1
|
Luo S, Deng Q, Liang C, Zhang P, Zou P, Deng S, Zhang M, Zeng F, Zhang L, Fu Y, Li C, Li T. Protection of Novel Adenovirus Vectored Vaccine in Rats Against Wild-Type Hepacivirus and Variant Infections. Liver Int 2025; 45:e70045. [PMID: 40095396 DOI: 10.1111/liv.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) vaccines are urgently needed to achieve WHO's goal for the elimination of viral hepatitis by 2030. The lack of suitable animal models for evaluating vaccine efficacy has greatly hindered the development of HCV vaccines. By using the rat model chronically infected with rodent hepacivirus from Rattus norvegicus (RHV-rn1), a hepacivirus homologously close to HCV as a surrogate model of HCV infection, we assessed the protective effectiveness of the RHV-rn1 vaccine Sad23L-RHVns. METHODS Sad23L-RHVns vaccine was constructed with the nonstructural proteins (NS) 3-5B genes of RHV-rn1. SD rats were immunised with Sad23L-RHVns by prime or prime-boost regimen via intramuscular injection, then challenged 4 weeks post vaccination by RHV-rn1. A part of the rats were rechallenged with a variant 15 weeks post the first challenge of RHV-rn1. RESULTS The specific T-cell responses to NS3-5B antigens were induced by prime immunisation, which were significantly enhanced by boost vaccination. The inoculated rats and controls were challenged by wild-type RHV-rn1, of all the primed and control rats having persistently high levels of viremia, whereas 7 of 9 (77.8%) boosted rats cleared RHV-rn1 infection. Interestingly, the resolver acquired immune protection against re-challenging with variant and showed significantly higher T-cell responses than the nonresolver in 25 weeks post rechallenge. CONCLUSIONS Sad23L-RHVns with prime-boost regimen protected 77.8% of rats against wild-type RHV-rn1 infection, and resolvers showed high levels and maintenance of T cell immunity against the variant. Our findings that maintenance of effective T cell immunity is required for RHV-rn1 resolution may provide insight to develop the HCV vaccine in humans.
Collapse
Affiliation(s)
- Shengxue Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chaolan Liang
- Department of Blood Transfusion, Shenzhen Third People's Hospital, Shenzhen, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, China
| | - Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meng Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Feifeng Zeng
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongshui Fu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Shenzhen Bao'an District Central Blood Station, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Machraoui S, Errafii K, Oujamaa I, Belghali MY, Hakmaoui A, Lamjadli S, Eddehbi FE, Brahim I, Haida Y, Admou B. Frequency of the Main Human Leukocyte Antigen A, B, DR, and DQ Loci Known to Be Associated with the Clearance or Persistence of Hepatitis C Virus Infection in a Healthy Population from the Southern Region of Morocco: A Preliminary Study. Diseases 2024; 12:106. [PMID: 38785761 PMCID: PMC11120154 DOI: 10.3390/diseases12050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatitis C Virus (HCV) infection represents a significant global health challenge, with its natural course largely influenced by the host's immune response. Human Leukocyte Antigen (HLA) molecules, particularly HLA class I and II, play a crucial role in the adaptive immune response against HCV. The polymorphism of HLA molecules contributes to the variability in immune response, affecting the outcomes of HCV infection. This study aims to investigate the frequency of HLA A, B, DR, and DQ alleles known to be associated with HCV clearance or persistence in a healthy Moroccan population. Conducted at the University Hospital Center Mohammed VI, Marrakech, this study spanned from 2015 to 2022 and included 703 healthy Moroccan individuals. HLA class I and II typing was performed using complement-dependent cytotoxicity and polymerase chain reaction-based methodologies. The results revealed the distinct patterns of HLA-A, B, DRB1, and DQB1 alleles in the Moroccan population. Notably, alleles linked to favorable HCV outcomes, such as HLA-DQB1*0301, DQB1*0501, and DRB1*1101, were more prevalent. Conversely, alleles associated with increased HCV susceptibility and persistence, such as HLA-DQB1*02 and DRB1*03, were also prominent. Gender-specific variations in allele frequencies were observed, providing insights into genetic influences on HCV infection outcomes. The findings align with global trends in HLA allele associations with HCV infection outcomes. The study emphasizes the role of host genetics in HCV infection, highlighting the need for further research in the Moroccan community, including HCV-infected individuals. The prevalence of certain HLA alleles, both protective and susceptibility-linked, underscores the potential for a national HLA data bank in Morocco.
Collapse
Affiliation(s)
- Safa Machraoui
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40080, Morocco
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco;
| | - Khaoula Errafii
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco;
| | - Ider Oujamaa
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Moulay Yassine Belghali
- Department of Biology, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30003, Morocco;
| | - Abdelmalek Hakmaoui
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Saad Lamjadli
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Fatima Ezzohra Eddehbi
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Ikram Brahim
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Yasmine Haida
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Brahim Admou
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40080, Morocco
| |
Collapse
|
3
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
5
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
6
|
Dultz G, Srikakulam SK, Konetschnik M, Shimakami T, Doncheva NT, Dietz J, Sarrazin C, Biondi RM, Zeuzem S, Tampé R, Kalinina OV, Welsch C. Epistatic interactions promote persistence of NS3-Q80K in HCV infection by compensating for protein folding instability. J Biol Chem 2021; 297:101031. [PMID: 34339738 PMCID: PMC8405986 DOI: 10.1016/j.jbc.2021.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.
Collapse
Affiliation(s)
- Georg Dultz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sanjay K Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany; Graduate School of Computer Science, Saarland University, Saarbrücken, Germany; Interdisciplinary Graduate School of Natural Product Research, Saarland University, Saarbrücken, Germany
| | - Michael Konetschnik
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julia Dietz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ricardo M Biondi
- Molecular Targeting, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany; Medical Faculty, Saarland University, Homburg, Germany; Center for Bioinformatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 2021; 50:110-118. [PMID: 34454351 DOI: 10.1016/j.coviro.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Approx. 320 million individuals worldwide are chronically infected with hepatitis viruses, contributing to viral hepatitis being one of the 10 leading causes of death. Cellular adaptive immunity, namely CD4+ and CD8+ T cells, plays an important role in viral clearance and control. Two main mechanisms, however, may lead to failure of the virus-specific T-cell response: T-cell exhaustion and mutational viral escape. Viral escape has been studied in detail in hepatitis C virus (HCV) infection, where it is thought to affect approx. 50% of virus-specific CD8+ T-cell responses in persistent infection, to influence natural infection outcome and to contribute to failure of preventive vaccination strategies. In hepatitis B virus (HBV) as well as HBV/hepatitis D virus (HDV) co-infection, the impact of viral escape has been studied in detail only recently.
Collapse
|
8
|
Mazouz S, Boisvert M, Abdel-Hakeem MS, Khedr O, Bruneau J, Shoukry NH. Expansion of Unique Hepatitis C Virus-Specific Public CD8 + T Cell Clonotypes during Acute Infection and Reinfection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1180-1193. [PMID: 34341170 DOI: 10.4049/jimmunol.2001386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-β V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine Familiale et de Médecine d'Urgence, Université de Montréal, Montreal, Quebec, Canada; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; .,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020; 9:E888. [PMID: 33120928 PMCID: PMC7694016 DOI: 10.3390/pathogens9110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
Parapoxvirus (PPV) has been identified in some mammals and poses a great threat to both the livestock production and public health. However, the prevalence and evolution of this virus are still not fully understood. Here, we performed an in silico analysis to investigate the genomic features and evolution of PPVs. We noticed that although there were significant differences of GC contents between orf virus (ORFV) and other three species of PPVs, all PPVs showed almost identical nucleotide bias, that is GC richness. The structural analysis of PPV genomes showed the divergence of different PPV species, which may be due to the specific adaptation to their natural hosts. Additionally, we estimated the phylogenetic diversity of seven different genes of PPV. According to all available sequences, our results suggested that during 2010-2018, ORFV was the dominant virus species under the selective pressure of the optimal gene patterns. Furthermore, we found the substitution rates ranged from 3.56 × 10-5 to 4.21 × 10-4 in different PPV segments, and the PPV VIR gene evolved at the highest substitution rate. In these seven protein-coding regions, purifying selection was the major evolutionary pressure, while the GIF and VIR genes suffered the greatest positive selection pressure. These results may provide useful knowledge on the virus genetic evolution from a new perspective which could help to create prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| |
Collapse
|
10
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
11
|
Chronic Viral Liver Diseases: Approaching the Liver Using T Cell Receptor-Mediated Gene Technologies. Cells 2020; 9:cells9061471. [PMID: 32560123 PMCID: PMC7349849 DOI: 10.3390/cells9061471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic infection with viral hepatitis is a major risk factor for liver injury and hepatocellular carcinoma (HCC). One major contributing factor to the chronicity is the dysfunction of virus-specific T cell immunity. T cells engineered to express virus-specific T cell receptors (TCRs) may be a therapeutic option to improve host antiviral responses and have demonstrated clinical success against virus-associated tumours. This review aims to give an overview of TCRs identified from viral hepatitis research and discuss how translational lessons learned from cancer immunotherapy can be applied to the field. TCR isolation pipelines, liver homing signals, cell type options, as well as safety considerations will be discussed herein.
Collapse
|
12
|
Abdel-Hakeem MS. Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses 2019; 11:E106. [PMID: 30691215 PMCID: PMC6410308 DOI: 10.3390/v11020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Virology has played an essential role in deciphering many immunological phenomena, thus shaping our current understanding of the immune system. Animal models of viral infection and human viral infections were both important tools for immunological discoveries. This review discusses two immunological breakthroughs originally identified with the help of the lymphocytic choriomeningitis virus (LCMV) model; immunological restriction by major histocompatibility complex and immunotherapy using checkpoint blockade. In addition, we discuss related discoveries such as development of tetramers, viral escape mutation, and the phenomenon of T-cell exhaustion.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| |
Collapse
|
13
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
14
|
According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1 low HCV-Specific CD8 + Cell Reactivity. J Virol 2018; 92:JVI.01443-17. [PMID: 29093082 DOI: 10.1128/jvi.01443-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cells suffer a progressive exhaustion during persistent infection (PI) with HCV. This process could involve the positive immune checkpoint 4-1BB/4-1BBL through the loss of its signal transducer, TRAF1. To address this issue, peripheral HCV-specific CD8+ T cells (pentamer-positive [pentamer+]/CD8+ T cells) from patients with PI and resolved infection (RI) after treatment were studied. The duration of HCV infection and the liver fibrosis progression rate inversely correlated with the likelihood of detection of peripheral pentamer+/CD8+ cells. In PI, pentamer+/CD8+ cells had impaired antigen-specific reactivity that worsened when these cells were not detectable ex vivo Short/midduration PI was characterized by detectable peripheral PD-1+ CD127low TRAF1low cells. After triggering of T cell receptors (TCR), the TRAF1 level positively correlated with the levels of CD127, Mcl-1, and CD107a expression and proliferation intensity but negatively with PD-1 expression, linking TRAF1low to exhaustion. In vitro treatment with interleukin-7 (IL-7) upregulated TRAF1 expression, while treatment with transforming growth factor-β1 (TGF-β1) did the opposite, suggesting that the IL-7/TGF-β1 balance, besides TCR stimulation, could be involved in TRAF1 regulation. In fact, the serum TGF-β1 concentration was higher in patients with PI than in patients with RI, and it negatively correlated with TRAF1 expression. In line with IL-7 increasing the level of TRAF1 expression, IL-7 plus 4-1BBL treatment in vitro enhanced T cell reactivity in patients with short/midduration infection. However, in patients with long-lasting PI, anti-PD-L1, in addition to the combination of IL-7 and 4-1BBL, was necessary to reestablish T cell proliferation in individuals with slowly progressing liver fibrosis (slow fibrosers) but had no effect in rapid fibrosers. In conclusion, a peripheral hyporeactive TRAF1low HCV-specific CD8+ T cell response, restorable by IL-7 plus 4-1BBL treatment, characterizes short/midduration PI. In long-lasting disease, HCV-specific CD8+ T cells are rarely detectable ex vivo, but treatment with IL-7, 4-1BBL, and anti-PD-L1 recovers their reactivity in vitro in slow fibrosers.IMPORTANCE Hepatitis C virus (HCV) infects 71 million people worldwide. Two-thirds develop a chronic disease that can lead to cirrhosis and hepatocellular carcinoma. Direct-acting antivirals clear the infection, but there are still patients who relapse. In these cases, additional immunotherapy could play a vital role. A successful anti-HCV immune response depends on virus-specific CD8+ T cells. During chronic infection, these cells are functionally impaired, which could be due to the failure of costimulation. This study describes exhausted specific T cells, characterized by low levels of expression of the signal transducer TRAF1 of the positive costimulatory pathway 4-1BB/4-1BBL. IL-7 upregulated TRAF1 expression and improved T cell reactivity in patients with short/midduration disease, while in patients with long-lasting infection, it was also necessary to block the negative PD-1/PD-L1 checkpoint. When the results are taken together, this work supports novel ways of restoring the specific CD8+ T cell response, shedding light on the importance of TRAF1 signaling. This could be a promising target for future immunotherapy.
Collapse
|
15
|
Levander S, Sällberg M, Ahlén G, Frelin L. A non-human hepadnaviral adjuvant for hepatitis C virus-based genetic vaccines. Vaccine 2016; 34:2821-33. [PMID: 27109565 DOI: 10.1016/j.vaccine.2016.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
Human hepatitis B virus (HBV) core antigen (HBcAg) can act as an adjuvant in hepatitis C virus (HCV)-based DNA vaccines. Since two billion people are, or have been, in contact with HBV, one may question the use of human HBV sequences as adjuvant. We herein evaluated non-human stork hepatitis B virus core gene-sequences from stork as DNA vaccine adjuvants. Full-length and fragmented stork HBcAg gene-sequences were added to an HCV non-structural (NS) 3/4A gene (NS3/4A-stork-HBcAg). This resulted in an enhanced priming of HCV-specific IFN-γ and IL-2 responses in both wild-type (wt)- and NS3/4A-transgenic (Tg) mice, the latter with dysfunctional NS3/4A-specific T cells. The NS3/4A-stork-HBcAg vaccine primed NS3/4A-specific T cells in hepatitis B e antigen (HBeAg)-Tg mice with dysfunctional T cells to HBcAg and HBeAg. Repeated immunizations boosted expansion of IFN-γ and IL-2-producing NS3/4A-specific T cells in wt- and NS3/4A-Tg mice. Importantly, NS3/4A-stork-HBcAg-DNA induced in vivo long-term functional memory T cell responses, whose maintenance required CD4(+) T cells. Thus, avian HBcAg gene-sequences from stork can effectively act as a DNA vaccine adjuvant. This technology can most likely be universally expanded to other genetic vaccine antigens, as this completely avoids the use of sequences from a human virus where a pre-existing immunity may interfere with its adjuvant effect.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
16
|
Ahlén G, Frelin L, Holmström F, Smetham G, Augustyn S, Sällberg M. A targeted controlled force injection of genetic material in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16016. [PMID: 27069951 PMCID: PMC4813609 DOI: 10.1038/mtm.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | | | | | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| |
Collapse
|
17
|
Zhao Y, Zhang H, Zhao J, Zhong Q, Jin JH, Zhang GZ. Evolution of infectious bronchitis virus in China over the past two decades. J Gen Virol 2016; 97:1566-1574. [PMID: 27008625 PMCID: PMC7079583 DOI: 10.1099/jgv.0.000464] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Avian infectious bronchitis is a highly contagious disease caused by infectious bronchitis virus (IBV) that affects poultry production worldwide. The absence of vaccine cross-protection and the frequent emergence of new variant strains complicate control of IBV. Here we designed a study to measure the evolution dynamics of IBV strains in China. One hundered and seven complete sequences and 1022 S1-region sequences of Chinese IBVs isolated between 1994 and 2014 were analysed by using MEGA 5.0 software and the Bayesian analysis sampling trees (BEAST) method, and selection pressure on different proteins was assessed. The phylogenetic dissimilarity of different gene trees in the data set indicated possible recombination. Fourteen isolates were identified as recombinants, possibly generated from vaccines of the Massachusetts serotype in recombination with circulating viruses. The earliest IBV in China was found to have existed in the early 1900s, and continues to evolve at a rate of approximately 10-5 substitutions per site per year. We found that purifying selection was the main evolutionary pressure in the protein-coding regions, while the S1 gene bears the greatest positive selection pressure. The proportion of QX-like genotype strains increased over time. These results indicate that the genotypes of Chinese IBVs have undergone a remarkable transition during the past 20 years.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Hui Zhang
- National Clinical Research Center of Digestive Diseases and Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.,Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Qi Zhong
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Ji-Hui Jin
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guo-Zhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
18
|
Abdel-Hameed EA, Rouster SD, Ji H, Ulm A, Hetta HF, Anwar N, Sherman KE, Shata MTM. Evaluating the Role of Cellular Immune Responses in the Emergence of HCV NS3 Resistance Mutations During Protease Inhibitor Therapy. Viral Immunol 2016; 29:252-8. [PMID: 26885675 DOI: 10.1089/vim.2015.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The efficacy of protease inhibitor drugs in hepatitis C virus (HCV) treatment is limited by the selection and expansion of drug-resistant mutations. HCV replication is error-prone and genetic variability within the dominant epitopes ensures its persistence. The aims of this study are to evaluate the role of cellular immune response in the emergence of HCV protease resistance mutations and its effects on treatment outcome. Ten chronically HCV-infected subjects were treated with boceprevir (BOC)-based triple therapy. HCV-RNA was tested for BOC resistance-associated viral variants. HCV protease resistance mutations were investigated pretreatment and 24 weeks post-treatment. Synthetic peptides representing the wild-type and the potential nonstructural (NS)3 variants were used to evaluate T cell responses and human leukocyte antigen binding. Sustained viral response was achieved in 70% of patients, two patients were treatment nonresponders (NRs) and one was classified as a relapse. Pretreatment, the proportion of drug-resistant variants within individuals was higher in sustained viral responders (SVRs) than in NR patients. However, resistance-associated variants increased in NRs after BOC combined triple therapy. In contrast to NR patients, significant stronger cell-mediated immune responses were observed at the baseline among those who achieved sustained viral response for all T cell epitopes tested. Despite the increase in cell-mediated immune responses at week 24 in NRs, they failed to control the virus replication, leading to development of overt drug-resistant variants. Our data suggest that strong NS3-specific T cell immune responses at the baseline may predict a positive outcome of directly acting antiviral-based therapy, and the presence of pre-existent resistance mutations does not play a significant role in the outcome of anti-HCV combined therapy.
Collapse
Affiliation(s)
| | - Susan D Rouster
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Hong Ji
- 2 Division of Asthma Research, Pyrosequencing Core for Genetic and Epigenetic Studies, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Ashley Ulm
- 2 Division of Asthma Research, Pyrosequencing Core for Genetic and Epigenetic Studies, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Helal F Hetta
- 3 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Nadeem Anwar
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Kenneth E Sherman
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | | |
Collapse
|
19
|
von Delft A, Humphreys IS, Brown A, Pfafferott K, Lucas M, Klenerman P, Lauer GM, Cox AL, Gaudieri S, Barnes E. The broad assessment of HCV genotypes 1 and 3 antigenic targets reveals limited cross-reactivity with implications for vaccine design. Gut 2016; 65:112-23. [PMID: 26092843 PMCID: PMC4717358 DOI: 10.1136/gutjnl-2014-308724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Developing a vaccine that is cross-reactive between HCV genotypes requires data on T cell antigenic targets that extends beyond genotype-1. We characterised T cell immune responses against HCV genotype-3, the most common infecting genotype in the UK and Asia, and assessed within genotype and between genotype cross-reactivity. DESIGN T cell targets were identified in 140 subjects with either acute, chronic or spontaneously resolved HCV genotype-3 infection using (1) overlapping peptides and (2) putative human leucocyte antigens (HLA)-class-I wild type and variant epitopes through the prior assessment of polymorphic HCV genomic sites associated with host HLA, in IFNγ-ELISpot assays. CD4+/CD8+ T cell subsets were defined and viral variability at T cell targets was determined through population analysis and viral sequencing. T cell cross-reactivity between genotype-1 and genotype-3 variants was assessed. RESULTS In resolved genotype-3 infection, T cells preferentially targeted non-structural proteins at a high magnitude, whereas in chronic disease T cells were absent or skewed to target structural proteins. Additional responses to wild type but not variant HLA predicted peptides were defined. Major sequence viral variability was observed within genotype-3 and between genotypes 1 and 3 HCV at T cell targets in resolved infection and at dominant epitopes, with limited T cell cross-reactivity between viral variants. Overall 41 CD4/CD8+ genotype-3 T cell targets were identified with minimal overlap with those described for HCV genotype-1. CONCLUSIONS HCV T cell specificity is distinct between genotypes with limited T cell cross-reactivity in resolved and chronic disease. Therefore, viral regions targeted in natural HCV infection may not serve as attractive targets for a vaccine that aims to protect against multiple HCV genotypes.
Collapse
Affiliation(s)
| | | | | | | | - Michaela Lucas
- Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia,School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Western Australia, Australia,School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | | | | | - Andrea L Cox
- John Hopkins University, Baltimore, Maryland, USA
| | - Silvana Gaudieri
- Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia,School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
20
|
Kaźmierczak J, Caraballo Cortes K, Bukowska-Ośko I, Radkowski M. Virus-Specific Cellular Response in Hepatitis C Virus Infection. Arch Immunol Ther Exp (Warsz) 2015; 64:101-10. [PMID: 26429740 DOI: 10.1007/s00005-015-0364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Studies performed on chimpanzees and humans have revealed that strong, multispecific and sustained CD4(+) and CD8(+) T cell immune responses is a major determinant of hepatitis C virus (HCV) clearance. However, spontaneous elimination of the virus occurs in minority of infected individuals and cellular response directed against HCV antigens is not persistent in individuals with chronic infection. This review presents characteristics of the HCV-specific T cell response in patients with different clinical course of infection, including acute and chronic infection, persons who spontaneously eliminated HCV and non-infected subjects exposed to HCV. Detection of HCV-specific response, especially in non-infected subjects exposed to HCV, may be indicative of HCV prevalence in population and rate of spontaneous viral clearance. Understanding the mechanisms and role of HCV-specific cellular immune response would contribute to better understanding of HCV epidemiology, immunopathogenesis and may help to design an effective vaccine.
Collapse
Affiliation(s)
- Justyna Kaźmierczak
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland.
| | - Kamila Caraballo Cortes
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| |
Collapse
|
21
|
Pfafferott K, Deshpande P, McKinnon E, Merani S, Lucas A, Heckerman D, Mallal S, John M, Gaudieri S, Lucas M. Anti-hepatitis C virus T-cell immunity in the context of multiple exposures to the virus. PLoS One 2015; 10:e0130420. [PMID: 26107956 PMCID: PMC4480353 DOI: 10.1371/journal.pone.0130420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Characterisation of Hepatitis C virus (HCV)-specific CD8+ T-cell responses in the context of multiple HCV exposures is critical to identify broadly protective immune responses necessary for an effective HCV vaccine against the different HCV genotypes. However, host and viral genetic diversity complicates vaccine development. To compensate for the observed variation in circulating autologous viruses and host molecules that restrict antigen presentation (human leucocyte antigens; HLA), this study used a reverse genomics approach that identified sites of viral adaptation to HLA-restricted T-cell immune pressure to predict genotype-specific HCV CD8+ T-cell targets. Peptides representing these putative HCV CD8+ T-cell targets, and their adapted form, were used in individualised IFN-γ ELISpot assays to screen for HCV-specific T-cell responses in 133 HCV-seropositive subjects with high-risk of multiple HCV exposures. The data obtained from this study i) confirmed that genetic studies of viral evolution is an effective approach to detect novel in vivo HCV T-cell targets, ii) showed that HCV-specific T-cell epitopes can be recognised in their adapted form and would not have been detected using wild-type peptides and iii) showed that HCV-specific T-cell (but not antibody) responses against alternate genotypes in chronic HCV-infected subjects are readily found, implying clearance of previous alternate genotype infection. In summary, HCV adaptation to HLA Class I-restricted T-cell responses plays a central role in anti-HCV immunity and multiple HCV genotype exposure is highly prevalent in at-risk exposure populations, which are important considerations for future vaccine design.
Collapse
Affiliation(s)
- Katja Pfafferott
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Shahzma Merani
- Centre for Forensic Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - David Heckerman
- Microsoft Research, Microsoft, Redmond, Washington, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Michaela Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
22
|
Verstrepen BE, Boonstra A, Koopman G. Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees. World J Hepatol 2015; 7:53-69. [PMID: 25624997 PMCID: PMC4295194 DOI: 10.4254/wjh.v7.i1.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.
Collapse
Affiliation(s)
- Babs E Verstrepen
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - André Boonstra
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - Gerrit Koopman
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| |
Collapse
|
23
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
24
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
25
|
Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther 2014; 21:739-50. [PMID: 24871581 PMCID: PMC4126484 DOI: 10.1038/gt.2014.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2d) and/or C57BL/6J (H-2b) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2d-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12–16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus vaccine compositions.
Collapse
|
26
|
Statistical linkage analysis of substitutions in patient-derived sequences of genotype 1a hepatitis C virus nonstructural protein 3 exposes targets for immunogen design. J Virol 2014; 88:7628-44. [PMID: 24760894 DOI: 10.1128/jvi.03812-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver failure and liver cancer, affecting around 3% of the world's population. The extreme sequence variability of the virus resulting from error-prone replication has thwarted the discovery of a universal prophylactic vaccine. It is known that vigorous and multispecific cellular immune responses, involving both helper CD4(+) and cytotoxic CD8(+) T cells, are associated with the spontaneous clearance of acute HCV infection. Escape mutations in viral epitopes can, however, abrogate protective T-cell responses, leading to viral persistence and associated pathologies. Despite the propensity of the virus to mutate, there might still exist substitutions that incur a fitness cost. In this paper, we identify groups of coevolving residues within HCV nonstructural protein 3 (NS3) by analyzing diverse sequences of this protein using ideas from random matrix theory and associated methods. Our analyses indicate that one of these groups comprises a large percentage of residues for which HCV appears to resist multiple simultaneous substitutions. Targeting multiple residues in this group through vaccine-induced immune responses should either lead to viral recognition or elicit escape substitutions that compromise viral fitness. Our predictions are supported by published clinical data, which suggested that immune genotypes associated with spontaneous clearance of HCV preferentially recognized and targeted this vulnerable group of residues. Moreover, mapping the sites of this group onto the available protein structure provided insight into its functional significance. An epitope-based immunogen is proposed as an alternative to the NS3 epitopes in the peptide-based vaccine IC41. IMPORTANCE Despite much experimental work on HCV, a thorough statistical study of the HCV sequences for the purpose of immunogen design was missing in the literature. Such a study is vital to identify epistatic couplings among residues that can provide useful insights for designing a potent vaccine. In this work, ideas from random matrix theory were applied to characterize the statistics of substitutions within the diverse publicly available sequences of the genotype 1a HCV NS3 protein, leading to a group of sites for which HCV appears to resist simultaneous substitutions possibly due to deleterious effect on viral fitness. Our analysis leads to completely novel immunogen designs for HCV. In addition, the NS3 epitopes used in the recently proposed peptide-based vaccine IC41 were analyzed in the context of our framework. Our analysis predicts that alternative NS3 epitopes may be worth exploring as they might be more efficacious.
Collapse
|
27
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
28
|
Lassmann B, Arumugaswami V, Chew KW, Lewis MJ. A new system to measure and compare hepatitis C virus replication capacity using full-length, replication competent viruses. J Virol Methods 2013; 194:82-8. [PMID: 23973740 DOI: 10.1016/j.jviromet.2013.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022]
Abstract
Measuring the in vitro replication capacity of viruses is an important tool for assessing the effects of selective pressure of immune responses and drug therapy. Measuring hepatitis C virus (HCV) replication capacity utilizing primarily sub-genomic reporter constructs is limited. To overcome some of these limitations a quantitative reverse transcriptase PCR (RT-qPCR) was designed to measure simultaneously the growth rate of 2 whole genome HCV variants under identical culture conditions. The assay demonstrates 100% specificity of detection of each variant and a linear detection range from 200 to 2×10(8) copies. The system was validated using a panel of HCV mutants, including the NS3 protease inhibitor drug resistance mutants R155K and T54A. The creation of a unique sequence tag results in highly sensitive and specific discrimination of parental JFH-FNX and modified clones using distinct probes in a RT-qPCR allowing for comparison of the effect of drug resistance or immune escape mutations on HCV replication. This system has advantages over existing methods both by permitting direct comparison of the replication capacity of fully replication-competent HCV mutants under identical culture conditions and by measuring effects on replication capacity due to mutations affecting all stages of the viral life cycle including entry and egress.
Collapse
Affiliation(s)
- Britta Lassmann
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Agranovich A, Maman Y, Louzoun Y. Viral proteome size and CD8+ T cell epitope density are correlated: the effect of complexity on selection. INFECTION GENETICS AND EVOLUTION 2013; 20:71-7. [PMID: 23954420 PMCID: PMC7106205 DOI: 10.1016/j.meegid.2013.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022]
Abstract
We analyze the relation between viral complexity and their adaptation to the host immune system. Viruses with few proteins and low number of nucleotides remove more CD8+ T cell epitopes. Within a virus, short proteins (with fewer amino acids) adapt better than long ones. The relation between total size and adaptation is host specific. Complexity limits genetic adaptation in the high-mutation rate strong selection regime.
The relation between the complexity of organisms and proteins and their evolution rates has been discussed in the context of multiple generic models. The main robust claim from most such models is the negative relation between complexity and the accumulation rate of mutations. Viruses accumulate escape mutations in their epitopes to avoid detection and destruction of their host cell by CD8+ T cells. The extreme regime of immune escape, namely, strong selection and high mutation rate, provide an opportunity to extend and validate the existing models of relation between complexity and evolution rate as proposed by Fisher and Kimura. Using epitope prediction algorithms to compute the epitopes presented on the most frequent human HLA alleles in over 100 fully sequenced human viruses, and over 900 non-human viruses, we here study the correlation between viruses/proteins complexity (as measured by the number of proteins in the virus and the length of each protein, respectively) and the rate of accumulation of escape mutation. The latter is evaluated by measuring the normalized epitope density of viral proteins. If the virus/protein complexity prevents the accumulation of escape mutations, the epitope density is expected to be positively correlated with both the number of proteins in the virus and the length of proteins. We show that such correlations are indeed observed for most human viruses. For non-human viruses the correlations were much less significant, indicating that the correlation is indeed induced by human HLA molecules.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yaakov Maman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
- Corresponding author. Tel.: +972 3 5317610; fax: +972 3 7384057.
| |
Collapse
|
30
|
Neumann-Haefelin C, Thimme R. Adaptive immune responses in hepatitis C virus infection. Curr Top Microbiol Immunol 2013; 369:243-62. [PMID: 23463204 DOI: 10.1007/978-3-642-27340-7_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune response plays a central role in the outcome of hepatitis C virus (HCV) infection. Indeed, spontaneous viral clearance is associated with an early neutralizing antibody response as well as vigorous and sustained HCV-specific CD4+ and CD8+ T cell responses. In persistent HCV infection, however, all three components of the antiviral adaptive immune response fail due to different viral evasion strategies. In this chapter, we will describe the components of a successful immune response against HCV and summarize the mechanisms of immune failure. We will also highlight characteristics of protective CD8+ T cell responses which is the key factor to the design of an efficacious vaccine.
Collapse
|
31
|
Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses 2012; 2:2696-739. [PMID: 21243082 PMCID: PMC3020796 DOI: 10.3390/v2122696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are the most prevalent deadly chronic viral diseases. HIV is treated by small molecule inhibitors. HBV is treated by immunomodulation and small molecule inhibitors. HCV is currently treated primarily by immunomodulation but many small molecules are in clinical development. Although HIV is a retrovirus, HBV is a double-stranded DNA virus, and HCV is a single-stranded RNA virus, antiviral drug resistance complicates the development of drugs and the successful treatment of each of these viruses. Although their replication cycles, therapeutic targets, and evolutionary mechanisms are different, the fundamental approaches to identifying and characterizing HIV, HBV, and HCV drug resistance are similar. This review describes the evolution of HIV, HBV, and HCV within individuals and populations and the genetic mechanisms associated with drug resistance to each of the antiviral drug classes used for their treatment.
Collapse
|
32
|
Ahlén G, Chen A, Roe B, Falkeborn T, Frelin L, Hall WW, Sällberg M, Söderholm J. Limited effect on NS3-NS4A protein cleavage after alanine substitutions within the immunodominant HLA-A2-restricted epitope of the hepatitis C virus genotype 3a non-structural 3/4A protease. J Gen Virol 2012; 93:1680-1686. [PMID: 22592266 DOI: 10.1099/vir.0.043745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been well established that immunological escape mutations within the hepatitis C virus genotype (gt) 1a non-structural (NS) 3/4A protease are partly prevented by a reduction in viral protease fitness. Surprisingly little is known about whether similar mutations affect proteases from other genotypes. In the present study, we assessed both the HLA-A2-restricted CTL response and gt3a NS3/4A protease fitness. Similar to gt1, the 1073-1081 epitope was immunodominant within the gt3a-specific HLA-A2-restricted CTL response, despite sequence similarity of only 56 % between the gt1a and gt3a genes. However, unlike the gt1a NS3/4A protease, all residues within the gt3a 1073-1081 epitope could be replaced sequentially by alanine while retaining protease activity, at least in part.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Antony Chen
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Barbara Roe
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tina Falkeborn
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Jonas Söderholm
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
33
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
34
|
Systems Biology Analyses to Define Host Responses to HCV Infection and Therapy. Curr Top Microbiol Immunol 2012; 363:143-67. [DOI: 10.1007/82_2012_251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Petrovic D, Dempsey E, Doherty DG, Kelleher D, Long A. Hepatitis C virus--T-cell responses and viral escape mutations. Eur J Immunol 2011; 42:17-26. [PMID: 22125159 DOI: 10.1002/eji.201141593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 10/05/2011] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
36
|
Pasetto A, Frelin L, Brass A, Yasmeen A, Koh S, Lohmann V, Bartenschlager R, Magalhaes I, Maeurer M, Sällberg M, Chen M. Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. J Gen Virol 2011; 93:247-258. [PMID: 22071510 PMCID: PMC3352347 DOI: 10.1099/vir.0.037903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anette Brass
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anila Yasmeen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sarene Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Laboratory Medicine, Stockholm, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Isabelle Magalhaes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Markus Maeurer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Fitzmaurice K, Petrovic D, Ramamurthy N, Simmons R, Merani S, Gaudieri S, Sims S, Dempsey E, Freitas E, Lea S, McKiernan S, Norris S, Long A, Kelleher D, Klenerman P. Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection. Gut 2011; 60:1563-71. [PMID: 21551190 PMCID: PMC3184218 DOI: 10.1136/gut.2010.228403] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. METHODS A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. RESULTS A strong 'HLA footprint' in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9/12) compared with the control group (1/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6/12) compared with controls (2/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03-positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. CONCLUSIONS It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent viruses, with important implications for HCV vaccine studies.
Collapse
Affiliation(s)
- Karen Fitzmaurice
- Department of Clinical Medicine, Trinity College Dublin, St James' Hospital, Dublin, Ireland.
| | - Danijela Petrovic
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Narayan Ramamurthy
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Ruth Simmons
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Shazma Merani
- Centre for Forensic Science, University of Western Australia, Nedlands, Australia
| | - Silvana Gaudieri
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia,Centre for Forensic Science, University of Western Australia, Nedlands, Australia,School of Anatomy and Human Biology, University of Western Australia, Nedlands, Australia
| | - Stuart Sims
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Eugene Dempsey
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Elizabeth Freitas
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
| | - Susan Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan McKiernan
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Suzanne Norris
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Dermot Kelleher
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK,Translational Immunology Lab, NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
38
|
A novel assay for detection of hepatitis C virus-specific effector CD4(+) T cells via co-expression of CD25 and CD134. J Immunol Methods 2011; 375:148-58. [PMID: 22019644 DOI: 10.1016/j.jim.2011.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV)-specific CD4(+) effector T cell responses are likely to play a key role in the immunopathogenesis of HCV infection by promoting viral clearance and maintaining control of viraemia. As the precursor frequency of HCV-specific CD4(+) T cells in peripheral blood is low, favoured assay systems such as intracellular cytokine (ICC) or tetramer staining have limited utility for ex vivo analyses. Accordingly, the traditional lymphocyte proliferation assay (LPA) remains the gold standard, despite detecting responses in only a minority of infected subjects. Recently, we reported development and validation of a novel whole blood CD4(+) effector T cell assay based on ex vivo antigen stimulation followed by co-expression of CD25 and CD134 on CD4(+) T cells. Here we report adaptation of this assay to assessment of HCV-specific responses in cryopreserved peripheral blood mononuclear cells using standardised antigens, including peptide pools, viral supernatants and recombinant viral proteins. The assay allowed detection of HCV-specific CD4 responses in donors with both resolved and chronic infection. Responses were highly correlated with those revealed by LPA. Application of this assay will further define the role of CD4(+) T cells in the immunopathogenesis of HCV infection.
Collapse
|
39
|
Malik IR, Chen A, Brass A, Ahlén G, Rahman M, Sällberg M, Qureshi JA, Frelin L. A bi-functional hepatitis B virus core antigen (HBcAg) chimera activates HBcAg-specific T cells and preS1-specific antibodies. ACTA ACUST UNITED AC 2011; 44:55-9. [DOI: 10.3109/00365548.2011.608711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8⁺ T cells in early viral evolution. J Virol 2011; 85:11833-45. [PMID: 21900166 DOI: 10.1128/jvi.02654-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered virus at frequent intervals revealed that most acute-phase nonsynonymous mutations were clustered in class I epitopes and appeared much earlier than those in the remainder of the HCV genome. Moreover, the ratio of nonsynonymous to synonymous mutations, a measure of positive selection pressure, was increased 50-fold in class I epitopes compared with the rest of the HCV genome. Finally, some mutation of the clonal H77C genome toward a genotype 1a consensus sequence considered most fit for replication was observed during the acute phase of infection, but the majority of these amino acid substitutions occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic infection is established and genetic drift becomes the dominant evolutionary force.
Collapse
|
41
|
Agranovich A, Vider-Shalit T, Louzoun Y. Optimal viral immune surveillance evasion strategies. Theor Popul Biol 2011; 80:233-43. [PMID: 21925527 DOI: 10.1016/j.tpb.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
42
|
Compensatory mutations restore the replication defects caused by cytotoxic T lymphocyte escape mutations in hepatitis C virus polymerase. J Virol 2011; 85:11883-90. [PMID: 21880756 DOI: 10.1128/jvi.00779-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While human leukocyte antigen B57 (HLA-B57) is associated with the spontaneous clearance of hepatitis C virus (HCV), the mechanisms behind this control remain unclear. Immunodominant CD8(+) T cell responses against the B57-restricted epitopes comprised of residues 2629 to 2637 of nonstructural protein 5B (NS5B(2629-2637)) (KSKKTPMGF) and E2(541-549) (NTRPPLGNW) were recently shown to be crucial in the control of HCV infection. Here, we investigated whether the selection of deleterious cytotoxic T lymphocyte (CTL) escape mutations in the NS5B KSKKTPMGF epitope might impair viral replication and contribute to the B57-mediated control of HCV. Common CTL escape mutations in this epitope were identified from a cohort of 374 HCV genotype 1a-infected subjects, and their impact on HCV replication assessed using a transient HCV replicon system. We demonstrate that while escape mutations at residue 2633 (position 5) of the epitope had little or no impact on HCV replication in vitro, mutations at residue 2629 (position 1) substantially impaired replication. Notably, the deleterious mutations at position 2629 were tightly linked in vivo to upstream mutations at residue 2626, which functioned to restore the replicative defects imparted by the deleterious escape mutations. These data suggest that the selection of costly escape mutations within the immunodominant NS5B KSKKTPMGF epitope may contribute in part to the control of HCV replication in B57-positive individuals and that persistence of HCV in B57-positive individuals may involve the development of specific secondary compensatory mutations. These findings are reminiscent of the selection of deleterious CTL escape and compensatory mutations by HLA-B57 in HIV-1 infection and, thus, may suggest a common mechanism by which alleles like HLA-B57 mediate protection against these highly variable pathogens.
Collapse
|
43
|
Saeed M, Shiina M, Date T, Akazawa D, Watanabe N, Murayama A, Suzuki T, Watanabe H, Hiraga N, Imamura M, Chayama K, Choi Y, Krawczynski K, Liang TJ, Wakita T, Kato T. In vivo adaptation of hepatitis C virus in chimpanzees for efficient virus production and evasion of apoptosis. Hepatology 2011; 54:425-33. [PMID: 21538444 PMCID: PMC3145027 DOI: 10.1002/hep.24399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/18/2011] [Indexed: 02/02/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) employs various strategies to establish persistent infection that can cause chronic liver disease. Our previous study showed that both the original patient serum from which the HCV JFH-1 strain was isolated and the cell culture-generated JFH-1 virus (JFH-1cc) established infection in chimpanzees, and that infected JFH-1 strains accumulated mutations after passage through chimpanzees. The aim of this study was to compare the in vitro characteristics of JFH-1 strains emerged in each chimpanzee at early and late stages of infection, as it could provide an insight into the phenomenon of viral persistence. We generated full-genome JFH-1 constructs with the mutations detected in patient serum-infected (JFH-1/S1 and S2) and JFH-1cc-infected (JFH-1/C) chimpanzees, and assessed their effect on replication, infectious virus production, and regulation of apoptosis in cell culture. The extracellular HCV core antigen secreted from JFH-1/S1-, S2-, and C-transfected HuH-7 cells was 2.5, 8.9, and 2.1 times higher than that from JFH-1 wild-type (JFH-1/wt) transfected cells, respectively. Single cycle virus production assay with a CD81-negative cell line revealed that the strain JFH-1/S2, isolated from the patient serum-infected chimpanzee at a later time point of infection, showed lower replication and higher capacity to assemble infectious virus particles. This strain also showed productive infection in human hepatocyte-transplanted mice. Furthermore, the cells harboring this strain displayed lower susceptibility to the apoptosis induced by tumor necrosis factor α or Fas ligand compared with the cells replicating JFH-1/wt. CONCLUSION The ability of lower replication, higher virus production, and less susceptibility to cytokine-induced apoptosis may be important for prolonged infection in vivo. Such control of viral functions by specific mutations may be a key strategy for establishing persistent infection.
Collapse
Affiliation(s)
- Mohsan Saeed
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Infection and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Shiina
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoko Date
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Daisuke Akazawa
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- Department of Infection and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nobuhiko Hiraga
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Michio Imamura
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Youkyung Choi
- Division of Viral Hepatitis, Center for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Krzysztof Krawczynski
- Division of Viral Hepatitis, Center for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
44
|
Antunes DA, Rigo MM, Silva JP, Cibulski SP, Sinigaglia M, Chies JA, Vieira GF. Structural in silico analysis of cross-genotype-reactivity among naturally occurring HCV NS3-1073-variants in the context of HLA-A*02:01 allele. Mol Immunol 2011; 48:1461-7. [DOI: 10.1016/j.molimm.2011.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022]
|
45
|
|
46
|
Duan L, Lei P, Yumei X, Xiaoping X, Futao Z, Li M, Xin W, Jiuping W, Xuefan B, Zhansheng J. Prediction and identification-based prediction of Chinese hepatitis C viral-specific cytotoxic T lymphocyte epitopes. J Med Virol 2011; 83:1315-20. [DOI: 10.1002/jmv.22053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 11/08/2022]
|
47
|
Chen A, Ahlén G, Brenndörfer ED, Brass A, Holmström F, Chen M, Söderholm J, Milich DR, Frelin L, Sällberg M. Heterologous T Cells Can Help Restore Function in Dysfunctional Hepatitis C Virus Nonstructural 3/4A-Specific T Cells during Therapeutic Vaccination. THE JOURNAL OF IMMUNOLOGY 2011; 186:5107-18. [DOI: 10.4049/jimmunol.1001790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Abstract
The hepatitis C virus (HCV) is a global public health problem affecting approximately 2% of the human population. The majority of HCV infections (more than 70%) result in life-long persistence of the virus that substantially increases the risk of serious liver diseases, including cirrhosis and hepatocellular carcinoma. The remainder (less than 30%) resolves spontaneously, often resulting in long-lived protection from persistence upon reexposure to the virus. To persist, the virus must replicate and this requires effective evasion of adaptive immune responses. In this review, the role of humoral and cellular immunity in preventing HCV persistence, and the mechanisms used by the virus to subvert protective host responses, are considered.
Collapse
|
49
|
Jo J, Lohmann V, Bartenschlager R, Thimme R. Experimental models to study the immunobiology of hepatitis C virus. J Gen Virol 2010; 92:477-93. [PMID: 21148278 DOI: 10.1099/vir.0.027987-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Effective host immune responses are essential for the control of hepatitis C virus (HCV) infection and persistence of HCV has indeed been attributed to their failure. In recent years, several in vitro and in vivo experimental models have allowed studies of host immune responses against HCV. Numerous observations derived from these models have improved our understanding of the mechanisms responsible for the host's ability to clear the virus as well as of the mechanisms responsible for the host's failure to control HCV replication. Importantly, several findings obtained with these model systems have been confirmed in studies of acutely or chronically HCV-infected individuals. Collectively, several mechanisms are used by HCV to escape host immune responses, such as poor induction of the innate immune response and escaping/impairing adaptive immunity. In this review, we summarize current findings from experimental models available for studies of the immune response targeting HCV and discuss the relevance of these findings for the in vivo situation in HCV-infected humans.
Collapse
Affiliation(s)
- Juandy Jo
- Department of Medicine II, University Medical Center Freiburg, Germany
| | | | | | | |
Collapse
|
50
|
Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, Hildebrand WH, Eckels DD. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J Gastroenterol 2010; 16:1953-69. [PMID: 20419832 PMCID: PMC2860072 DOI: 10.3748/wjg.v16.i16.1953] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To understand how interactions between hepatitis C virus (HCV) and the host’s immune system might lead to viral persistence or effective elimination of HCV.
METHODS: Nucleotides 3519-3935 of the non-structural 3 (NS3) region were amplified by using reverse transcription polymerase chain reaction (PCR). PCR products of the HCV NS3 regions were integrated into a PCR® T7TOPO® TA vector and then sequenced in both directions using an automated DNA sequencer. Relative major histocompatibility complex binding levels of wild-type and variant peptides were performed by fluorescence polarization-based peptide competition assays. Peptides with wild type and variant sequences of NS3 were synthesized locally using F-moc chemistry and purified by high-performance liquid chromatography. Specific cytotoxic T lymphocytes (CTLs) clones toward HCV NS3 wild-type peptides were generated through limiting dilution cloning. The CTL clones specifically recognizing HCV NS3 wild-type peptides were tested by tetramer staining and flow cytometry. Cytolytic activity of CTL clones was measured using target cells labeled with the fluorescence enhancing ligand, DELFIA EuTDA.
RESULTS: The pattern of natural variants within three human leukocyte antigen (HLA)-A2-restricted NS3 epitopes has been examined in one patient with chronic HCV infection at 12, 28 and 63 mo post-infection. Results obtained may provide convincing evidence of immune selection pressure for all epitopes investigated. Statistical analysis of the extensive sequence variation found within these NS3 epitopes favors a Darwinian selection model of variant viruses. Mutations within the epitopes coincided with the decline of CTL responses, and peptide-binding studies suggested a significant impact of the mutation on T cell recognition rather than peptide presentation by HLA molecules. While most variants were either not recognized or elicited low responses, such could antagonize CTL responses to target cells pulsed with wild-type peptides.
CONCLUSION: Cross-recognition of CTL epitopes from wild-type and naturally-occurring HCV variants may lead to impaired immune responses and ultimately contribute to viral persistence.
Collapse
|