, in time to prevent or delay aging-related disease and disability and build aging health equity.
Collapse
Affiliation(s)
- Daniel W Belsky
- Robert N. Butler Columbia Aging Center and Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
39
|
Bhattacharya D, Td J, Lakshminarayanan S, Meenu S, Madhusoodanan L S, Thulasingam M. Perception of Noise Pollution Among Youths and Adults in Urban Puducherry, South India. Cureus 2023; 15:e49573. [PMID: 38156172 PMCID: PMC10754227 DOI: 10.7759/cureus.49573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Objective The study seeks to assess the perceptions of people on evaluating the sources of noise, noise-induced health issues, and noise regulation awareness among the exposed population present in the study site of urban Puducherry, South India. Methods A cross-sectional survey using a pre-tested semi-structured questionnaire was conducted between July and August 2021 in 32 study sites in urban Puducherry to evaluate how adults and youth perceive noise pollution. The questionnaire gathered details on their sociodemographic characteristics, knowledge of the problems associated with noise pollution, source of noise pollution, effects of noise on health, and awareness of regulations related to noise pollution. Results Half of the study participants perceive that noise pollution is a problem in their localities; the majority feel disturbed by that noise; and the most prevalent reason given for noise pollution is traffic noise. Most of the participants reported that trouble paying attention to work or conversations was the most frequent health impact of noise pollution. Participants who are employed, have formal education, belong to families above the poverty line, and reside near the main road and sub-main road (less than 200 meters) showed a significant association (p-value <0.05) with perceived noise pollution problems. Conclusion Based on the findings, it can be concluded that respondents in urban Puducherry perceive traffic noise as the most common source of noise pollution. The majority of the participants felt that the excessive noise made it difficult for them to focus on their work. Individuals who reside or work close to a major highway and outdoor workers believe noise pollution is a big problem.
Collapse
Affiliation(s)
- Debajyoti Bhattacharya
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - James Td
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Subitha Lakshminarayanan
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Sai Meenu
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Swathy Madhusoodanan L
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Mahalakshmy Thulasingam
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| |
Collapse
|
40
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
41
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Early tactile stimulation influences the development of Alzheimer's disease in gestationally stressed APP NL-G-F adult offspring NL-G-F/NL-G-F mice. Exp Neurol 2023; 368:114498. [PMID: 37536439 DOI: 10.1016/j.expneurol.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Alzheimer's disease (AD) is associated with cerebral plaques and tangles, reduced synapse number, and shrinkage in several brain areas and these morphological effects are associated with the onset of compromised cognitive, motor, and anxiety-like behaviours. The appearance of both anatomical and behavioural symptoms is worsened by stress. The focus of this study was to examine the effect of neonatal tactile stimulation on AD-like behavioural and neurological symptoms on APP NL-G-F/NL-G-F mice, a mouse model of AD, who have been gestationally stressed. Our findings indicate that neonatal tactile stimulation improves cognition, motor skills, and anxiety-like symptoms in both gestationally stressed and non-stressed adult APP mice and that these alterations are associated with reduced Aβ plaque formation. Thus, tactile stimulation appears to be a promising non-invasive preventative strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Zahra Jafari
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| |
Collapse
|
42
|
Marcantonio R, Fuentes A. Environmental violence: a tool for planetary health research. Lancet Planet Health 2023; 7:e859-e867. [PMID: 37821164 DOI: 10.1016/s2542-5196(23)00190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023]
Abstract
From climate change to toxic pollution and the interactive effects of multiple pollution streams, human health is under siege. Human-produced environmental risks to health and wellbeing are high and contributing to patterns of global morbidity, mortality, economic inequality, displacement, and insecurity. The implications of human-produced environmental harms to global health are complex just as are their causes. The concept of environmental violence offers a potentially robust frame for engaging this issue. We argue that a more specified and structured framework and definition of environmental violence-focusing on human-produced harms by way of pollution emissions-is both timely and beneficial for engaging the complexities of global public health. To clarify why and how this is the case, we review the literature for publications that use the term environmental violence and we subsequently propose a specific definition focused on human-produced pollution along with a framework for tracking and analysing environmental violence and its constituent components. Finally, we discuss the potential value of our framework for research and policy making regarding human health.
Collapse
Affiliation(s)
- Richard Marcantonio
- Department of Management and Organization, Environmental Change Initiative, and Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, IN, USA.
| | - Agustín Fuentes
- Department of Anthropology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
43
|
Chen YC, Hsieh PI, Chen JK, Kuo E, Yu HL, Chiou JM, Chen JH. Effect of indoor air quality on the association of long-term exposure to low-level air pollutants with cognition in older adults. ENVIRONMENTAL RESEARCH 2023; 233:115483. [PMID: 36791838 DOI: 10.1016/j.envres.2023.115483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND How indoor air quality affects the temporal associations of long-term exposure to low-level air pollutants with cognition remains unclear. METHODS This cohort study (2011-2019) included 517 non-demented older adults at baseline with four repeated cognitive assessments. The time-varying exposure to PM2.5, PM10, NO2, SO2, CO, and O3 was estimated for each participant from 1994 to 2019. Indoor air quality was determined by ventilation status and daily indoor time. Generalized linear mixed models were used to analyze the association of air pollutants, indoor air quality, and cognition adjusting for important covariates. RESULTS Over time, per 2.97 μg/m3 (i.e., an interquartile range) increment of PM2.5 was associated with the poor performance of memory (Z score of a cognitive test, βˆ:-0.14), attention (βˆ:-0.13), and executive function (βˆ:-0.20). Similarly, per 2.05 μg/m3 increase in PM2.5-10 was associated with poor global cognition [adjusted odds ratio (aOR): 1.48, βˆ:-0.28], attention (βˆ:-0.07), and verbal fluency (βˆ:-0.09); per 4.94 μg/m3 increase in PM10 was associated with poor global cognition (aOR: 1.78; βˆ:-0.37). In contrast, per 2.74 ppb increase in O3 was associated with better global cognition (βˆ:0.36 to 0.47). These associations became more evident in participants with poor ventilation or short daily indoor time (<12.5 h/day). For global cognition, the exposure to a 10-μg/m3 increment in PM2.5, PM2.5-10, and PM10 corresponded to 1.4, 5.8, and 2.8 years of aging, respectively. CONCLUSION This study demonstrated how indoor air quality in areas using clean fuels differentially affected the associations of long-term exposure to low-level air pollutants with cognition. Tightening air quality standards may help prevent dementia.
Collapse
Affiliation(s)
- Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Pei-Iun Hsieh
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Jia-Kun Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Emily Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Hwa-Lung Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistics and Data Science, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan; Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, No. 1, Changde Street, Taipei, 10048, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, No.1 Jen Ai Road Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
44
|
Sparks S, Pinto J, Hayes G, Spitschan M, Bulte DP. The impact of Alzheimer's disease risk factors on the pupillary light response. Front Neurosci 2023; 17:1248640. [PMID: 37650103 PMCID: PMC10463762 DOI: 10.3389/fnins.2023.1248640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and its prevalence is increasing and is expected to continue to increase over the next few decades. Because of this, there is an urgent requirement to determine a way to diagnose the disease, and to target interventions to delay and ideally stop the onset of symptoms, specifically those impacting cognition and daily livelihood. The pupillary light response (PLR) is controlled by the sympathetic and parasympathetic branches of the autonomic nervous system, and impairments to the pupillary light response (PLR) have been related to AD. However, most of these studies that assess the PLR occur in patients who have already been diagnosed with AD, rather than those who are at a higher risk for the disease but without a diagnosis. Determining whether the PLR is similarly impaired in subjects before an AD diagnosis is made and before cognitive symptoms of the disease begin, is an important step before using the PLR as a diagnostic tool. Specifically, identifying whether the PLR is impaired in specific at-risk groups, considering both genetic and non-genetic risk factors, is imperative. It is possible that the PLR may be impaired in association with some risk factors but not others, potentially indicating different pathways to neurodegeneration that could be distinguished using PLR. In this work, we review the most common genetic and lifestyle-based risk factors for AD and identify established relationships between these risk factors and the PLR. The evidence here shows that many AD risk factors, including traumatic brain injury, ocular and intracranial hypertension, alcohol consumption, depression, and diabetes, are directly related to changes in the PLR. Other risk factors currently lack sufficient literature to make any conclusions relating directly to the PLR but have shown links to impairments in the parasympathetic nervous system; further research should be conducted in these risk factors and their relation to the PLR.
Collapse
Affiliation(s)
- Sierra Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Manuel Spitschan
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology and Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory and Circadian Neuroscience, Tübingen, Germany
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Amnuaylojaroen T, Parasin N. Perspective on Particulate Matter: From Biomass Burning to the Health Crisis in Mainland Southeast Asia. TOXICS 2023; 11:553. [PMID: 37505519 PMCID: PMC10384564 DOI: 10.3390/toxics11070553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Air pollution, notably particulate matter pollution, has become a serious concern in Southeast Asia in recent decades. The combustion of biomass has been recognized to considerably increase air pollution problems from particulate matter in this region. Consequently, its effect on people in this area is significant. This article presents a synthesis of several datasets obtained from satellites, global emissions, global reanalysis, and the global burden of disease (GBD) to highlight the air quality issue and emphasize the health crisis in mainland Southeast Asia. We found that the death rates of people have increased significantly along with the rise of hotspots in mainland Southeast Asia over the last two decades (2000-2019). In comparison, most countries saw a considerable increase in the predicted fatality rates associated with chronic respiratory illnesses during those two decades. Several reports highlight the continued prevalence of chronic respiratory diseases likely related to poor air quality in Southeast Asia.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
46
|
Zhu Z, Yang Z, Yu L, Xu L, Wu Y, Zhang X, Shen P, Lin H, Shui L, Tang M, Jin M, Wang J, Chen K. Residential greenness, air pollution and incident neurodegenerative disease: A cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163173. [PMID: 37003317 DOI: 10.1016/j.scitotenv.2023.163173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Neurodegenerative disease has a great adverse impact on population's death and disability worldwide. However, the association of air pollution and residential greenness with neurodegenerative disease and their potential mechanisms still remain uncertain. METHODS We used data from a population-based prospective cohort in Ningbo, China. Exposure to PM2.5, PM10 and NO2 were assessed by land-use regression (LUR) models and residential greenness was estimated by Normalized Difference Vegetation Index (NDVI). Our primary outcomes were all neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's disease (AD). Cox proportional hazards regression models were used to examine the association of air pollution and residential greenness with risk of incident neurodegenerative disease. Furthermore, we also explored the potential mediation relationship and effect modification between greenness and air pollutants. RESULTS During the follow-up period, we identified a total of 617 incident neurodegenerative diseases, 301 PD and 182 AD. In single-exposure models, PM2.5 was positively associated with all outcomes (e.g. AD hazard ratio (HR): 1.41, 95 % confidence interval (CI): 1.09-1.84, per interquartile range (IQR) increment), whereas residential greenness showed protective effects (e.g. neurodegenerative disease, HR: 0.82, 95%CI: 0.75-0.90, per IQR increment for NDVI in 1000 m buffer). NO2 was positively associated with risk of neurodegenerative disease and PM10 was associated with neurodegenerative disease and AD. In two-exposure models, after adjustment for PM2.5, the association for greenness generally attenuated towards null. Moreover, we identified the significant modification effect of greenness on PM2.5 on additive and multiplicative scales. CONCLUSION In this prospective study, we found that exposure to higher residential greenness and lower concentrations of particulate matter were associated with lower risk of neurodegenerative disease, PD and AD. Residential greenness could modify the association of PM2.5 with neurodegenerative disease.
Collapse
Affiliation(s)
- Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Luhua Yu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Xinhan Zhang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo, 315040, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
47
|
Lee Y, Yoon S, Yoon SH, Kang SW, Jeon S, Kim M, Shin DA, Nam CM, Ye BS. Air pollution is associated with faster cognitive decline in Alzheimer's disease. Ann Clin Transl Neurol 2023; 10:964-973. [PMID: 37106569 PMCID: PMC10270255 DOI: 10.1002/acn3.51779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Although chronic exposure to air pollution is associated with an increased risk of dementia in normal elderlies, the effect of chronic exposure to air pollution on the rates of cognitive decline in Alzheimer's disease (AD) has not been elucidated. METHODS In this longitudinal study, a total of 269 patients with mild cognitive impairment or early dementia due to AD with the evidence of brain β-amyloid deposition were followed-up for a mean period of 4 years. Five-year normalized hourly cumulative exposure value of each air pollutant, such as carbon monoxide (CO), nitrogen dioxide (NO2 ), sulfur dioxide (SO2 ), and particulate matter (PM2.5 and PM10 ), was computed based on nationwide air pollution database. The effects of chronic exposure to air pollution on longitudinal cognitive decline rate were evaluated using linear mixed models. RESULTS Higher chronic exposure to SO2 was associated with a faster decline in memory score, whereas chronic exposure to CO, NO2 , and PM10 were not associated with the rate of cognitive decline. Higher chronic exposure to PM2.5 was associated with a faster decline in visuospatial score in apolipoprotein E ε4 carriers. These effects remained significant even after adjusting for potential confounders. INTERPRETATION Our findings suggest that chronic exposure to SO2 and PM2.5 is associated with faster clinical progression in AD.
Collapse
Affiliation(s)
- Young‐gun Lee
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
- Department of Neurology, Ilsan Paik HospitalInje University College of MedicineGoyangSouth Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryYonsei University College of MedicineSeoulSouth Korea
| | - So Hoon Yoon
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Sung Woo Kang
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Seun Jeon
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Minseok Kim
- Department of Biostatistics and ComputingYonsei University College of MedicineSeoulSouth Korea
| | - Dong Ah Shin
- Department of NeurosurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Chung Mo Nam
- Department of Biostatistics and ComputingYonsei University College of MedicineSeoulSouth Korea
- Department of Preventive MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Byoung Seok Ye
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
48
|
Kilian JG, Mejias-Ortega M, Hsu HW, Herman DA, Vidal J, Arechavala RJ, Renusch S, Dalal H, Hasen I, Ting A, Rodriguez-Ortiz CJ, Lim SL, Lin X, Vu J, Saito T, Saido TC, Kleinman MT, Kitazawa M. Exposure to quasi-ultrafine particulate matter accelerates memory impairment and Alzheimer's disease-like neuropathology in the AppNL-G-F knock-in mouse model. Toxicol Sci 2023; 193:175-191. [PMID: 37074955 PMCID: PMC10230292 DOI: 10.1093/toxsci/kfad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-β pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-β buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.
Collapse
Affiliation(s)
- Jason G Kilian
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Marina Mejias-Ortega
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Department of Cell Biology, Genetics and Physiology, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Heng-Wei Hsu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - David A Herman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Janielle Vidal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Hansal Dalal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Siok-Lam Lim
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Xiaomeng Lin
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Joan Vu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Masashi Kitazawa
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| |
Collapse
|
49
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
50
|
Serafin P, Zaremba M, Sulejczak D, Kleczkowska P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023; 11:biomedicines11051477. [PMID: 37239148 DOI: 10.3390/biomedicines11051477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM) and dementia is encouraging. However, few interventions exist to delay or prevent the onset of dementia. Air quality data are becoming increasingly available, and the science underlying the associated health effects is also evolving rapidly. Recent interest in this area has led to the publication of population-based cohort studies, but these studies have used different approaches to identify cases of dementia. The purpose of this article is to review recent evidence describing the association between exposure to air pollution and dementia with special emphasis on fine particulate matter of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air pollutants reach the brain and activate the innate immune response. In addition, the article also provides a short overview of existing limitations in the treatment of dementia.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|