1
|
Huang Y, Zhou Z, Liu T, Tang S, Xin X. Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. NPJ Syst Biol Appl 2024; 10:129. [PMID: 39505883 PMCID: PMC11542073 DOI: 10.1038/s41540-024-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for addressing fundamental biological questions. High-content imaging provides rich datasets, but it remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D microenvironments. High-dimensional features were extracted from extensive image datasets, and cellular states were identified based on feature profiles. Time-series clustering revealed distinct temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in 3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex extracellular microenvironments.
Collapse
Affiliation(s)
- Yihong Huang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zidong Zhou
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianqi Liu
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengnan Tang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Lee JH, Seo KH, Yang JH, Cho SS, Kim NY, Kim JH, Kim KM, Ki SH. CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction. Free Radic Biol Med 2024; 225:181-192. [PMID: 39370054 DOI: 10.1016/j.freeradbiomed.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Hepatic stellate cells (HSCs) are primary cells for development and progression of liver fibrosis. Mitophagy is an essential lysosomal process for mitochondrial homeostasis, which can be activated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a representative mitochondrial uncoupler. However, little information is available on the role of CCCP-mediated mitophagy in HSC activation and liver fibrogenesis. In this study, we showed that CCCP treatment in HSCs caused mitochondrial dysfunction proved by decreased mitochondrial membrane potential, mitochondrial DNA, and ATP contents and increased mitochondrial ROS. Moreover, CCCP induced mitophagy and impaired mitophagy flux at the later stage. This blockade of mitophagic flux effect was mediated by suppression of lysosomal activity; CCCP decreased expression of lysosomal markers and cathepsin B activity, and increased lysosomal pH. Intriguingly, CCCP treatment in LX-2 cells or primary HSCs elevated plasminogen activator inhibitor-1 (PAI-1), a typical fibrogenic marker of HSCs which was attenuated by mitochondrial division inhibitor 1, a mitophagy inhibitor. The up-regulation of PAI-1 by CCCP was not due to altered transcriptional activity but lysosomal dysfunction. In vivo acute or sub-chronic treatment of CCCP to mice induced mitophagy and fibrogenesis of liver. Hepatic fibrogenic marker (PAI-1) was incremented with mitophagy markers (parkin and PTEN-induced putative kinase 1) in the livers of CCCP injected mice. Furthermore, we found that 5-aminoimidazole-4-carboxyamide ribonucleoside reversed CCCP-mediated mitophagy and subsequent HSC activation. To conclude, CCCP facilitated HSC activation and hepatic fibrogenesis via mitochondrial dysfunction and lysosomal blockade, implying that attenuation of CCCP-related signaling molecules may contribute to treat liver fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Hwa Seo
- General for Narcotics Safety Planning, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), Cheongju, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea; Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk, South Korea
| | - Na Yeon Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, South Korea; Institute of Well-Aging Medicare & Chosun University LAMP Project Group, Chosun University, Gwangju, 61452, South Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, South Korea.
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
4
|
Prasad K, Bhattacharya D, Shams SGE, Izarraras K, Hart T, Mayfield B, Blaszczyk MB, Zhou Z, Pajvani UB, Friedman SL, Bhattacharya M. Kisspeptin Alleviates Human Hepatic Fibrogenesis by Inhibiting TGFβ Signaling in Hepatic Stellate Cells. Cells 2024; 13:1651. [PMID: 39404414 PMCID: PMC11476267 DOI: 10.3390/cells13191651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFβ)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFβ-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFβ signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Shams Gamal Eldin Shams
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Kimberly Izarraras
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Tia Hart
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Brent Mayfield
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Maryjka B. Blaszczyk
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| |
Collapse
|
5
|
Zhang M, Barroso E, Peña L, Rada P, Valverde ÁM, Wahli W, Palomer X, Vázquez-Carrera M. PPARβ/δ attenuates hepatic fibrosis by reducing SMAD3 phosphorylation and p300 levels via AMPK in hepatic stellate cells. Biomed Pharmacother 2024; 179:117303. [PMID: 39153437 DOI: 10.1016/j.biopha.2024.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
The role of peroxisome proliferator-activated receptor (PPAR)β/δ in hepatic fibrosis remains a subject of debate. Here, we examined the effects of a PPARβ/δ agonist on the pathogenesis of liver fibrosis and the activation of hepatic stellate cells (HSCs), the main effector cells in liver fibrosis, in response to the pro-fibrotic stimulus transforming growth factor-β (TGF-β). The PPARβ/δ agonist GW501516 completely prevented glucose intolerance and peripheral insulin resistance, blocked the accumulation of collagen in the liver, and attenuated the expression of inflammatory and fibrogenic genes in mice fed a choline-deficient high-fat diet (CD-HFD). The antifibrogenic effect of GW501516 observed in the livers CD-HFD-fed mice could occur through an action on HSCs since primary HSCs isolated from Ppard-/- mice showed increased mRNA levels of the profibrotic gene Col1a1. Moreover, PPARβ/δ activation abrogated TGF-β1-mediated cell migration (an indicator of cell activation) in LX-2 cells (immortalized activated human HSCs). Likewise, GW501516 attenuated the phosphorylation of the main downstream intracellular protein target of TGF-β1, suppressor of mothers against decapentaplegic (SMAD)3, as well as the levels of the SMAD3 co-activator p300 via the activation of AMP-activated protein kinase (AMPK) and the subsequent inhibition of extracellular signal-regulated kinase-1/2 (ERK1/2) in LX-2 cells. Overall, these findings uncover a new mechanism by which the activation of AMPK by a PPARβ/δ agonist reduces TGF-β1-mediated activation of HSCs and fibrosis via the reduction of both SMAD3 phosphorylation and p300 levels.
Collapse
Affiliation(s)
- Meijian Zhang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Patricia Rada
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC/UAM), Madrid, Spain
| | - Ángela M Valverde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC/UAM), Madrid, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, Toulouse Cedex F-31300, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| |
Collapse
|
6
|
Kamada Y, Ueda Y, Matsuno E, Matsumoto R, Akita M, Takamatsu S, Miyoshi E. Core-fucose-specific Pholiota squarrosa lectin decreased hepatic inflammatory macrophage infiltration in steatohepatitis mice. Glycoconj J 2024; 41:267-278. [PMID: 39249179 DOI: 10.1007/s10719-024-10163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease. Among fucosyltransferases, expression of alpha-1, 6-fucosyltransferase (Fut8), which produces core fucose, is frequently elevated during the progression of human chronic liver diseases. Previously, we discovered core-fucose-specific Pholiota squarrosa lectin (PhoSL) from Japanese mushroom Sugitake. Lectins are bioactive compounds that bind to glycan specifically, and various kinds of lectin have a variety of biological functions. Using high-fat and high-cholesterol (HFHC)-fed steatohepatitic mice, we found that core fucosylation increases in hepatic inflammatory macrophages. Antibody drugs bind to specific antigens and block protein function. We hypothesized that, like antibody drugs, PhoSL could have inhibitory effects on glycoproteins involved in steatohepatitis progression. PhoSL administration dramatically decreased hepatic macrophage infiltration and liver fibrosis-related gene expression. Using mouse macrophage-like cell RAW264.7, we found that PhoSL enhanced core-fucose-mediated activation of macrophage cell death by blocking interferon-γ/signal transducer and activator of transcription 1 (STAT1) signaling. Core-fucose-mediated cell death is a mechanism for the anti-inflammatory effects and anti-fibrotic effects of PhoSL on activated macrophages in steatohepatitic liver. In addition, PhoSL provides an anti-fibrotic effect by blocking transforming growth factor-β/SMAD family member 3 signaling in hepatic stellate cells. In conclusion, we found core-fucose-specific PhoSL administration could suppress steatohepatitis progression by decreasing inflammatory macrophage infiltration and fibrotic signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Yui Ueda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eriko Matsuno
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Riku Matsumoto
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Maaya Akita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Guo Q, Yang A, Zhao R, Zhao H, Mu Y, Zhang J, Han Q, Su Y. Nimodipine ameliorates liver fibrosis via reshaping liver immune microenvironment in TAA-induced in mice. Int Immunopharmacol 2024; 138:112586. [PMID: 38955030 DOI: 10.1016/j.intimp.2024.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Nimodipine, a calcium antagonist, exert beneficial neurovascular protective effects in clinic. Recently, Calcium channel blockers (CCBs) was reported to protect against liver fibrosis in mice, while the exact effects of Nimodipine on liver injury and hepatic fibrosis remain unclear. In this study, we assessed the effect of nimodipine in Thioacetamide (TAA)-induced liver fibrosis mouse model. Then, the collagen deposition and liver inflammation were assessed by HE straining. Also, the frequency and phenotype of NK cells, CD4+T and CD8+T cells and MDSC in liver and spleen were analyzed using flow cytometry. Furthermore, activation and apoptosis of primary Hepatic stellate cells (HSCs) and HSC line LX2 were detected using α-SMA staining and TUNEL assay, respectively. We found that nimodipine administration significantly attenuated liver inflammation and fibrosis. And the increase of the numbers of hepatic NK and NKT cells, a reversed CD4+/CD8+T ratio, and reduced the numbers of MDSC were observed after nimodipine treatment. Furthermore, nimodipine administration significantly decreased α-SMA expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Nimodipine also reduced the proliferation of LX2, and significantly promoted high level of apoptosis in vitro. Moreover, nimodipine downregulated Bcl-2 and Bcl-xl, simultaneously increased expression of JNK, p-JNK, and Caspase-3. Together, nimodipine mediated suppression of growth and fibrogenesis of HSCs may warrant its potential use in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Quanjuan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Rongrong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Yongliang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Yuhang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
8
|
Benedicto AM, Lucantoni F, Fuster-Martínez I, Diaz-Pozo P, Dorcaratto D, Muñoz-Forner E, Victor VM, Esplugues JV, Blas-García A, Apostolova N. Interference with mitochondrial function as part of the antifibrogenic effect of Rilpivirine: A step towards novel targets in hepatic stellate cell activation. Biomed Pharmacother 2024; 178:117206. [PMID: 39079261 DOI: 10.1016/j.biopha.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/25/2024] Open
Abstract
Activated hepatic stellate cells (aHSCs), the main perpetrators of liver fibrosis, are a promising therapeutic target in the treatment of chronic liver disease. During liver injury, HSCs transcend from a quiescent to a fibrotic phenotype, a process which involves major metabolic reprogramming with altered mitochondrial function. The antiretroviral drug Rilpivirine (RPV) has demonstrated a hepatoprotective and specifically antifibrotic effect in several animal models of chronic liver injury, as well as in vitro. Herein, we use HSCs activated with the profibrogenic cytokine TGF-β to explore whether mitochondrial function is implicated in this effect. The mitochondrial bioenergetic profile, morphology and dynamics of TGF-β-treated cells (48 h) were altered and these effects were prevented by co-treatment with clinically relevant concentrations of RPV. A MitoStress Test (Seahorse Analyzer) revealed that TGF-β increased both oxygen consumption rate (basal respiration, maximal respiration and spare respiratory capacity) and extracellular acidification rate (indicative of increased glycolysis). Cells exposed to TGF-β also displayed diminished mitochondrial membrane potential and enhanced mitochondrial fission. All of these effects were rescued with RPV. RNA sequencing analysis of cells exposed to TGF-β revealed the presence of 338 differentially expressed genes that encode mitochondrial proteins (mito-DEGs), of which 139 and 199 were significantly up- and down-regulated (adjusted p<0.05). This alteration in 15 (10.79 %) and 31 (22.03 %) of the up-regulated and 16 (8.04 %) and 49 (24.62 %) of the down-regulated mitoDEGs was prevented with co-exposure to RPV 4μM or 8μM, respectively. In conclusion, alterations in mitochondrial function are implicated in the antifibrogenic action of RPV, pointing to potential novel antifibrotic targets.
Collapse
Affiliation(s)
- Ana M Benedicto
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Federico Lucantoni
- Laboratory of Cellular Stress and Cell Death Pathways, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Isabel Fuster-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | | | - Dimitri Dorcaratto
- Unidad de Cirugía Hepato-Bilio-Pancreática, Hospital Clínico Universitario, Valencia, Spain; INCLIVA (Instituto de Investigación Sanitaria), Valencia, Spain
| | - Elena Muñoz-Forner
- Unidad de Cirugía Hepato-Bilio-Pancreática, Hospital Clínico Universitario, Valencia, Spain; INCLIVA (Instituto de Investigación Sanitaria), Valencia, Spain
| | - Victor M Victor
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; INCLIVA (Instituto de Investigación Sanitaria), Valencia, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain
| | - Ana Blas-García
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain.
| |
Collapse
|
9
|
Valente LC, Bacil GP, Riechelmann-Casarin L, Barbosa GC, Barbisan LF, Romualdo GR. Exploring in vitro modeling in hepatocarcinogenesis research: morphological and molecular features and similarities to the corresponding human disease. Life Sci 2024; 351:122781. [PMID: 38848937 DOI: 10.1016/j.lfs.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | | | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil.
| |
Collapse
|
10
|
Chiabotto G, Semnani A, Ceccotti E, Guenza M, Camussi G, Bruno S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Reversing Hepatic Fibrosis in 3D Liver Spheroids. Biomedicines 2024; 12:1849. [PMID: 39200313 PMCID: PMC11351945 DOI: 10.3390/biomedicines12081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hepatic fibrosis, arising from prolonged liver injury, entails the activation of hepatic stellate cells (HSCs) into myofibroblast-like cells expressing alpha-smooth muscle actin (α-SMA), thereby driving extracellular matrix deposition and fibrosis progression. Strategies targeting activated HSC reversal and hepatocyte regeneration show promise for fibrosis management. Previous studies suggest that extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) can suppress HSC activation, but ensuring EV purity is essential for clinical use. This study investigated the effects of MSC-derived EVs cultured in chemically defined conditions on liver spheroids and activated HSCs. Umbilical cord- and bone marrow-derived MSCs were expanded in chemically defined media, and EVs were isolated using filtration and differential ultracentrifugation. The impact of MSC-EVs was evaluated on liver spheroids generated in Sphericalplate 5D™ and on human HSCs, both activated by transforming growth factor beta 1 (TGF-β1). MSC-EVs effectively reduced the expression of profibrotic markers in liver spheroids and activated HSCs induced by TGF-β1 stimulation. These results highlight the potential of MSC-EVs collected under chemically defined conditions to mitigate the activated phenotype of HSCs and liver spheroids, suggesting MSC-EVs as a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (G.C.); (A.S.); (E.C.); (G.C.)
| |
Collapse
|
11
|
Ho CH, Chang TT, Lin HC, Wang SF. Agalactosyl IgG induces liver fibrogenesis via Fc gamma receptor 3a on human hepatic stellate cells. J Pathol 2024; 263:508-519. [PMID: 38886892 DOI: 10.1002/path.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The relevance of aberrant serum IgG N-glycosylation in liver fibrosis has been identified; however, its causal effect remains unclear. Because hepatic stellate cells (HSCs) contribute substantially to liver fibrosis, we investigated whether and through which mechanisms IgG N-glycosylation affects the fibrogenic properties of HSCs. Analysis of serum IgG1 N-glycome from 151 patients with chronic hepatitis B or liver cirrhosis revealed a positive correlation between Ishak fibrosis grading and IgG1 with agalactosyl N-glycoforms on the crystallizable fragment (Fc). Fc gamma receptor (FcγR) IIIa was observed in cultured human HSCs and HSCs in human liver tissues, and levels of FcγRIIIa in HSCs correlated with the severity of liver fibrosis. Additionally, agalactosyl IgG treatment caused HSCs to have a fibroblast-like morphology, enhanced migration and invasion capabilities, and enhanced expression of the FcγRIIIa downstream tyrosine-protein kinase SYK. Furthermore, agalactosyl IgG treatment increased fibrogenic factors in HSCs, including transforming growth factor (TGF)-β1, total collagen, platelet-derived growth factor subunit B and its receptors, pro-collagen I-α1, α-smooth muscle actin, and matrix metalloproteinase 9. These effects were more pronounced in HSCs that stably expressed FCGR3A and were reduced in FCGR3A knockout cells. Agalactosyl IgG and TGF-β1 each increased FCGR3A in HSCs. Furthermore, serum TGF-β1 concentrations in patients were positively correlated with agalactosyl IgG1 levels and liver fibrosis severity, indicating a positive feedback loop involving agalactosyl IgG, HSC-FcγRIIIa, and TGF-β1. In conclusion, agalactosyl IgG promotes fibrogenic characteristics in HSCs through FcγRIIIa. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Chang Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Xiao X, Yang F, Huang Y, Liu S, Hu Z, Liao S, Li Y. Enhanced In Vitro Efficacy of Verbascoside in Suppressing Hepatic Stellate Cell Activation via ROS Scavenging with Reverse Microemulsion. Antioxidants (Basel) 2024; 13:907. [PMID: 39199153 PMCID: PMC11351154 DOI: 10.3390/antiox13080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous approaches targeting hepatic stellate cells (HSCs) have emerged as pivotal therapeutic strategies to mitigate liver fibrosis and are currently undergoing clinical trials. The investigation of herbal drugs or isolated natural active compounds is particularly valuable, due to their multifaceted functions and low risk of side effects. Recent studies have hinted at the potential efficacy of verbascoside (VB) in ameliorating renal and lung fibrosis, yet its impact on hepatic fibrosis remains to be elucidated. This study aims to evaluate the potential effects of VB on liver fibrosis by assessing its ability to inhibit HSC activation. VB demonstrated significant efficacy in suppressing the expression of fibrogenic genes in activated LX-2 cells. Additionally, VB inhibited the migration and proliferation of these activated HSCs by scavenging reactive oxygen species (ROS) and downregulating the AMPK pathway. Furthermore, a biosafe reverse microemulsion loaded with VB (VB-ME) was developed to improve VB's instability and low bioavailability. The optimal formulation of VB-ME was meticulously characterized, revealing substantial enhancements in cellular uptake, ROS-scavenging capacity, and the suppression of HSC activation.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Feiyu Yang
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guiyang 550025, China
| | - Yuling Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaohui Liu
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou 510970, China
| | - Shanggao Liao
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guiyang 550025, China
| | - Yuanyuan Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yang H, Wang H, He Y, Yang Y, Thompson EW, Xia D, Burke LJ, Cao L, Hooper JD, Roberts MS, Crawford DHG, Liang X. Identification and characterization of TM4SF1 + tumor self-seeded cells. Cell Rep 2024; 43:114512. [PMID: 39003738 DOI: 10.1016/j.celrep.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Tumor self-seeding is a process whereby circulating tumor cells (CTCs) recolonize the primary tumor, which promotes tumor growth, angiogenesis, and invasion. However, the detailed nature and functions of tumor self-seeded cells (TSCs) have not been well defined due to challenges in tracking and isolating TSCs. Here, we report an accurate animal model using photoconvertible tagging to recapitulate the spontaneous process of tumor self-seeding and identify TSCs as a subpopulation of primary tumor cells with enhanced invasiveness and survival. We demonstrate transmembrane-4-L-six-family-1 (TM4SF1) as a marker of TSCs, which promotes migration, invasion, and anchorage-independent survival in cancer cells. By analyzing single-cell RNA sequencing datasets, we identify a potential TSC population with a metastatic profile in patients with cancer, which is detectable in early-stage disease and expands during cancer progression. In summary, we establish a framework to study TSCs and identify emerging cell targets with diagnostic, prognostic, or therapeutic potential in cancers.
Collapse
Affiliation(s)
- Haotian Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Haolu Wang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yang Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Queensland University of Technology and Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leslie J Burke
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael S Roberts
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Xiaowen Liang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia.
| |
Collapse
|
14
|
Wilhelmsen I, Combriat T, Dalmao-Fernandez A, Stokowiec J, Wang C, Olsen PA, Wik JA, Boichuk Y, Aizenshtadt A, Krauss S. The effects of TGF-β-induced activation and starvation of vitamin A and palmitic acid on human stem cell-derived hepatic stellate cells. Stem Cell Res Ther 2024; 15:223. [PMID: 39044210 PMCID: PMC11267759 DOI: 10.1186/s13287-024-03852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-β. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-β-induced activation-related transcriptome. However, TGF-β-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-β. CONCLUSIONS scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-β-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.
Collapse
Affiliation(s)
- Ingrid Wilhelmsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway.
| | - Thomas Combriat
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Andrea Dalmao-Fernandez
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo, 0316, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Chencheng Wang
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Department of Transplantation Medicine, Institute for Surgical Research, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Petter Angell Olsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Jonas Aakre Wik
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Yuliia Boichuk
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Aleksandra Aizenshtadt
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| |
Collapse
|
15
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
16
|
Chen CC, Hsu LW, Chen KD, Chiu KW, Kung CP, Li SR, Chen CL, Huang KT. Calreticulin regulates hepatic stellate cell activation through modulating TGF-beta-induced Smad signaling. Cell Calcium 2024; 121:102895. [PMID: 38703416 DOI: 10.1016/j.ceca.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca2+) homeostasis, with its Ca2+ storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-β signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca2+ levels through a form of Ca2+ influx, named store-operated Ca2+ entry (SOCE), we examined whether moderating SOCE affected TGF-β signaling. Interestingly, blocking SOCE had little effect on TGF-β-induced gene expression. In contrast, inhibition of ER Ca2+ release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-β signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca2+ at the basal level. Indeed, adjusting Ca2+ concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-β-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca2+ concentrations and TGF-β signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - King-Wah Chiu
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Pin Kung
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shu-Rong Li
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center, Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Wang X, Liu H, Wang Y, Wang P, Yi Y, Lin Y, Li X. Novel protein C6ORF120 promotes liver fibrosis by activating hepatic stellate cells through the PI3K/Akt/mTOR pathway. J Gastroenterol Hepatol 2024; 39:1422-1430. [PMID: 38523410 DOI: 10.1111/jgh.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIM The role of C6ORF120 in promoting CCL4-induced hepatic fibrosis and its possible mechanisms were explored in C6orf120 knockout rats (C6orf120-/-) and LX-2 cells (a type of human hepatic stellate cell line). METHODS In vivo experiments, wild-type and C6orf120-/- rats were used to investigate the function of C6ORF120. In the in vitro experiments, C6ORF120 recombinant protein (rC6ORF120) at a concentration of 200 ng/mL was used to stimulate LX-2 cells. Sirius Red staining, Masson staining, western blotting, polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to explore fibrosis-associated factors. RESULTS C6orf120-/- rats showed mild fibrosis and liver injury in the CCL4-induced liver fibrosis model. Furthermore, RNA-seq revealed that C6orf120-/- rats had less extracellular matrix deposition and activated stellate cells. Consistent with the in vivo, the rC6ORF120 induced LX-2 cell activation. Moreover, mechanistic studies revealed that the p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR levels were significantly elevated and LY294002 (a PI3K/Akt/mTOR typical pathway inhibitor) reversed the function of C6ORF120 in activating LX-2 cells. CONCLUSION C6ORF120 could activate hepatic stellate cells and promote hepatic fibrosis via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Hui Liu
- Department of Center of Infectious Disease, Beijing Ditan Hospital; Capital Medical University, Beijing, China
| | - Yuqi Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Yi
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Dejesus JE, Wang X, Gu Y, Zhou J, Radhakrishnan RS. Novel Oridonin Analog CYD0682 Inhibits Hepatic Stellate Cell Activation via the Heat Shock Protein 90-Dependent STAT3 Pathway. J Surg Res 2024; 298:14-23. [PMID: 38537450 DOI: 10.1016/j.jss.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Activated hepatic stellate cells (HSCs) are the primary effector cells in hepatic fibrosis, over depositing extracellular matrix (ECM) proteins. Our previous work found oridonin analog CYD0682 attenuates proliferation, Transforming Growth Factor β (TGFβ)-induced signaling, and ECM production in immortalized HSCs. The underlying mechanism behind these reductions is unclear. The Signal Transduction and Activator of Transcription 3 (STAT3) pathway plays a central role in HSC activation and has been found to be overexpressed in models of hepatic injury. In this study, we will examine the effect of CYD0682 on STAT3 signaling. METHODS Immortalized human (LX-2) and rat (HSC-T6) HSC lines were treated with CYD0682 or Tanespimycin (17-AAG) with or without TGF-β. Nuclear and cytosolic proteins were extracted. Protein expression was analyzed with Western blot. DNA binding activity was assessed with STAT3 DNA Binding ELISA. Cell viability was assessed with Alamar blue assay. RESULTS CYD0682 treatment inhibited STAT3 phosphorylation at tyrosine 705 in a dose-dependent manner in LX-2 and HSC-T6 cells. STAT3 DNA binding activity and STAT3 regulated protein c-myc were significantly decreased by CYD0682. Notably, TGFβ-induced STAT3 phosphorylation and ECM protein expression were inhibited by CYD0682. STAT3 is reported to be a Heat Shock Protein 90 (HSP90) client protein. Notably, CYD0682 attenuated the expression of endogenous STAT3 and other HSP90 client proteins FAK, IKKα, AKT and CDK9. HSP90 specific inhibitor 17-AAG suppressed endogenous and TGFβ-induced STAT3 phosphorylation and ECM protein production. CONCLUSIONS CYD0682 attenuates endogenous and TGFβ-induced STAT3 activation and ECM production via an HSP90 dependent pathway in HSCs. Further study of this pathway may present new targets for therapeutic intervention in hepatic fibrosis.
Collapse
Affiliation(s)
- Jana E Dejesus
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Xiaofu Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Yanping Gu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
19
|
Xu AL, Han L, Yan J, Liu D, Wang W. Effects of Mesenchymal Stem Cells-Derived Extracellular Vesicles on Inhibition of Hepatic Fibrosis by Delivering miR-200a. Tissue Eng Regen Med 2024; 21:609-624. [PMID: 38568409 PMCID: PMC11087440 DOI: 10.1007/s13770-024-00631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic fibrosis (HF) is a common pathological feature of chronic hepatic diseases. We aimed to illuminate the significance of amniotic mesenchymal stem cells (AMSCs)-derived extracellular vesicles (AMSCs-EVs) in HF. METHODS Human AMSCs-EVs were isolated and identified. HF mice were constructed and treated with EVs. The fibrosis was observed by staining experiments and Western blot (WB) assay. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and hepatic hydroxyproline (Hyp) were detected to confirm liver function. For the in vitro experiments, human hepatic stellate cells were induced with transforming growth factor-β and treated with EVs. To measure the degree of HF, the expression of alpha-smooth muscle actin (α-SMA) and Collagen I was detected by WB assay, and cell proliferation was detected by cell counting kit 8 assay. The levels of miR-200a, Zinc finger E-box binding homeobox 1 (ZEB1), and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) were detected by WB and real-time quantitative polymerase chain reaction. The binding of ZEB1 to PIK3R3 and miR-200a to ZEB1 was analyzed by chromatin immunoprecipitation and dual luciferase assays to validate their relationships. RESULTS Human AMSCs and AMSCs-EVs were obtained. Serum ALT, AST, TBIL, and hepatic Hyp were increased, implying the fibrosis degree was aggravated in HF mice, which was decreased again after EV treatment. EVs inhibited HF degree by reducing α-SMA and Collagen I and promoting cell proliferation. AMSCs-EVs delivered miR-200a into hepatocytes, which up-regulated miR-200a expression, inhibited ZEB1 expression, and reduced its enrichment on the PIK3R3 promoter, therefore inhibiting PIK3R3 expression and alleviating HF. Overexpression of ZEB1 or PIK3R3 attenuated the anti-fibrotic effect of AMSCs-EVs. CONCLUSION Human AMSCs-derived EVs mediated miR-200a delivery and inhibition of intracellular ZEB1/PIK3R3 axis to exert anti-fibrosis effects.
Collapse
Affiliation(s)
- Ai-Lei Xu
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Long Han
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Jun Yan
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Dan Liu
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Wei Wang
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China.
| |
Collapse
|
20
|
Sun B, Liang Z, Wang Y, Yu Y, Zhou X, Geng X, Li B. A 3D spheroid model of quadruple cell co-culture with improved liver functions for hepatotoxicity prediction. Toxicology 2024; 505:153829. [PMID: 38740170 DOI: 10.1016/j.tox.2024.153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.
Collapse
Affiliation(s)
- Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Zihe Liang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
21
|
Matsuda KM, Kotani H, Hisamoto T, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. Dual blockade of interleukin-17A and interleukin-17F as a therapeutic strategy for liver fibrosis: Investigating the potential effect and mechanism of brodalumab. Cytokine 2024; 178:156587. [PMID: 38531177 DOI: 10.1016/j.cyto.2024.156587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Liver fibrosis is a terminal manifestation of various chronic liver diseases. There are no drugs that can reverse the condition. Recently, the importance of interleukin-17 (IL17) in the pathophysiology has been revealed and has attracted attention as a therapeutic target. We aimed to reveal the roles of IL17A and IL17F in liver fibrosis, and to validate the potential of their dual blockade as therapeutic strategy. First, we retrospectively reviewed the longitudinal change of FIB-4 index, a clinical indicator of liver fibrosis, among psoriasis patients treated by brodalumab, which blocks IL17 receptor A (IL17RA). Next, we examined anti-fibrotic efficacy of anti-IL17RA antibody (Ab) in two murine liver fibrosis models by histopathological investigation and real-time reverse transcription polymerase chain reaction (RT-PCR). Finally, we analyzed the effect of IL17A and IL17F upon human hepatic stellate cells with RNA sequencing, real-time RT-PCR, western blotting, chromatin immunoprecipitation, and flow cytometry. Clinical data showed that FIB-4 index significantly decreased among psoriasis patients treated by brodalumab. In vivo studies additionally demonstrated that anti-IL17RA Ab ameliorates liver fibrosis induced by tetrachloride and methionine-choline deficient diet. Furthermore, in vitro experiments revealed that both IL17A and IL17F enhance cell-surface expression of transforming growth factor-β receptor II and promote pro-fibrotic gene expression via the JUN pathway in human hepatic stellate cells. Our insights suggest that IL17A and IL17F share their pro-fibrotic function in the context of liver fibrosis, and moreover, dual blockade of IL17A and IL17F by anti-IL17RA Ab would be a promising strategy for the management of liver fibrosis.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Mak KM, Shekhar AC. Soybean polyenylphosphatidylcholine (PPC) is beneficial in liver and extrahepatic tissue injury: An update in experimental research. Anat Rec (Hoboken) 2024; 307:2162-2186. [PMID: 37814787 DOI: 10.1002/ar.25333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Polyenylphosphatidylcholine (PPC) is a purified polyunsaturated phosphatidylcholine extract of soybeans. This article updates PPC's beneficial effects on various forms of liver cell injury and other tissues in experimental research. PPC downregulates hepatocyte CYP2E1 expression and associated hepatotoxicity, as well as attenuates oxidative stress, apoptosis, lipoprotein oxidation and steatosis in alcoholic and nonalcoholic liver injury. PPC inhibits pro-inflammatory cytokine production, while stimulating anti-inflammatory cytokine secretion in ethanol or lipopolysaccharide-stimulated Kupffer cells/macrophages. It promotes M2-type macrophage polarization and metabolic reprogramming of glucose and lipid metabolism. PPC mitigates steatosis in NAFLD through inhibiting polarization of pro-inflammatory M1-type Kupffer cells, alleviating metabolic inflammation, remodeling hepatic lipid metabolism, correcting imbalances between lipogenesis and lipolysis and enhancing lipoprotein secretion from hepatocytes. PPC is antifibrotic by preventing progression of alcoholic hepatic fibrosis in baboons and also prevents CCl4-induced fibrosis in rats. PPC supplementation replenishes the phosphatidylcholine content of damaged cell membranes, resulting in increased membrane fluidity and functioning. Phosphatidylcholine repletion prevents increased membrane curvature of the endoplasmic reticulum and Golgi and decreases sterol regulatory element binding protein-1-mediated lipogenesis, reducing steatosis. PPC remodels gut microbiota and affects hepatic lipid metabolism via the gut-hepatic-axis and also alleviates brain inflammatory responses and cognitive impairment via the gut-brain-axis. Additionally, PPC protects extrahepatic tissues from injury caused by various toxic compounds by reducing oxidative stress, inflammation, and membrane damage. It also stimulates liver regeneration, enhances sensitivity of cancer cells to radiotherapy/chemotherapy, and inhibits experimental hepatocarcinogenesis. PPC's beneficial effects justify it as a supportive treatment of liver disease.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Raymant M, Astuti Y, Alvaro-Espinosa L, Green D, Quaranta V, Bellomo G, Glenn M, Chandran-Gorner V, Palmer DH, Halloran C, Ghaneh P, Henderson NC, Morton JP, Valiente M, Mielgo A, Schmid MC. Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer. Nat Commun 2024; 15:3593. [PMID: 38678021 PMCID: PMC11055860 DOI: 10.1038/s41467-024-47949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver. We identify three functionally distinct MAF populations, among which the generation of pro-metastatic and immunoregulatory myofibroblastic-MAFs (myMAFs) critically depends on macrophages. Mechanistically, myMAFs are induced through a STAT3-dependent mechanism driven by macrophage-derived progranulin and cancer cell-secreted leukaemia inhibitory factor (LIF). In a reciprocal manner, myMAF secreted osteopontin promotes an immunosuppressive macrophage phenotype resulting in the inhibition of cytotoxic T cell functions. Pharmacological blockade of STAT3 or myMAF-specific genetic depletion of STAT3 restores an anti-tumour immune response and reduces metastases. Our findings provide molecular insights into the complex macrophage-fibroblast interactions in tumours and reveal potential targets to inhibit PDAC liver metastasis.
Collapse
Affiliation(s)
- Meirion Raymant
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Yuliana Astuti
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Laura Alvaro-Espinosa
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Green
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Vatshala Chandran-Gorner
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jennifer P Morton
- Cancer Research-UK Scotland Institute and School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
24
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
25
|
Kowalczuk K, Wegner VD, Mosig AS, Schacher FH. Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices. ACS APPLIED BIO MATERIALS 2024; 7:2402-2412. [PMID: 38470448 PMCID: PMC11022240 DOI: 10.1021/acsabm.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Poly(ethylene glycol)-based (PEG) hydrogels provide an ideal platform to obtain well-defined and tailor-made cell culture matrices to enhance in vitro cell culture conditions, although cell adhesion is often challenging when the cells are cultivated on the substrate surface. We herein demonstrate two approaches for the synthesis of polycationic PEG-based hydrogels which were modified to enhance cell-matrix interactions, to improve two-dimensional (2D) cell culture, and catalyze hydrolytic degradation. While the utilization of N,N-(bisacryloxyethyl) amine (BAA) as cross-linker for in situ gelation provides degradable scaffolds for dynamic cell culture, the incorporation of short segments of poly(N-(3-(dimethylamino)propyl)acrylamide) (PDMAPAam) provides high local cationic charge density leading to PEG-based hydrogels with high selectivity for fibroblastic cell lines. The adsorption of transforming growth factor (TGF-β) into the hydrogels induced stimulation of fibrosis and thus the formation of collagen as a natural ECM compound. With this, these dynamic hydrogels enhance in vitro cell culture by providing a well-defined, artificial, and degradable matrix that stimulates cells to produce their own natural scaffold within a defined time frame.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich-Schiller-University
Jena, Philosophenweg
7, D-07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
| | - Valentin D. Wegner
- Institute
of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743 Jena, Germany
| | - Alexander S. Mosig
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
- Institute
of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743 Jena, Germany
- Center
for Sepsis Control and Care, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Felix H. Schacher
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich-Schiller-University
Jena, Philosophenweg
7, D-07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
| |
Collapse
|
26
|
Muturi HT, Ghadieh HE, Asalla S, Lester SG, Verhulst S, Stankus HL, Zaidi S, Abdolahipour R, Belew GD, van Grunsven LA, Friedman SL, Schwabe RF, Hinds TD, Najjar SM. Conditional deletion of CEACAM1 causes hepatic stellate cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.586238. [PMID: 38617330 PMCID: PMC11014538 DOI: 10.1101/2024.04.02.586238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Objectives Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with MASH. Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcriptoin and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. Methods We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre+Cc1 fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. Results LratCre+Cc1 fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HDCs. This was inhibited by nicotinic acid treatment which stemmed the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. Conclusions Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.
Collapse
|
27
|
Fernandez-Rojo MA, Pearen MA, Burgess AG, Ikonomopoulou MP, Hoang-Le D, Genz B, Saggiomo SL, Nawaratna SSK, Poli M, Reissmann R, Gobert GN, Deutsch U, Engelhardt B, Brooks AJ, Jones A, Arosio P, Ramm GA. The heavy subunit of ferritin stimulates NLRP3 inflammasomes in hepatic stellate cells through ICAM-1 to drive hepatic inflammation. Sci Signal 2024; 17:eade4335. [PMID: 38564492 DOI: 10.1126/scisignal.ade4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Michael A Pearen
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Anita G Burgess
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Translational Venomics Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Diem Hoang-Le
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Berit Genz
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Silvia L Saggiomo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | | | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Regina Reissmann
- Department for BioMedical Research (DBMR), University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
| |
Collapse
|
28
|
Ryoo H, Giovanni R, Kimmel H, Jain I, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303128. [PMID: 38348560 PMCID: PMC11022709 DOI: 10.1002/advs.202303128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Indexed: 02/15/2024]
Abstract
Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Regina Giovanni
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Hannah Kimmel
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Gregory H. Underhill
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
29
|
Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu J, Jiang X, Zheng Y, Xu L, Zhong F, Li X. The m 6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis 2024; 15:189. [PMID: 38443347 PMCID: PMC10914723 DOI: 10.1038/s41419-024-06509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Evidence for the involvement of N6-Methyladenosine (m6A) modification in the etiology and progression of liver fibrosis has emerged and holds promise as a therapeutic target. Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is a newly identified m6A-binding protein that functions to enhance mRNA stability and translation. However, its role as an m6A-binding protein in liver fibrosis remains elusive. Here, we observed that IGF2BP2 is highly expressed in liver fibrosis and activated hepatic stellate cells (HSCs), and inhibition of IGF2BP2 protects against HSCs activation and liver fibrogenesis. Mechanistically, as an m6A-binding protein, IGF2BP2 regulates the expression of Aldolase A (ALDOA), a key target in the glycolytic metabolic pathway, which in turn regulates HSCs activation. Furthermore, we observed that active glycolytic metabolism in activated HSCs generates large amounts of lactate as a substrate for histone lactylation. Importantly, histone lactylation transforms the activation phenotype of HSCs. In conclusion, our findings reveal the essential role of IGF2BP2 in liver fibrosis by regulating glycolytic metabolism and highlight the potential of targeting IGF2BP2 as a therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiexi Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - He Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Xiaoxu Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lingcong Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Fupeng Zhong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
30
|
Barreto II, Gonçalves LR, Corrêa AF, Marin-Morales MA, Moraes KCM. Predictive toxicological effects of Artemisia absinthium essential oil on hepatic stellate cells. Toxicol In Vitro 2024; 95:105738. [PMID: 38000518 DOI: 10.1016/j.tiv.2023.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Medicinal plants are important worldwide, considering their properties for treating diseases; however, few studies have evaluated their toxicological potential. Among them, Artemisia absinthium is frequently used to treat liver diseases, because its essential oil has several popular therapeutic properties. Based on this information, in the present study, we investigated molecular connectors of physiological effects of the Artemisia absinthium essential oil on human hepatic stellate cell line, LX-2, to explore the potential toxicity of the plant on liver cells. LX-2 is a cellular model to investigate mechanisms of liver fibrosis; then, to analyze the essential oil effects LX-2 was cultured under different conditions, treated or not with the essential oil at 0.4 μg/μL for 24 h. Next, fluorescence microscopy analyses, gene expression measurements, and biochemical approaches revealed that the essential oil reduced pro-fibrogenic markers; however, disrupt lipid metabolism, and cause cellular stress, by the activation of cellular detoxification and pro-inflammatory processes. In conclusion, the hepatic stellate cells incubated with the essential oil present an antifibrotic potential, supporting its popular use; however, the combined results suggest that the essential oil of Artemisia absinthium should be used with caution.
Collapse
Affiliation(s)
- I I Barreto
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Programa de Pós-Graduação em Biotecnologia, Campus Araraquara, Instituto de Química, Araraquara, SP, Brazil; Laboratório de Sinalização Celular e Expressão Gênica, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - L R Gonçalves
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - A F Corrêa
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - M A Marin-Morales
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - K C M Moraes
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Programa de Pós-Graduação em Biotecnologia, Campus Araraquara, Instituto de Química, Araraquara, SP, Brazil; Laboratório de Sinalização Celular e Expressão Gênica, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil.
| |
Collapse
|
31
|
Damba T, Zhang M, Serna Salas SA, Wu Z, van Goor H, Arenas AF, Muñoz-Ortega MH, Ventura-Juárez J, Buist-Homan M, Moshage H. Inhibition of endogenous hydrogen sulfide production reduces activation of hepatic stellate cells via the induction of cellular senescence. Cell Cycle 2024; 23:629-644. [PMID: 38836592 PMCID: PMC11229775 DOI: 10.1080/15384101.2024.2345477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of β-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.
Collapse
Affiliation(s)
- Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mengfan Zhang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sandra A Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aaron Fierro Arenas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Javier Ventura-Juárez
- Chemistry Department, Basic Sciences Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
33
|
Gondaliya P, Driscoll J, Yan IK, Ali Sayyed A, Patel T. Therapeutic restoration of miR-126-3p as a multi-targeted strategy to modulate the liver tumor microenvironment. Hepatol Commun 2024; 8:e0373. [PMID: 38358374 PMCID: PMC10871752 DOI: 10.1097/hc9.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/17/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Impaired natural killer (NK) cell-mediated antitumor responses contribute to the growth of liver tumors. Expression of a disintegrin and metalloprotease 9 (ADAM9) increases shedding of membrane-bound major histocompatibility complex class I chain-related protein A and results in evasion from NK cell-mediated cytolysis. ADAM9 is also involved in angiogenesis and tumor progression and is a target of miR-126-3p, a tumor suppressor that is downregulated and alters tumor cell behavior in the liver and other cancers. We evaluated the restoration of miR-126-3p and modulation of the miR-126-3p/ADAM9 axis as a therapeutic approach to simultaneously enhance NK cell-mediated cytolysis while targeting both tumor cells and their microenvironment. METHODS Precursor miRNAs were loaded into milk-derived nanovesicles to generate therapeutic vesicles (therapeutic milk-derived nanovesicles) for the restoration of functional miR-126-3p in recipient cancer cells. RESULTS Administration of therapeutic milk-derived nanovesicles increased miR-126-3p expression and reduced ADAM9 expression in target cells and was associated with an increase in membrane-bound major histocompatibility complex class I chain-related protein A. This enhanced NK cell cytolysis in adherent tumor cells and in multicellular tumor spheroids while also impairing angiogenesis and modulating macrophage chemotaxis. Moreover, IV administration of therapeutic milk-derived nanovesicles with adoptive transfer of NK cells reduced tumor burden in orthotopic hepatocellular cancer xenografts in mice. CONCLUSION A directed RNA therapeutic approach can mitigate NK cell immune evasion, reduce angiogenesis, and alter the tumor cell phenotype through the restoration of miR-126-3p in liver tumor cells. The pleiotropic effects elicited by this multi-targeted approach to modulate the local tumor microenvironment support its use for the treatment of liver cancer.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Irene K. Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Adil Ali Sayyed
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
34
|
Yan R, Cai H, Zhou X, Bao G, Bai Z, Ge RL. Hypoxia-inducible factor-2α promotes fibrosis in non-alcoholic fatty liver disease by enhancing glutamine catabolism and inhibiting yes-associated protein phosphorylation in hepatic stellate cells. Front Endocrinol (Lausanne) 2024; 15:1344971. [PMID: 38501098 PMCID: PMC10946064 DOI: 10.3389/fendo.2024.1344971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.
Collapse
Affiliation(s)
- Ranran Yan
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Hao Cai
- Oncology Department, The Fifth People’s Hospital of Qinghai Provincial, Xining, China
| | - Xiaofeng Zhou
- Affiliated Hospital of Qinghai University, Xining, China
| | - Guodan Bao
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Affiliated Hospital of Qinghai University, Xining, China
| | - Zhenzhong Bai
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-li Ge
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
35
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Shinn J, Park S, Lee S, Park N, Kim S, Hwang S, Moon JJ, Kwon Y, Lee Y. Antioxidative Hyaluronic Acid-Bilirubin Nanomedicine Targeting Activated Hepatic Stellate Cells for Anti-Hepatic-Fibrosis Therapy. ACS NANO 2024; 18:4704-4716. [PMID: 38288705 DOI: 10.1021/acsnano.3c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Liver fibrosis is a life-threatening and irreversible disease. The fibrosis process is largely driven by hepatic stellate cells (HSCs), which undergo transdifferentiation from an inactivated state to an activated one during persistent liver damage. This activated state is responsible for collagen deposition in liver tissue and is accompanied by increased CD44 expression on the surfaces of HSCs and amplified intracellular oxidative stress, which contributes to the fibrosis process. To address this problem, we have developed a strategy that combines CD44-targeting of activated HSCs with an antioxidative approach. We developed hyaluronic acid-bilirubin nanoparticles (HABNs), composed of endogenous bilirubin, an antioxidant and anti-inflammatory bile acid, and hyaluronic acid, an endogenous CD44-targeting glycosaminoglycan biopolymer. Our findings demonstrate that intravenously administered HABNs effectively targeted the liver, particularly activated HSCs, in fibrotic mice with choline-deficient l-amino acid-defined high-fat diet (CD-HFD)-induced nonalcoholic steatohepatitis (NASH). HABNs were able to inhibit HSC activation and proliferation and collagen production. Furthermore, in a murine CD-HFD-induced NASH fibrosis model, intravenously administered HABNs showed potent fibrotic modulation activity. Our study suggests that HABNs have the potential to serve as a targeted anti-hepatic-fibrosis therapy by modulating activated HSCs via CD44-targeting and antioxidant strategies. This strategy could also be applied to various ROS-related diseases in which CD44-overexpressing cells play a pivotal role.
Collapse
Affiliation(s)
- Jongyoon Shinn
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seonju Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Nayoon Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Kim
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seohui Hwang
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Youngjoo Kwon
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
37
|
Kimura T, Iwadare T, Wakabayashi SI, Kuldeep S, Nakajima T, Yamazaki T, Aomura D, Zafar H, Iwaya M, Joshita S, Uehara T, Pydi SP, Tanaka N, Umemura T. Thrombospondin 2 is a key determinant of fibrogenesis in non-alcoholic fatty liver disease. Liver Int 2024; 44:483-496. [PMID: 38010940 DOI: 10.1111/liv.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Hepatic overexpression of the thrombospondin 2 gene (THBS2) and elevated levels of circulating thrombospondin 2 (TSP2) have been observed in patients with chronic liver disease. This study aimed to identify the specific cells expressing THBS2/TSP2 in non-alcoholic fatty liver disease (NAFLD) and investigate the underlying mechanism behind THBS2/TSP2 upregulation. DESIGN Comprehensive NAFLD liver gene datasets, including single-cell RNA sequencing (scRNA-seq), in-house NAFLD liver tissue, and LX-2 cells derived from human hepatic stellate cells (HSCs), were analysed using a combination of computational biology, genetic, immunological, and pharmacological approaches. RESULTS Analysis of the genetic dataset revealed the presence of 1433 variable genes in patients with advanced fibrosis NAFLD, with THBS2 ranked among the top 2 genes. Quantitative polymerase chain reaction (qPCR) examination of NAFLD livers showed a significant correlation between THBS2 expression and fibrosis stage (r = .349, p < .001). In support of this, scRNA-seq data and in situ hybridization demonstrated that the THBS2 gene was highly expressed in HSCs of NAFLD patients with advanced fibrosis. Pathway analysis of the gene dataset revealed THBS2 expression to be associated with the transforming growth factor beta (TGFβ) pathway and collagen gene activation. Moreover, the activation of LX-2 cells with TGFβ increased THBS2/TSP2 and collagen expression independently of the TGFβ-SMAD2/3 pathway. THBS2 gene knockdown significantly decreased collagen expression in LX-2 cells. CONCLUSIONS THBS2/TSP2 is highly expressed in HSCs and plays a role in regulating fibrogenesis in NAFLD patients. THBS2/TSP2 may therefore represent a potential target for anti-fibrotic therapy in NAFLD.
Collapse
Affiliation(s)
- Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Seema Kuldeep
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Medicine, University of California San Diego, San Diego, La Jolla, USA
| | - Daiki Aomura
- Department of Medicine, Division of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hamim Zafar
- Department of Computer Science and Engineering and Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Sai P Pydi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
38
|
Bronsard J, Savary C, Massart J, Viel R, Moutaux L, Catheline D, Rioux V, Clement B, Corlu A, Fromenty B, Ferron PJ. 3D multi-cell-type liver organoids: A new model of non-alcoholic fatty liver disease for drug safety assessments. Toxicol In Vitro 2024; 94:105728. [PMID: 37951556 DOI: 10.1016/j.tiv.2023.105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The development of in vitro models that recapitulate critical liver functions is essential for accurate assessments of drug toxicity. Although liver organoids can be used for drug discovery and toxicology, they are limited by (i) the lack of expression and activity of xenobiotic-metabolizing enzymes, and (ii) the difficulty of mimicking non-alcoholic fatty liver disease (NAFLD, which influences the expression of these enzymes) in vitro. Here, we generated three-dimensional multi-cell-type liver organoids (hereafter "HML organoids") from HepaRG cells, primary human macrophages, and hepatic-stellate-cell-derived LX-2 cells. We also developed an NAFLD model by culturing HML organoids for 9 days with a mixture of stearic and oleic acids. The exposed organoids showed typical features of steatosis and expressed fibrosis markers. We subsequently used HML and NAFLD-HML organoids to model drug-induced liver injury. By estimating the IC50 and benchmark doses, we were able to improve the in vitro detection of drugs likely to be toxic in fatty livers. Thus, HML and NAFLD-HML organoids exhibited most of the liver's functions and are relevant in vitro models of drug metabolism, drug toxicity, and adverse drug event in NAFLD.
Collapse
Affiliation(s)
- J Bronsard
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - C Savary
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J Massart
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - R Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, F-35000 Rennes, France
| | - L Moutaux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - D Catheline
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - V Rioux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Clement
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - A Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Fromenty
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - P J Ferron
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France.
| |
Collapse
|
39
|
Manka P, Coombes JD, Sydor S, Swiderska-Syn MK, Best J, Gauthier K, van Grunsven LA, Oo YH, Wang C, Diehl AM, Hönes GS, Moeller LC, Figge A, Boosman RJ, Faber KN, Tannapfel A, Goetze O, Aspichueta P, Lange CM, Canbay A, Syn WK. Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells. Liver Int 2024; 44:125-138. [PMID: 37872645 DOI: 10.1111/liv.15759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.
Collapse
Affiliation(s)
- Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason D Coombes
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Marzena K Swiderska-Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Barnard Lyon, Lyon, France
| | - Leo A van Grunsven
- Department of Basic (Bio-)medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ye H Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, Birmingham Advanced Cell Therapy Facility, University of Birmingham, Birmingham, UK
| | - Cindy Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Georg S Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Figge
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - René J Boosman
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Oliver Goetze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Christian M Lange
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
40
|
Carvalho AM, Bansal R, Barrias CC, Sarmento B. The Material World of 3D-Bioprinted and Microfluidic-Chip Models of Human Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307673. [PMID: 37961933 DOI: 10.1002/adma.202307673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
41
|
Ko M, Jung HY, Lee D, Jeon J, Kim J, Baek S, Lee JY, Kim JY, Kwon HJ. Inhibition of chloride intracellular channel protein 1 (CLIC1) ameliorates liver fibrosis phenotype by activating the Ca 2+-dependent Nrf2 pathway. Biomed Pharmacother 2023; 168:115776. [PMID: 37924785 DOI: 10.1016/j.biopha.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Persistent damage to liver cells leads to liver fibrosis, which is characterized by the accumulation of scar tissue in the liver, ultimately leading to cirrhosis and serious complications. Because it is difficult to reverse cirrhosis once it has progressed, the primary focus has been on preventing the progression of liver fibrosis. However, studies on therapeutic agents for liver fibrosis are still lacking. Here, we investigated that the natural dipeptide cyclic histidine-proline (CHP, also known as diketopiperazine) shows promising potential as a therapeutic agent in models of liver injury by inhibiting the progression of fibrosis through activation of the Nrf2 pathway. To elucidate the underlying biological mechanism of CHP, we used the Cellular Thermal Shift Assay (CETSA)-LC-MS/MS, a label-free compound-based target identification platform. Chloride intracellular channel protein 1 (CLIC1) was identified as a target whose thermal stability is increased by CHP treatment. We analyzed the direct interaction of CHP with CLIC1 which revealed a potential interaction between CHP and the E228 residue of CLIC1. Biological validation experiments showed that knockdown of CLIC1 mimicked the antioxidant effect of CHP. Further investigation using a mouse model of CCl4-induced liver fibrosis in wild-type and CLIC1 KO mice revealed the critical involvement of CLIC1 in mediating the effects of CHP. Taken together, our results provide evidence that CHP exerts its anti-fibrotic effects through specific binding to CLIC1. These insights into the mechanism of action of CHP may pave the way for the development of novel therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
42
|
Ganguin AA, Skorup I, Streb S, Othman A, Luciani P. Formation and Investigation of Cell-Derived Nanovesicles as Potential Therapeutics against Chronic Liver Disease. Adv Healthc Mater 2023; 12:e2300811. [PMID: 37669775 PMCID: PMC11468924 DOI: 10.1002/adhm.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Indexed: 09/07/2023]
Abstract
A new therapeutic approach using cell-derived nanovesicles (cdNVs) is offered here to overcome the lack of effective treatments for liver fibrosis, a reversible chronic liver disease. To achieve this goal the formation and purification of cdNVs from untreated, quiescent-like, or activated LX-2 cells, an immortalized human hepatic stellate cell (HSC) line with key features of transdifferentiated HSCs are established. Analysis of the genotype and phenotype of naïve and transdifferentiated LX-2 cells activated through transforming growth factor beta 1, following treatment with cdNVs, reveals a concentration-dependent fibrosis regression. The beneficial fibrosis-resolving effects of cdNVs are linked to their biomolecular corona. Liposomes generated using lipids extracted from cdNVs exhibit a reduced antifibrotic response in perpetuated LX-2 cells and show a reduced cellular uptake. However, incubation with soluble factors collected during purification results in a new corona, thereby restoring fibrosis regression activity. Overall, cdNVs display encouraging therapeutic properties, making them a promising candidate for the development of liver fibrosis resolving therapeutics.
Collapse
Affiliation(s)
- Aymar Abel Ganguin
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Ivo Skorup
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Sebastian Streb
- Functional Genomics Center Zurich (FGCZ)University of Zurich/ETH ZurichZurich8057Switzerland
| | - Alaa Othman
- Functional Genomics Center Zurich (FGCZ)University of Zurich/ETH ZurichZurich8057Switzerland
| | - Paola Luciani
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| |
Collapse
|
43
|
Zhang M, Jing Y, Xu W, Shi X, Zhang W, Chen P, Cao X, Han X, Duan X, Ren J. The C-type lectin COLEC10 is predominantly produced by hepatic stellate cells and involved in the pathogenesis of liver fibrosis. Cell Death Dis 2023; 14:785. [PMID: 38036508 PMCID: PMC10689734 DOI: 10.1038/s41419-023-06324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Hepatic stellate cell is one of the major nonparenchymal cell types in liver. It has been proved the hepatic stellate cells are activated upon liver injury and produce excessive extracellular matrix to induce liver fibrosis. Single-cell RNA sequencing has been introduced to identify the subpopulations and function of hepatic stellate cells for its remarkable resolution of representation of single-cell transcriptome. According to the re-analysis of single-cell RNA sequencing data and pseudotime trajectory inference, we have found the C-type lectins including Colec10 and Colec11 are not produced by hepatocytes but predominantly produced by hepatic stellate cells, especially quiescent ones in the mice livers. In addition, the expression of Colec10 is decreased in the fibrotic livers of CCl4-challenged mice. COLEC10 is also mainly expressed in the hepatic stellate cells of human livers and the expression of COLEC10 is decreased with the progression of liver fibrosis. The bulk RNA sequencing data of the lentivirus transfected LX-2 cells indicates the function of COLEC10 is associated with inflammation, angiogenesis and extracellular matrix alteration. Surprisingly, the in vitro overexpression of COLEC10 in LX-2 cells promotes the mRNA expression of extracellular matrix components including COL1A1, COL1A2 and COL3A1 and the extracellular matrix degradation enzyme MMP2. To further investigate the role of COLEC10 in the pathogenesis of liver fibrosis, the serum concentration of COLEC10 in patients with chronic liver disease and healthy donors is measured. The serum concentration of COLEC10 is elevated in the patients with chronic liver disease compared to the healthy donors and positively correlated with serum concentration of the D-dimer but not the most of liver function markers. Altogether, we conclude that the C-type lectin COLEC10 is predominantly produced by the hepatic stellate cells and involved in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Mengfan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Jing
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Wenze Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojing Shi
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| | - Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
44
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
45
|
Skorup I, Valentino G, Aleandri S, Gelli R, Ganguin AA, Felli E, Selicean SE, Marxer RA, Teworte S, Lucić A, Gracia-Sancho J, Berzigotti A, Ridi F, Luciani P. Polyenylphosphatidylcholine as bioactive excipient in tablets for the treatment of liver fibrosis. Int J Pharm 2023; 646:123473. [PMID: 37788730 DOI: 10.1016/j.ijpharm.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.
Collapse
Affiliation(s)
- Ivo Skorup
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Gina Valentino
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Aymar Abel Ganguin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Sonia Emilia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Rosanne Angela Marxer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sarah Teworte
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ana Lucić
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland; Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Balaji A, Bell CA, Houston ZH, Bridle KR, Genz B, Fletcher NL, Ramm GA, Thurecht KJ. Exploring the impact of severity in hepatic fibrosis disease on the intrahepatic distribution of novel biodegradable nanoparticles targeted towards different disease biomarkers. Biomaterials 2023; 302:122318. [PMID: 37708659 DOI: 10.1016/j.biomaterials.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland 4120, Australia
| | - Berit Genz
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
47
|
Dekky B, Azar F, Bonnier D, Monseur C, Kalebić C, Arpigny E, Colige A, Legagneux V, Théret N. ADAMTS12 is a stromal modulator in chronic liver disease. FASEB J 2023; 37:e23237. [PMID: 37819632 DOI: 10.1096/fj.202200692rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-β treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.
Collapse
Affiliation(s)
- Bassil Dekky
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Fida Azar
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Dominique Bonnier
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Chiara Kalebić
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Esther Arpigny
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Vincent Legagneux
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Nathalie Théret
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
48
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Huang Y, Liangpunsakul S, Rudraiah S, Ma J, Keshipeddy SK, Wright D, Costa A, Burgess D, Zhang Y, Huda N, Wang L, Yang Z. HMGB2 is a potential diagnostic marker and therapeutic target for liver fibrosis and cirrhosis. Hepatol Commun 2023; 7:e0299. [PMID: 37930124 PMCID: PMC10629741 DOI: 10.1097/hc9.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND High mobility group proteins 1 and 2 (HMGB1 and HMGB2) are 80% conserved in amino acid sequence. The function of HMGB1 in inflammation and fibrosis has been extensively characterized. However, an unaddressed central question is the role of HMGB2 on liver fibrosis. In this study, we provided convincing evidence that the HMGB2 expression was significantly upregulated in human liver fibrosis and cirrhosis, as well as in several mouse liver fibrosis models. METHODS The carbon tetrachloride (CCl4) induced liver fibrosis mouse model was used. AAV8-Hmgb2 was utilized to overexpress Hmgb2 in the liver, while Hmgb2-/- mice were used for loss of function experiments. The HMGB2 inhibitor inflachromene and liposome-shHMGB2 (lipo-shHMGB2) were employed for therapeutic intervention. RESULTS The serum HMGB2 levels were also markedly elevated in patients with liver fibrosis and cirrhosis. Deletion of Hmgb2 in Hmgb2-/- mice or inhibition of HMGB2 in mice using a small molecule ICM slowed the progression of CCl4-induced liver fibrosis despite constant HMGB1 expression. In contrast, AAV8-mediated overexpression of Hmgb2 enchanced CCl4-incuded liver fibrosis. Primary hepatic stellate cells (HSCs) isolated from Hmgb2-/- mice showed significantly impaired transdifferentiation and diminished activation of α-SMA, despite a modest induction of HMGB1 protein. RNA-seq analysis revealed the induction of top 45 CCl4-activated genes in multiple signaling pathways including integrin signaling and inflammation. The activation of these genes by CCl4 were abolished in Hmgb2-/- mice or in ICM-treated mice. These included C-X3-C motif chemokine receptor 1 (Cx3cr1) associated with inflammation, cyclin B (Ccnb) associated with cell cycle, DNA topoisomerase 2-alpha (Top2a) associated with intracellular component, and fibrillin (Fbn) and fibromodulin (Fmod) associated with extracellular matrix. CONCLUSION We conclude that HMGB2 is indispensable for stellate cell activation. Therefore, HMGB2 may serve as a potential therapeutic target to prevent HSC activation during chronic liver injury. The blood HMGB2 level may also serve as a potential diagnostic marker to detect early stage of liver fibrosis and cirrhosis in humans.
Collapse
Affiliation(s)
- Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
- Medicine Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Swetha Rudraiah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Santosh K. Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Diane Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Li Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
50
|
Bogahawaththa S, Kawamura T, Bandaranayake U, Hirakawa T, Yamada G, Ishino H, Hirohashi T, Kawaguchi SI, Wijesundera KK, Wijayagunawardane MPB, Ishimaru K, Kodithuwakku SP, Tsujita T. Identification and mechanistic investigation of ellagitannins from Osbeckia octandra that attenuate liver fibrosis via the TGF-β/SMAD signaling pathway. Biosci Biotechnol Biochem 2023; 87:1295-1309. [PMID: 37580142 DOI: 10.1093/bbb/zbad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Fibrosis is a major problem in chronic liver disease with limited treatment options due to its complex nature. Herbal medicines are often used as an alternative. The aim of this study was to investigate the therapeutic potential of Osbeckia octandra and to identify its active compounds and regulatory pathways. The effects of crude leaf suspension and boiled leaf extract were investigated in an animal model, and the extract was found to be the more effective treatment. Three major bioactive compounds, pedunculagin, casuarinin, and gallic acid, were isolated from the extract using the hepatic stellate cell line, LX-2-based antifibrotic effect evaluation system. The results showed that all these compounds ameliorated LX-2 in fibrotic state. This inhibitory mechanism was confirmed through the TGF-β/SMAD signaling pathway. Collectively, the presence of these compounds in O. octandra suggests its potential as a treatment for liver fibrosis.
Collapse
Affiliation(s)
- Sudarma Bogahawaththa
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Biochemistry, Department of Advanced Lifesciences and Food Chemistry, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Tomoaki Kawamura
- Laboratory of Biochemistry, Department of Advanced Lifesciences and Food Chemistry, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Udari Bandaranayake
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Functional Material Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 225, Sakura-ku, Saitama, 338-8570, Japan
| | - Tomoaki Hirakawa
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Biochemistry, Department of Advanced Lifesciences and Food Chemistry, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Goki Yamada
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Biochemistry, Department of Advanced Lifesciences and Food Chemistry, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Hana Ishino
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Tsuzumi Hirohashi
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Shin-Ichi Kawaguchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Karatsu, Saga, 847-0021, Japan
| | - Kavindra K Wijesundera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | - Kanji Ishimaru
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Suranga P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- ERA Chair COMBIVET, Institute of veterinary Medicine and Animal Science, Estonian University of Life Science, Tartu, 51014, Estonia
| | - Tadayuki Tsujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Biochemistry, Department of Advanced Lifesciences and Food Chemistry, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| |
Collapse
|