1
|
Jiang B, Wang Z, Wang M, Wang S, Li M, Meng Z, Yuan J, Ke Y. Safety Assessment of Two Human Fecal Bacteroides Strain Isolates in Immunodeficient Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10529-y. [PMID: 40167961 DOI: 10.1007/s12602-025-10529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Bacteroides are potential candidates for next-generation probiotics (NGPs), which require preclinical safety and efficacy evaluations to ensure their rational use. This study aimed to verify the safety of two Bacteroides strains isolated from human fecal samples, Bacteroides dorei CK16 (B. dorei CK16) and Bacteroides vulgatus CK29 (B. vulgatus CK29), using genomic analysis and in vivo experiments. Whole-genome sequencing analysis of B. dorei CK16 revealed a predicted 4,898 protein-coding sequences (CDS), about 5.5 Mb of total genome length with a G + C content of 42.08%, and B. vulgatus CK29 revealed a predicted 4,610 CDS, about 5.3 Mb of total genome length with a G + C content of 42.56%. Moreover, the genome demonstrated the absence of virulence factors, and insertion sequences related to clinically relevant strains in either strain. A 42-day in vivo experiment was conducted on BALB/c and BALB/c nude mice, with each mouse receiving a daily dose of 1 × 108 colony forming units (CFU) /mL of B. dorei CK16 or B. vulgatus CK29. No significant in vivo pathogenic characteristics were observed based on body weight, organ index, hematological, serum biochemical, or histological analyses, particularly in nude mice. Therefore, the initial safety assessment of the two novel Bacteroides strains exhibited no notable adverse effects in both immunocompetent and immunodeficient mice models.
Collapse
Affiliation(s)
- Boyi Jiang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
| | - Zhen Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Mingxuan Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050091, Hebei Province, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050091, Hebei Province, China
| | - Mengmeng Li
- Department of Anesthesiology, Fourth Center of Chinese PLA General Hospital, Beijing, 100143, China.
| | - Zhaoting Meng
- Department of Thoracic Medical Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
| |
Collapse
|
2
|
Chen S, Zhang D, Li D, Zeng F, Chen C, Bai F. Microbiome characterization of patients with Crohn disease and the use of fecal microbiota transplantation: A review. Medicine (Baltimore) 2025; 104:e41262. [PMID: 39854760 PMCID: PMC11771716 DOI: 10.1097/md.0000000000041262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 11/15/2024] [Indexed: 01/26/2025] Open
Abstract
Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy. This article synthesizes the findings of population-based cohort studies to enhance our understanding of gut microbial characteristics in patients with CD. It delves into the roles of "beneficial" and "pathogenic" bacteria in CD's development. This article systematically reviews and compares data on clinical response rates, remission rates, adverse events, and shifts in bacterial microbiota. Among these studies, gut microbiome analysis was conducted in only 7, and a single study examined the metabolome. Overall, FMT has demonstrated a partial restoration of typical CD-associated microbiological alterations, leading to increased α-diversity in responders and a moderate shift in patient microbiota toward the donor profile. Several factors, including donor selection, delivery route, microbial state (fresh or frozen), and recipient condition, are identified as pivotal in influencing FMT's effectiveness. Future prospective clinical studies with larger patient cohorts and improved methodologies are imperative. In addition, standardization of FMT procedures, coupled with advanced genomic techniques such as macroproteomics and culture genomics, is necessary. These advancements will further clarify the bacterial microbiota alterations that significantly contribute to FMT's therapeutic effects in CD treatment, as well as elucidate the underlying mechanisms of action.
Collapse
Affiliation(s)
- Shiju Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Daya Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Da Li
- Graduate School, Hainan Medical University, Haikou, China
| | - Fan Zeng
- Graduate School, Hainan Medical University, Haikou, China
| | - Chen Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
3
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Cao R, Gao T, Yue J, Sun G, Yang X. Disordered Gut Microbiome and Alterations in Metabolic Patterns Are Associated With Hypertensive Left Ventricular Hypertrophy. J Am Heart Assoc 2024; 13:e034230. [PMID: 39342506 DOI: 10.1161/jaha.123.034230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is most common when driven by hypertension, and it is a strong independent risk factor for adverse cardiovascular events and death. Some animal models support a role for gut microbiota and metabolites in the development of LVH, but cohort studies confirming these findings in populations are lacking. METHODS AND RESULTS We investigated the alterations of gut microbiota and metabolites in 30 patients with hypertension, 30 patients with hypertensive LVH, and 30 matched controls on the basis of 16S rDNA and metabolomic analyses. Thirty stool and 90 serum samples were collected in fasting conditions. ANOVA/Kruskal-Wallis/Pearson's χ2/Fisher's exact test and Bonferroni's correction were used (P<0.0167) for comparison among the 3 groups. A regression analysis and subgroup analysis were performed between gut microbiota and left ventricular mass index (LVMI) and metabolites and LVMI, respectively. Spearman correlation analysis was performed between metabolites and flora and metabolites and LVMI. We observed LVH-enriched Faecalitalea (β=6758.55 [95% CI, 2080.92-11436.18]; P=0.009), Turicibacter (β=8424.76 [95% CI, 2494.05-14355.47]; P=0.01), Ruminococcus torques group (β=840.88 [95% CI, 223.1-1458.67]; P=0.013), and Erysipelotrichaceae UCG-003 (β=856.37 [95% CI, 182.76-1529.98]; P=0.019) were positively correlated with LVMI. A total of 1141 (in sera) and 2657 (in feces) metabolites were identified. There was a sex-specific association between metabolites and LVMI. Significant changes in metabolic pathways in LVH were also observed, especially bile acid and lipid metabolism pathways. CONCLUSIONS Our study demonstrated the disordered gut microbiota and microbial metabolite profiles in LVH. This highlights the roles of gut bacteria and metabolite in this disease and could lead to new intervention, diagnostic, or management paradigms for LVH. REGISTRATION URL: https://www.chictr.org.cn; Unique Identifier: ChiCTR2200055603.
Collapse
Affiliation(s)
- Rong Cao
- Department of Cardiovascular Medicine Research Institute of Hypertension, The Second Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia China
- Department of Cardiovascular Medicine The First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Ting Gao
- Geriatric Department Baotou Central Hospital Baotou Inner Mongolia China
| | - Jianwei Yue
- Department of Cardiovascular Medicine Research Institute of Hypertension, The Second Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia China
| | - Gang Sun
- Department of Cardiovascular Medicine Research Institute of Hypertension, The Second Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia China
| | - Xiaomin Yang
- General Medicine Sir Run Run Shaw Hospital, Zhejiang University Zhejiang China
| |
Collapse
|
5
|
Saadah OI, AlAmeel T, Al Sarkhy A, Hasosah M, Al-Hussaini A, Almadi MA, Al-Bawardy B, Altuwaijri TA, AlEdreesi M, Bakkari SA, Alharbi OR, Azzam NA, Almutairdi A, Alenzi KA, Al-Omari BA, Almudaiheem HY, Al-Jedai AH, Mosli MH. Saudi consensus guidance for the diagnosis and management of inflammatory bowel disease in children and adolescents. Saudi J Gastroenterol 2024:00936815-990000000-00101. [PMID: 39215473 DOI: 10.4103/sjg.sjg_171_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT The management of inflammatory bowel disease (IBD) in children and adolescents is challenging. Clear evidence-based guidelines are required for this population. This article provides recommendations for managing IBD in Saudi children and adolescents aged 6-19 years, developed by the Saudi Ministry of Health in collaboration with the Saudi Society of Clinical Pharmacy and the Saudi Gastroenterology Association. All 57 guideline statements are based on the most up-to-date information for the diagnosis and management of pediatric IBD.
Collapse
Affiliation(s)
- Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Gastroenterology Unit, Pediatrics Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, Gastroenterology Unit, King Abdulaziz Medical City, National Guard Hospital, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majid A Almadi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia, Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Talal A Altuwaijri
- Department of Surgery, Division of Vascular Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlEdreesi
- Gastroenterology Unit, Pediatric Department, Al Habib Medical Group, Khobar, Saudi Arabia
| | - Shakir A Bakkari
- Department of Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Othman R Alharbi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Nahla A Azzam
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah Almutairdi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalidah A Alenzi
- Executive Management of Transformation, Planning, and Business Development, Tabuk Health Cluster, Tabuk, Saudi Arabia
| | - Bedor A Al-Omari
- Department of Pharmaceutical Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Ahmed H Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahmoud H Mosli
- Department of Internal Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Noruzpour A, Gholam-Mostafaei FS, Looha MA, Dabiri H, Ahmadipour S, Rouhani P, Ciacci C, Rostami-Nejad M. Assessment of salivary microbiota profile as a potential diagnostic tool for pediatric celiac disease. Sci Rep 2024; 14:16712. [PMID: 39030381 PMCID: PMC11271620 DOI: 10.1038/s41598-024-67677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The association between oral dysbiosis and celiac disease (CD) remains poorly understood, as does the impact of CD-associated dysbiosis on disease development or exacerbation. This study aims to investigate alterations in salivary microbial composition among children with CD. In this cross-sectional study, saliva samples from 12 children with active CD (A-CD group), 14 children with CD on a gluten-free diet (GFD), and 10 healthy control (HC) children were analyzed using DNA sequencing targeting the 16S ribosomal RNA. Both patients in A-CD and GFD groups showed a significant increase (p = 0.0001) in the Bacteroidetes phylum, while the Actinobacteria phylum showed a significant decrease (p = 0.0001). Notably, the Rothia genus and R.aeria also demonstrated a significant decrease (p = 0.0001) within the both CD groups as compare to HC. Additionally, the control group displayed a significant increase (p = 0.006) in R.mucilaginosa species compared to both CD patient groups. Distinct bacterial strains were abundant in the saliva of patients with active CD, indicating a unique composition of the salivary microbiome in individuals with CD. These findings suggest that our approach to assessing salivary microbiota changes may contribute to developing noninvasive methods for diagnosing and treating CD.
Collapse
Affiliation(s)
- Asal Noruzpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medial Science, Tehran, Iran
| | - Fahimeh Sadat Gholam-Mostafaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medial Science, Tehran, Iran
| | - Shokoufeh Ahmadipour
- Pediatric Gastroenterologist, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Rouhani
- Department of Pediatric Gastroenterology and Hepatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Meng J, Liu S, Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit Rev Microbiol 2024; 50:300-314. [PMID: 36946080 DOI: 10.1080/1040841x.2023.2190392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
The use of probiotics to regulate the intestinal microbiota to prevent and treat a large number of disorders and diseases has been an international research hotspot. Although conventional probiotics have a certain regulatory role in nutrient metabolism, inhibiting pathogens, inducing immune regulation, and maintaining intestinal epithelial barrier function, they are unable to treat certain diseases. In recent years, aided by the continuous development of synthetic biology, engineering probiotics with desired characteristics and functionalities to benefit human health has made significant progress. In this article, we summarise the mechanism of action of conventional probiotics and their limitations and highlight the latest developments in the design and construction of probiotics as living diagnostics and therapeutics for the detection and treatment of a series of diseases, including pathogen infections, cancer, intestinal inflammation, metabolic disorders, vaccine delivery, cognitive health, and fatty liver. Besides we discuss the concerns regarding engineered probiotics and corresponding countermeasures and outline the desired features in the future development of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
| | - Shufan Liu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology; College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
8
|
Zhao H, Wang Q, Zhao J, Wang D, Liu H, Gao P, Shen Y, Wu T, Wu X, Zhao Y, Zhang C. Ento-A alleviates DSS-induced experimental colitis in mice by remolding intestinal microbiota to regulate SCFAs metabolism and the Th17 signaling pathway. Biomed Pharmacother 2024; 170:115985. [PMID: 38064970 DOI: 10.1016/j.biopha.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by changes in the metabolism of short chain fatty acids (SCFAs), dysregulation of gut microbiota, and an imbalance of Treg/Th17. Herein, we explore the effects of the Ento-A (an alcohol extract of Periplaneta americana L.) on a mouse model of UC. First, a chronic and recurrent UC model was constructed in BALB/c mice by 2.2% DSS administration. UC mice were continuously treated for 14 days with Ento-A (50, 100, 200 mg/kg, i.g.) or a negative control. Ento-A alleviated many of the pathological changes observed in UC mice, such as body weight loss, disease activity index, changes in colon length, and colonic mucosal damage index. Ento-A also decreased levels of proinflammatory cytokines (IL-1β, IL-6, IL-17A, and TNF-α), increased levels of anti-inflammatory cytokines (IL-10 and TGF-β1) and repaired the intestinal mucosal barrier. Additionally, Ento-A regulated the proportions of Th17 cells, and Treg cells in mesenteric lymph nodes harvested from treated mice (as assessed by Flow cytometry), and the expression levels of IL-17A and Foxp3 in colon (as assessed by immunohistochemistry). 16 S rRNA gene sequencing revealed that Ento-A regulated gut microbiota. GC-MS analysis demonstrated that Ento-A also restored SCFAs content in the intestinal tract. Finally, transcriptomic analysis revealed that Ento-A regulated the IL-17 signaling pathway. In summary, Ento-A regulates the diversity and abundance of intestinal flora in UC mice, enhancing the secretion of SCFAs, subsequently regulating the IL-17 signaling pathway, and ultimately repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Yongmei Shen
- Sichuan Key Laboratory of Medicinal American Cockroach, Good doctor Pharmaceutical Group, Chengdu 610000, China
| | - Taoqing Wu
- Sichuan Key Laboratory of Medicinal American Cockroach, Good doctor Pharmaceutical Group, Chengdu 610000, China
| | - Xiumei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
9
|
Guandalini S. Probiotics in the Treatment of Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:135-142. [PMID: 39060735 DOI: 10.1007/978-3-031-58572-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic, incurable inflammatory condition of the gut. They comprise Crohn's disease and ulcerative colitis. Crohn's disease (CD) may affect any tract of the gastrointestinal (GI) tract and is a transmural inflammatory condition; ulcerative colitis (UC), on the other hand, is limited to the mucosal layer of the rectum and colon. Treatment options available for both IBD are notoriously loaded with potentially serious side effects and risks. Although the pathogenesis of IBD involves a complex interaction between genetic, environmental, microbial and immunological factors, there is evidence that the interplay between the microbiota and the GI mucosa has a preponderant role. It is therefore no surprise that in recent years, a growing interest for effective and safer alternatives has focused on the potential role of prebiotics and-especially-probiotics.The mechanisms of action underlying the potential benefits of probiotics in IBD have been largely and quite extensively investigated in vitro and in vivo experiments. In terms of clinical evidence, the results of trials in the induction of remission of active CD or the maintenance of its remission with probiotics have been so far largely disappointing, to the point that their use in this disease cannot be at present recommended.On the contrary, for the treatment as well as for maintenance therapy of UC, there is clinical evidence of efficacy for some specific strains or multi-strain preparations.It is evident that this is a rapidly evolving and promising field; more data are very likely to yield a better understanding on what strains and in what doses should be used in different specific clinical settings, as we expect new and exciting developments of precision and even personalized therapy by the fast-growing field of probiogenomics.
Collapse
Affiliation(s)
- Stefano Guandalini
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
11
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
12
|
Stummer N, Feichtinger RG, Weghuber D, Kofler B, Schneider AM. Role of Hydrogen Sulfide in Inflammatory Bowel Disease. Antioxidants (Basel) 2023; 12:1570. [PMID: 37627565 PMCID: PMC10452036 DOI: 10.3390/antiox12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S), originally known as toxic gas, has now attracted attention as one of the gasotransmitters involved in many reactions in the human body. H2S has been assumed to play a role in the pathogenesis of many chronic diseases, of which the exact pathogenesis remains unknown. One of them is inflammatory bowel disease (IBD), a chronic intestinal disease subclassified as Crohn's disease (CD) and ulcerative colitis (UC). Any change in the amount of H2S seems to be linked to inflammation in this illness. These changes can be brought about by alterations in the microbiota, in the endogenous metabolism of H2S and in the diet. As both too little and too much H2S drive inflammation, a balanced level is needed for intestinal health. The aim of this review is to summarize the available literature published until June 2023 in order to provide an overview of the current knowledge of the connection between H2S and IBD.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Barbara Kofler
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| |
Collapse
|
13
|
Al-Bayati L, Fasaei BN, Merat S, Bahonar A, Ghoddusi A. Quantitative analysis of the three gut microbiota in UC and non-UC patients using real-time PCR. Microb Pathog 2023:106198. [PMID: 37295481 DOI: 10.1016/j.micpath.2023.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND and study aims: Gastrointestinal microbiota are closely related to the pathogenesis of ulcerative colitis (UC). This study aimed at quantification of F. prausnitzii, Provetella, and Peptostreptococcus in UC and non-UC patients using Real-Time PCR and a new set of primers were also validated for this purpose. MATERIALS AND METHODS In this study, the relative abundance of microbial populations between the UC and non-UC subjects were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). DNA extraction from biopsies and polymerase chain reaction (PCR) amplification of bacterial 16S rRNA gene-targeted species-specific primers was performed to detect the anaerobic bacterial species. The qRT-PCR was used to show the relative change in the bacterial populations of F. prausnitzii, Provetella, and Peptostreptococcus in the UC and non-UC subjects. RESULTS Our data for detection of the anaerobic intestinal flora showed Faecalibacterium prausnitzii, Provetella and Peptostreptococcus were the predominant microflora in the controls and showed significant differences (p = 0.002, 0.025 and 0.039, respectively). The qRT-PCR analyses of F. prausnitzii, Provetella and Peptostreptococcus were 8.69-, 9.38- and 5.77-higher, respectively, in the control group than in the UC group. CONCLUSION The results of this study showed decreased abundance of F. prausnitzii, Provetella and Peptostreptococcus in the intestine of UC patients in comparison to non-UC patients. Quantitative RT-PCR, as a progressive and sensitive method, could be useful for evaluation of bacterial populations in patients with inflammatory bowel diseases to attain appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Luma Al-Bayati
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Medicine, University of Wassit, Iraq
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shahin Merat
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahonar
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arefeh Ghoddusi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Zhao Y, Xue L, Li S, Wu T, Liu R, Sui W, Zhang M. The Effects of Synbiotics on Dextran-Sodium-Sulfate-Induced Acute Colitis: The Impact of Chitosan Oligosaccharides on Endogenous/Exogenous Lactiplantibacillus plantarum. Foods 2023; 12:foods12112251. [PMID: 37297494 DOI: 10.3390/foods12112251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, Lactiplantibacillus plantarum (L. plantarum) isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous L. plantarum, respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of LP-M, LP-P, COS, and the synbiotics was explored using dextran-sodium-sulfate (DSS)-induced acute colitis mice, as well as by comparing the synergistic effects of COS with LP-M or LP-P. The results revealed that L. plantarum, COS, and the synbiotics alleviated the symptoms of mice colitis and inhibited the changes in short-chain fatty acids (SCFAs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and myeloperoxidase (MPO) caused by DSS. In addition, the intervention of L. plantarum, COS, and the synbiotics increased the relative abundance of beneficial bacteria Muribaculaceae and Lactobacillus and suppressed the pathogenic bacteria Turicibacter and Escherichia-Shigella. There was no statistically difference between LP-M and the endogenous synbiotics on intestinal immunity and metabolism. However, the exogenous synbiotics improved SCFAs, inhibited the changes in cytokines and MPO activity, and restored the gut microbiota more effectively than exogenous L. plantarum LP-P. This indicated that the anti-inflammatory activity of exogenous LP-P can be increased by combining it with COS as a synbiotic.
Collapse
Affiliation(s)
- Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangyu Xue
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
15
|
Yan Y, Li K, Jiang J, Jiang L, Ma X, Ai F, Qiu S, Si W. Perinatal tissue-derived exosomes ameliorate colitis in mice by regulating the Foxp3 + Treg cells and gut microbiota. Stem Cell Res Ther 2023; 14:43. [PMID: 36941715 PMCID: PMC10029206 DOI: 10.1186/s13287-023-03263-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The capacity of self-renewal and multipotent differentiation makes mesenchymal stem cells (MSC) one of the most widely investigated cell lines in preclinical studies as cell-based therapies. However, the low survival rate and poor homing efficiency of MSCs after transplantation hinder the therapeutic application. Exosomes derived from MSCs have shown promising therapeutic potential in many diseases. However, the heterogeneity of MSCs may lead to differences in the function of secreting exosomes. In this study, the therapeutic effects of hUC-Exos and hFP-Exos on the DSS-induced colitis mouse model were investigated. METHODS The colitis mouse models were randomly divided into four groups: (1) DSS administered for 7 days and euthanasia (DSS7D), (2) DSS administered for 7 days and kept for another 7 days without any treatment (DSS14D), (3) DSS administered for 7 days and followed with hUC-EVs infusion for 7 days (hUC-EVs) and (4) DSS administered for 7 days and followed with hFP-EVs infusion for 7 days (hFP-EVs). We analyzed colon length, histopathology, Treg cells, cytokines and gut microbiota composition in each group. RESULTS A large amount of IL-6, IL-17 and IFN-γ were produced along with the decrease in the number of CD4 + Foxp3 + and CD8 + Foxp3 + cells in DSS7D group, which indicated that Th17 cells were activated and Treg cells were suppressed. We found that the number of CD4 + Foxp3 + and CD8 + Foxp3 + cells increased in order to suppress inflammation, but the length of colon did not recover and the symotoms were worsened of the colonic tissue in DSS14D group. The subsequent infusion of either hUC-Exos or hFP-Exos mediated the transformation of Treg and Th17 cells in colitis mice to maintain immune balance. The infusion of hUC-Exos and hFP-Exos also both reduced the abundance of pro-inflammatory intestinal bacterial such as Verrucomicrobia and Akkermansia muciniphila to improve colitis. CONCLUSIONS We found that Foxp3 + Treg cells can inhibit the inflammatory response, and the over-activated Treg cells can still further damage the intestinal mucosa. hUC-Exos and hFP-Exos can control inflammation by regulating the balance between Th17 cells and Treg cells. Decreased inflammatory response improved the structure of colon wall in mice and reduced the abundance of pro-inflammatory bacteria in the intestine. The improvement of intestinal wall structure provides conditions for the reproduction of beneficial bacteria, which further contributes to the reduction of colitis.
Collapse
Affiliation(s)
- Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Kaixiu Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jiang Jiang
- Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lihong Jiang
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Xiang Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Fang Ai
- Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Shuai Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
16
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Liu L, Xu M, Lan R, Hu D, Li X, Qiao L, Zhang S, Lin X, Yang J, Ren Z, Xu J. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front Immunol 2022; 13:1036196. [PMID: 36531989 PMCID: PMC9750758 DOI: 10.3389/fimmu.2022.1036196] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Bacteroides vulgatus is one of the predominant Bacteroides species in the human gut and exerts a series of beneficial effects. The aim of this study was to investigate the protective role of B. vulgatus Bv46 in a dextran sodium sulfate (DSS) induced colitis mouse model. Methods Female C57BL/6J mice were given 3% DSS in drinking water to induce colitis and simultaneously treated with B. vulgatus Bv46 by gavage for 7 days. Daily weight and disease activity index (DAI) of mice were recorded, and the colon length and histological changes were evaluated. The effects of B. vulgatus Bv46 on gut microbiota composition, fecal short chain fatty acids (SCFAs) concentration, transcriptome of colon, colonic cytokine level and cytokine secretion of RAW 264·7 macrophage cell line activated by the lipopolysaccharide (LPS) were assessed. Results and Discussion B. vulgatus Bv46 significantly attenuated symptoms of DSS-induced colitis in mice, including reduced DAI, prevented colon shortening, and alleviated colon histopathological damage. B. vulgatus Bv46 modified the gut microbiota community of colitis mice and observably increased the abundance of Parabacteroides, Bacteroides, Anaerotignum and Alistipes at the genus level. In addition, B. vulgatus Bv46 treatment decreased the expression of colonic TNF-α, IL-1β and IL-6 in DSS-induced mouse colitis in vivo, reduced the secretion of TNF-α, IL-1β and IL-6 in macrophages stimulated by LPS in vitro, and downregulated the expression of Ccl19, Cd19, Cd22, Cd40 and Cxcr5 genes in mice colon, which mainly participate in the regulation of B cell responses. Furthermore, oral administration of B. vulgatus Bv46 notably increased the contents of fecal SCFAs, especially butyric acid and propionic acid, which may contribute to the anti-inflammatory effect of B. vulgatus Bv46. Supplementation with B. vulgatus Bv46 serves as a promising strategy for the prevention of colitis.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingchao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xianping Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Qiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Lin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
18
|
The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14194113. [PMID: 36235765 PMCID: PMC9572225 DOI: 10.3390/nu14194113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The very low-calorie ketogenic diet (VLCKD) has been recognized as a promising dietary regimen for the treatment of several diseases. Short-chain fatty acids (SCFAs) produced by anaerobic bacterial fermentation of indigestible dietary fibre in the gut have potential value for their underlying epigenetic role in the treatment of obesity and asthma-related inflammation through mediating the relationships between VLCKD and the infant gut microbiota. However, it is still unclear how VLCKD might influence gut microbiota composition in children, and how SCFAs could play a role in the treatment of inflammatory bowel disease (IBD). To overcome this knowledge gap, this review aims to investigate the role of SCFAs as key epigenetic metabolites that mediate VLCKD-gut microbiota relationships in children, and their therapeutic potential in IBD.
Collapse
|
19
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
20
|
Liu Q, Zhang X, Li Z, Chen Y, Yin Y, Lu Z, Ouyang M, Chen L. Maternal diets have effects on intestinal mucosal flora and susceptibility to colitis of offspring mice during early life. Nutrition 2022; 99-100:111672. [PMID: 35594632 DOI: 10.1016/j.nut.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intestinal flora is considered closely related to the occurrence of inflammatory bowel disease (IBD). This study aimed to discover whether diverse diet conditions during early life lead to different intestinal flora structure and impact different susceptibility to IBD. METHODS We performed a randomized, controlled trial to investigate the relationship between maternal diet, intestinal flora, and susceptibility of IBD in offspring mice. We treated the maternal mice with different dietary conditions (maternal high fat, high protein, or normal diet, and offspring continued maternal diets or changed to normal diet), and then extracted bacterial meta-genomic DNA from the intestinal mucosa of the offspring during the early life and adult stages. We amplified and sequenced the conserved gene v3-v4 of the bacterial 16 S ribosomal RNA. After dextran sulphate sodium intervention, we evaluated the susceptibility to intestinal inflammation with hematoxylin and eosin stains and disease activity index scores. RESULTS The number of species and alpha diversity of weaning mice (3 wk old) fed a maternal high-protein diet were significantly lower than those of the control diet group (P < 0.05). Among adult (8 wk old) offspring rats, the alpha diversity of mice that continued on a high-protein diet remained significantly decreased (P < 0.05). In addition, 12 kinds of weak bacteria were found in weaning mice fed a maternal high-protein diet compared with the control group. Offspring that continued in the maternal high-protein group had increased disease activity index and pathologic scores after weaning. CONCLUSIONS In general, our study shows that a maternal high-protein diet during early life can negatively regulate the intestinal flora diversity of offspring mice. A high-protein diet during early life led to higher susceptibility of IBD in offspring rats.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Xiaomei Zhang
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Zichun Li
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Ying Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Yani Yin
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Zhaoxia Lu
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Linlin Chen
- Fourth Department of the Digestive Disease Center, Suining Central Hospital, People's Republic of China.
| |
Collapse
|
21
|
Shi G, Lin Y, Wu Y, Zhou J, Cao L, Chen J, Li Y, Tan N, Zhong S. Bacteroides fragilis Supplementation Deteriorated Metabolic Dysfunction, Inflammation, and Aorta Atherosclerosis by Inducing Gut Microbiota Dysbiosis in Animal Model. Nutrients 2022; 14:nu14112199. [PMID: 35684000 PMCID: PMC9183096 DOI: 10.3390/nu14112199] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. Methods and results: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. Conclusions: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Guoxiang Shi
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Hypertension Research Institute, Nanchang 335100, China
| | - Yubi Lin
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Jing Zhou
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Lixiang Cao
- School of Medicine, Sun Yat-sen University, Guangzhou 510317, China;
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510317, China
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Shilong Zhong
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| |
Collapse
|
22
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
23
|
Zeng Y, Li J, Wei C, Zhao H, Wang T. mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis. Genome Biol 2022; 23:94. [PMID: 35422001 PMCID: PMC9011970 DOI: 10.1186/s13059-022-02657-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. These nuisance factors introduce substantial noise. We propose an accurate and robust method, mbDenoise, for denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA) model, mbDenoise uses variational approximation to learn the latent structure and recovers the true abundance levels using the posterior, borrowing information across samples and taxa. mbDenoise outperforms state-of-the-art methods to extract the signal for downstream analyses.
Collapse
Affiliation(s)
- Yanyan Zeng
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA.
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.
- Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–microbiota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders. The human microbiome is a unique set of organisms affecting health via the gut–brain axis. Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders are regulated by the microbiota–gut–brain axis in a sex-specific manner. Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to better therapeutic methods.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Mukohda M, Mizuno R, Ozaki H. [Gut microflora and metabolic syndrome: new insight into the pathogenesis of hypertension]. Nihon Yakurigaku Zasshi 2022; 157:311-315. [PMID: 36047142 DOI: 10.1254/fpj.22035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging evidences indicate that a microbial imbalance (dysbiosis) is linked to several diseases including metabolic cardiovascular diseases. A fecal microbiota transplantation from hypertensive human donor to germ-free mice caused blood pressure elevation. In addition, there is a report demonstrating that angiotensin II-induced hypertension and vascular dysfunction were attenuated in germ-free mice, suggesting that gut microbiome may mediate development of hypertension. Although detailed mechanism by which the dysbiosis induces an increased blood pressure remains unknown, changes in microbiome may modify host immune systems and induce inflammatory dysfunction in cardiovascular system, resulting in dysregulation of blood pressure. Some cohort studies demonstrated an association between a higher abundance of Streptococcaceae spp. and blood pressure. One recent report demonstrated that an increasing number of gram-positive Streptococcus was found in the feces of adult spontaneously hypertensive rats with an increased intestinal permeability. We hypothesized that increased bacterial toxin levels derived from gut Streptococcus may be a factor inducing blood pressure dysregulation. In this review, we discuss the possible role of microbiome in cardiovascular disease, especially hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| |
Collapse
|
26
|
Sarmento A, Simões CD. Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation. COMPREHENSIVE GUT MICROBIOTA 2022:423-441. [DOI: 10.1016/b978-0-12-819265-8.00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota? Microorganisms 2021; 9:microorganisms9122549. [PMID: 34946150 PMCID: PMC8703706 DOI: 10.3390/microorganisms9122549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic intestinal pseudo-obstruction (CIPO) is a rare clinical syndrome characterized by severe impairment of gastrointestinal (GI) motility, and its symptoms are suggestive of partial or complete intestinal obstruction in the absence of any lesion restricting the intestinal lumen. Diagnosis and therapy of CIPO patients still represent a significant challenge for clinicians, despite their efforts to improve diagnostic workup and treatment strategies for this disease. The purpose of this review is to better understand what is currently known about the relationship between CIPO patients and intestinal microbiota, with a focus on the role of the enteric nervous system (ENS) and the intestinal endocrine system (IES) in intestinal motility, underling the importance of further studies to deeply understand the causes of gut motility dysfunction in these patients.
Collapse
|
28
|
Sun D, Ge X, Tang S, Liu Y, Sun J, Zhou Y, Luo L, Xu Z, Zhou W, Sheng J. Bacterial Characteristics of Intestinal Tissues From Patients With Crohn's Disease. Front Cell Infect Microbiol 2021; 11:711680. [PMID: 34869050 PMCID: PMC8635149 DOI: 10.3389/fcimb.2021.711680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims It is believed that intestinal bacteria play an indispensable role in promoting intestinal inflammation. However, the characteristics of these tissue-associated bacteria remain elusive. The aim of this study is to explore the bacterial loads, compositions, and structures in the noninflamed mucosa, inflamed mucosa, and creeping fat taken from patients with Crohn’s disease (CD). Methods Noninflamed mucosa, inflamed mucosa, and creeping fat samples were obtained from 10 surgical patients suffering from CD. Total bacterial DNA was extracted in a sterile environment using aseptic techniques. The V3–V4 regions of bacterial 16S rDNA were amplified and analysed using standard microbiological methods. qPCR was used to confirm the change in abundance of specific species in additional 30 independent samples. Results Inflamed mucosa exhibited the highest bacterial load (3.8 and 12 times more than that of non-inflamed mucosa and creeping fat) and species diversity. The relative abundance of Proteobacteria was dominant in most samples and was negatively associated with Firmicutes. Moreover, the relative abundances of Methylobacterium and Leifsonia in creeping fat significantly increased more than twice as much as other tissue types. The bacterial community structure analysis showed that the bacterial samples from the same individual clustered more closely. Conclusion This study reveals the significant differences in bacterial load, species diversity, and composition among different intestinal tissue types of CD patients and confirms that the bacterial samples from the same individual are highly correlated. Our findings will shed light on fully revealing the characteristics of tissue-associated bacteria and their roles in CD pathogenesis.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Xiaolong Ge
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.,Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Tang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Sun
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Zhou
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
30
|
Comparative Analysis of the Impact of Urolithins on the Composition of the Gut Microbiota in Normal-Diet Fed Rats. Nutrients 2021; 13:nu13113885. [PMID: 34836145 PMCID: PMC8618180 DOI: 10.3390/nu13113885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota consists of a community of microorganisms that inhabit the large intestine. These microbes play important roles in maintaining gut barrier integrity, inflammation, lipid and carbohydrate metabolism, immunity, and protection against pathogens. However, recent studies have shown that dysfunction in the gut microbiota composition can lead to the development of several diseases. Urolithin A has recently been approved as a functional food ingredient. In this study, we examined the potentials of urolithin A (Uro-A) and B (Uro-B) in improving metabolic functions and their impact on gut microbiota composition under a metabolically unchallenged state in normal rats. Male Wistar rats (n = 18) were randomly segregated into three groups, with Group 1 serving as the control group. Groups 2 and 3 were administered with 2.5 mg/kg Uro-A and Uro-B, respectively, for four weeks. Our results showed that both Uro-A and B improved liver and kidney functions without affecting body weight. Metagenomic analysis revealed that both Uro-A and B induced the growth of Akkermansia. However, Uro-A decreased species diversity and microbial richness and negatively impacted the composition of pathogenic microbes in normal rats. Taken together, this study showed the differential impacts of Uro-A and B on the gut microbiota composition in normal rats and would thus serve as a guide in the choice of these metabolites as a functional food ingredient or prebiotic.
Collapse
|
31
|
Salvador-Martín S, Melgarejo-Ortuño A, López-Fernández LA. Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics 2021; 13:pharmaceutics13111786. [PMID: 34834201 PMCID: PMC8617733 DOI: 10.3390/pharmaceutics13111786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The use of biological drugs has improved outcomes in pediatric inflammatory bowel disease (IBD). Prediction of the response to biological drugs would be extremely useful in IBD, and even more so in children, who are still growing physically and psychologically. Specific clinical, biochemical, and genetic parameters are considered predictive of response to biological drugs, although few studies have been carried out in children with IBD. In this review, we present current evidence on biological treatments used in pediatric IBD and the available biomarkers of response. We examine demographics, clinical characteristics, biomarkers (genetic, genomic, and cellular), and microbiota.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Alejandra Melgarejo-Ortuño
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Luis A. López-Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
- Spanish Clinical Research Network (SCReN), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
32
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Pei L, Liu J, Huang Z, Iqbal M, Shen Y. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model. Probiotics Antimicrob Proteins 2021; 15:469-478. [PMID: 34651283 DOI: 10.1007/s12602-021-09841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antibacterial potential of lactic acid bacteria (Weissella confuse, Pediococcus acidilactici, and Ligilactobacillus equi) isolated from healthy equine in Wuhan against Salmonella Typhimurium CVCC542-induced mice model on intestinal microflora. In previous studies, these isolated strains showed good probiotic potentials in vitro. In this study, fifty healthy mice were randomly divided into five groups, the blank control group, the control group, the Pediococcus acidilactici group (1 × 108 CFU/day), the Ligilactobacillus equi group (1 × 108 CFU/day), and the Weissella confuse group (1 × 108 CFU/day). The body weight in control group and Weissella confuse group showed significant decreased (P < 0.05, P < 0.01), while Pediococcus acidilactici group and Ligilactobacillus equi group showed good recovering after treatments. The lowest diarrhea rate was shown in Ligilactobacillus equi group after treatment. In histopathology, Ligilactobacillus equi group showed the least structural damage in duodenum, and all probiotic treatment groups showed less damage in cecum. The sequence data and optical transform unit showed that Pediococcus acidilactici group and Ligilactobacillus equi group had higher number than control group, while the diversity data showed that the control group and Weissella confuse group had lower diversity in cecum. Microbial community analysis showed increased abundance of Firmicutes, Bacteroidetes, uncultured_bacterium_f_Muribaculaceae, and Lactobacillus in treatment groups, while potential microbes that can induce intestinal diseases such as Verrucomicrobia, Akkermansia, and Lachnospiraceae_NK4A136_group decreased in the treatment groups. In conclusion, lactic acid bacteria isolated from the healthy horses could alleviate the infection of Salmonella and regulate intestinal flora.
Collapse
Affiliation(s)
- Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghao Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Guggino G, Mauro D, Rizzo A, Alessandro R, Raimondo S, Bergot AS, Rahman MA, Ellis JJ, Milling S, Lories R, Elewaut D, Brown MA, Thomas R, Ciccia F. Inflammasome Activation in Ankylosing Spondylitis Is Associated With Gut Dysbiosis. Arthritis Rheumatol 2021; 73:1189-1199. [PMID: 33452867 DOI: 10.1002/art.41644] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We undertook this study to evaluate the activation and functional relevance of inflammasome pathways in ankylosing spondylitis (AS) patients and rodent models and their relationship to dysbiosis. METHODS An inflammasome pathway was evaluated in the gut and peripheral blood from 40 AS patients using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), flow cytometry, and confocal microscopy, and was compared to that of 20 healthy controls and 10 patients with Crohn's disease. Bacteria was visualized using silver stain in human samples, and antibiotics were administered to HLA-B27-transgenic rats. The NLRP3 inhibitor MCC950 was administered to SKG mice, and ileal and joint tissues were assessed by IHC analysis and real-time qRT-PCR. The role of inflammasome in modulating the interleukin-23 (IL-23)/IL-17 axis was studied ex vivo. RESULTS Expression levels of Nlrp3, Nlrc4, and Aim2 were increased in the gut of HLA-B27-transgenic rats and reduced by antibiotic treatment (P < 0.05). In curdlan-treated SKG mice, NLRP3 blockade prevented ileitis and delayed arthritis onset (P < 0.05). Compared to healthy controls, AS patients demonstrated overexpression of NLRP3 (fold induction 2.33 versus 22.2; P < 0.001), NLRC4 (fold induction 1.90 versus 6.47; P < 0.001), AIM2 (fold induction 2.40 versus 20.8; P < 0.001), CASP1 (fold induction 2.53 versus 24.8; P < 0.001), IL1B (fold induction 1.07 versus 10.93; P < 0.001), and IL18 (fold induction 2.56 versus 15.67; P < 0.001) in the ileum, and caspase 1 activity was increased (P < 0.01). The score of adherent and invasive mucosa-associated bacteria was higher in AS (P < 0.01) and correlated with the expression of inflammasome components in peripheral blood mononuclear cells (P < 0.001). NLRP3 expression was associated with disease activity (the Ankylosing Spondylitis Disease Activity Score using the C-reactive protein level) (r2 = 0.28, P < 0.01) and with IL23A expression (r2 = 0.34, P < 0.001). In vitro, inflammasome activation in AS monocytes was paralleled by increased serum levels of IL-1β and IL-18. Induction of IL23A, IL17A, and IL22 was IL-1β-dependent. CONCLUSION Inflammasome activation occurs in rodent models of AS and in AS patients, is associated with dysbiosis, and is involved in triggering ileitis in SKG mice. Inflammasomes drive type III cytokine production with an IL-1β-dependent mechanism in AS patients.
Collapse
Affiliation(s)
| | - Daniele Mauro
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Aroldo Rizzo
- Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | | | | | - Anne-Sophie Bergot
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M Arifur Rahman
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jonathan J Ellis
- NIHR Guy's and St, Thomas' Biomedical Research Centre, London, UK
| | | | - Rik Lories
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dirk Elewaut
- Ghent Universityand VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Matthew A Brown
- NIHR Guy's and St, Thomas' Biomedical Research Centre, London, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Francesco Ciccia
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
35
|
Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Sci Rep 2021; 11:11340. [PMID: 34059761 PMCID: PMC8166934 DOI: 10.1038/s41598-021-90786-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Exploiting a pure culture strategy to investigate the composition of the human gut microbiota, two novel anaerobes, designated strains AF52-21T and CM04-06T, were isolated from faeces of two healthy Chinese donors and characterized using a polyphasic approach. The two strains were observed to be gram-negative, non-motile, and rod-shaped. Both strains grew optimally at 37 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains clustered with species of the genus Faecalibacterium and were most closely related to Faecalibacterium prausnitzii ATCC 27768T with sequence similarity of 97.18% and 96.87%, respectively. The two isolates shared a 16S rRNA gene sequence identity of 98.69%. Draft genome sequencing was performed for strains AF52-21T and CM04-06T, generating genome sizes of 2.85 Mbp and 3.01 Mbp. The calculated average nucleotide identity values between the genomes of the strains AF52-21T and CM04-06T compared to Faecalibacterium prausnitzii ATCC 27768T were 83.20% and 82.54%, respectively, and 90.09% when comparing AF52-21T and CM04-06T. Both values were below the previously proposed species threshold (95–96%), supporting their recognition as novel species in the genus Faecalibacterium. The genomic DNA G + C contents of strains AF52-21T and CM04-06T calculated from genome sequences were 57.77 mol% and 57.51 mol%, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, we conclude that both strains represent two new Faecalibacterium species, for which the names Faecalibacterium butyricigenerans sp. nov. (type strain AF52-21T = CGMCC 1.5206T = DSM 103434T) and Faecalibacterium longum sp. nov. (type strain CM04-06T = CGMCC 1.5208T = DSM 103432T) are proposed.
Collapse
|
36
|
Ahmed M, Metwaly A, Haller D. Modeling microbe-host interaction in the pathogenesis of Crohn's disease. Int J Med Microbiol 2021; 311:151489. [PMID: 33676240 DOI: 10.1016/j.ijmm.2021.151489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations in the gut microbiota structure and function are thought to play an important role in the pathogenesis of Crohn's disease (CD). The rapid advancement of high-throughput sequencing technologies led to the identification of microbiome risk signatures associated with distinct disease phenotypes and progressing disease entities. Functional validation of the identified microbiome signatures is essential to understand the underlying mechanisms of microbe-host interactions. Germfree mouse models are available to study the functional role of disease-conditioning complex gut microbial ecosystems (dysbiosis) or pathobionts (single bacteria) in the pathogenesis of CD-like inflammation. Here, we discuss the clinical and mechanistic relevance and limitations of gnotobiotic mouse models in the context of CD. In addition, we will address the role of diet as an essential external factor modulating microbiome changes, potentially underlying disease initiation and development.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Amira Metwaly
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Dirk Haller
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany; Technical University of Munich, ZIEL Institute for Food & Health, Germany.
| |
Collapse
|
37
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
39
|
Wang JM, Yang MX, Wu QF, Chen J, Deng SF, Chen L, Wei DN, Liang FR. Improvement of intestinal flora: accompany with the antihypertensive effect of electroacupuncture on stage 1 hypertension. Chin Med 2021; 16:7. [PMID: 33413552 PMCID: PMC7792359 DOI: 10.1186/s13020-020-00417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing evidence have indicated the relationship between intestinal dysbiosis and hypertension. We aimed to evaluate the effect of the electroacupuncture (EA) on intestinal microbiota in patients with stage 1 hypertension. METHODS 93 hypertensive patients and 15 healthy subjects were enrolled in this study. Applying a highly accurate oscillometric device to evaluate the antihypertensive effect of EA. 16S rRNA sequencing was used to profile stool microbial communities from Healthy group, Before treatment (BT) group and After treatment (AT) group, and various multivariate analysis approaches were used to assess diversity, composition and abundance of intestinal microbiota. RESULTS In this study, EA significantly decreased the blood pressure (BP) of hypertensive patients. Higher abundance of Firmicutes and lower Bacteroidetes abundance were observed in the BT group compared to the Healthy group. And EA treatment significantly decreased the Firmicutes/Bacteroidetes ratio compared to the BT group. Moreover, at the genus level, there was an increased abundance of Escherichia-Shigella in patients with hypertension, while Blautia were decreased, and EA reversed these changes. CONCLUSIONS Our study indicates that EA can effectively lower BP and improve the structure of intestinal microbiota which are correlate with the alteration of blood pressure by electroacupuncture. TRIAL REGISTRATION Clinicaltrial.gov, NCT01701726. Registered 5 October 2012, https://clinicaltrials.gov/ct2/show/study/NCT01701726.
Collapse
Affiliation(s)
- Jun-Meng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Ming-Xiao Yang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Hai yuan Road, Futian District, Shenzhen, 518053, Guangdong, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China. .,Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Ji Chen
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Shu-Fang Deng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Lin Chen
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Da-Neng Wei
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Fan-Rong Liang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
40
|
Lin YF, Sung CM, Ke HM, Kuo CJ, Liu WA, Tsai WS, Lin CY, Cheng HT, Lu MJ, Tsai IJ, Hsieh SY. The rectal mucosal but not fecal microbiota detects subclinical ulcerative colitis. Gut Microbes 2021; 13:1-10. [PMID: 33525983 PMCID: PMC7872041 DOI: 10.1080/19490976.2020.1832856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is characterized by repetitive remission and relapse. Gut microbiome is critically involved in pathogenesis of UC. The shifts in microbiome profile during disease remission remain under-investigated. Recent studies revealed that UC pathogenesis is likely to originate in the mucosal barrier. Therefore, we investigated the effectiveness of mucosal tissue microbiomes to differentiate patients with subclinical UC from healthy individuals. The microbiomes of cecal and rectal biopsies and feces were characterized from 13 healthy individuals and 45 patients with subclinical UC. Total genomic DNA was extracted from the samples, and their microbial communities determined using next-generation sequencing. We found that changes in relative abundance of subclinical UC were marked by a decrease in Proteobacteria and an increase in Bacteroidetes phyla in microbiome derived from rectal tissues but not cecal tissue nor feces. Only in the microbiome of rectal tissue had significantly higher community richness and evenness in subclinical UC patients than controls. Twenty-seven operational taxonomic units were enriched in subclinical UC cohort with majority of the taxa from the Firmicutes phylum. Inference of putative microbial functional pathways from rectal biopsy microbiome suggested a differential increase in interleukin-17 signaling and T-helper cell differentiation pathways. Rectal biopsy tissue was suggested to be more suitable than fecal samples for microbiome assays to distinguish patients with subclinical UC from healthy adults. Assessment of the rectal biopsy microbiome may offer clinical insight into UC disease progression and predict relapse of the diseases.
Collapse
Affiliation(s)
- Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chang Mu Sung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-an Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sy Tsai
- Division of Colorectal Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Tsai Cheng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meiyeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Isheng. J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
41
|
Li L, Wang Y, Yuan J, Liu Z, Ye C, Qin S. Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice. Appl Microbiol Biotechnol 2020; 104:10217-10231. [PMID: 33074417 DOI: 10.1007/s00253-020-10954-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/27/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Dietary fiber has beneficial effects on obesity-related diseases and gut microbiota, contributing a key role in the interaction between dietary metabolism and host metabolism. Our objective was to investigate the cause of the improvement in multiple types of physiological states with seaweed Undaria pinnatifida treatment on high-fat diet-fed mice and to evaluate whether its consequent anti-adiposity and anti-hyperlipidemic effects are associated with gut microbiota and its metabolomics regulation. U. pinnatifida administration in our experiment was shown to significantly decrease high-fat diet-induced body weight gain, as well as epididymal and abdominal adiposity. U. pinnatifida intake also significantly reduced liver weight and serum triacylglycerol accumulation. We also found that improving effects of U. pinnatifida on high-fat diet-induced metabolic dysfunctions were associated with significant increase in specific bacteria, such as Bacteroides acidifaciens and Bacteroides ovatus, as well as metabolites, including short-chain fatty acids and tricarboxylic acid cycle intermediates. Our result provides a cheap dietary strategy to host metabolism improvement and obesity management. KEY POINTS: • U. pinnatifida improved adipose accumulation and lipid metabolism. • B. acidifaciens and B. ovatus contributed to the beneficial effects of U. pinnatifida. • SCFAs and TCA cycle intermediates were critical to the metabolic outcomes. • Our study provides a cheap dietary strategy for obesity management.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuting Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Jingyi Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zhengyi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Changqing Ye
- School of Public Health, Nantong University, Nantong, 226019, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
42
|
Bodiwala V, Marshall T, Das KM, Brant SR, Seril DN. Comparison of Disease Phenotypes and Clinical Characteristics Among South Asian and White Patients with Inflammatory Bowel Disease at a Tertiary Referral Center. Inflamm Bowel Dis 2020; 26:1869-1877. [PMID: 32144933 DOI: 10.1093/ibd/izaa019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prevalence and clinical features of inflammatory bowel disease (IBD) vary among different racial and ethnic groups. The aim of this study was to compare the clinical and phenotypic features of Crohn's disease (CD) and ulcerative colitis (UC) in South Asian patients living in the United States with those of a white cohort. METHODS The demographic, clinical, and phenotypic characteristics of 73 South Asian patients (31 CD and 42 UC) who presented initially to our tertiary referral center from 2012 to 2016 and had subsequent follow-up were retrospectively compared with those of 408 consecutive white patients (245 CD and 163 UC). RESULTS South Asian IBD patients were significantly more likely to have UC (58.0% vs 40.0%; P = 0.005) than white patients. South Asians with CD were less likely to have a family history of IBD (9.7% vs 26.9%; P = 0.037) and required fewer CD-related surgeries (22.5% vs 46.1; P = 0.012). South Asians were also less likely to be active or former smokers in both the CD (P = 0.004) and UC (P = 0.020) groups. South Asians with UC had a higher incidence of Clostridium difficile infection compared with white patients (19.0% vs 8.6%; P = 0.050). CONCLUSIONS A cohort of South Asian patients with IBD were more likely to have UC and had differing family and tobacco risk factors, requirements for surgery, and Clostridium difficile infection rates as compared with white patients.
Collapse
Affiliation(s)
- Vimal Bodiwala
- Department of Internal Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Kiron M Das
- Department of Internal Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ.,Crohn's and Colitis Center of New Jersey, Division of Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Steven R Brant
- Department of Internal Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ.,Crohn's and Colitis Center of New Jersey, Division of Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Darren N Seril
- Department of Internal Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ.,Crohn's and Colitis Center of New Jersey, Division of Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
43
|
Astley DJ, Masters N, Kuballa A, Katouli M. Commonality of adherent-invasive Escherichia coli isolated from patients with extraintestinal infections, healthy individuals and the environment. Eur J Clin Microbiol Infect Dis 2020; 40:181-192. [PMID: 33063232 DOI: 10.1007/s10096-020-04066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in inflammatory bowel disease (IBD) pathogenesis. These strains are defined by their ability to adhere to and invade intestinal epithelial cells, and to survive and replicate in macrophages. We postulated that AIEC strains may commonly inhabit the gut of healthy individuals (HI), cause extraintestinal infections, and be found in sewage treatment plants (STP) and surface waters (SW). A total of 808 E. coli strains isolated from HI; patients with community-acquired urinary tract infection (CA-UTI), septicaemia and urosepsis; STP; and SW, showing a diffuse adhesion pattern to Caco-2 cells were included in this study. Typing of the strains using a combination of RAPD-PCR and PhPlate fingerprinting grouped them into 48 common clones (CCs). Representatives of each CC were tested for the ability to invade Caco-2 cells, survive and replicate in macrophages, and for the presence of six virulence genes commonly found among AIEC strains. Twenty CCs were deemed AIEC based on their ability to survive and replicate in macrophages, while encoding htrA, dsbA and clbA genes. These CCs primarily originated from HI and CA-UTI patients but were also detected in secondary locations including STP and SW. Strains lacking intramacrophagic survival and replication abilities were regarded as diffusely adhering E. coli (DAEC). Certain clones of AIEC are common in the gut of HI whilst promoting CA-UTI. The survival and persistence of AIEC in STP and SW may have serious public health ramifications for individuals predisposed to IBD.
Collapse
Affiliation(s)
- D J Astley
- Inflammation and Healing Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - N Masters
- Inflammation and Healing Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - A Kuballa
- Inflammation and Healing Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - M Katouli
- Inflammation and Healing Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
44
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
45
|
Diversity of Gut Microbiota and Bifidobacterial Community of Chinese Subjects of Different Ages and from Different Regions. Microorganisms 2020; 8:microorganisms8081108. [PMID: 32722057 PMCID: PMC7464982 DOI: 10.3390/microorganisms8081108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition and functionality are closely linked to host health. In this study, the fecal microbiota and bifidobacterial communities of 111 healthy volunteers from four regions of China of varying age profiles (Child, 1–5 years; Young, 18–50 years; Elder, 60–80 years; Longevity, ≥90 years) were investigated via high-throughput sequencing. Canonical analysis revealed that the gut microbiota, as well as bifidobacteria profiles of the subjects, clustered according to their regions and age. Eight genera were shared among all subjects, however, certain genera distributed differently in subjects grouped by region and age. Faecalibacterium was enriched in samples from Zhongxiang, unclassified Ruminococcaceae and Christensenellaceae were enriched in the Longevity group, and Bifidobacterium was enriched in Child. Within Bifidobacterium, B. longum was the most abundant species in almost all samples except for Child, in which B. pseudocatenulatum was the most abundant. Additionally, the abundances of B. adolescentis and B. dentium were lower in Child. In conclusion, our results suggest that geography and age affect the structure of the gut microbiota, as well as Bifidobacterium composition, and this variation may greatly associate with the metabolic and immune changes that occur during the process of aging.
Collapse
|
46
|
Cruz-Lebrón A, D’argenio Garcia L, Talla A, Joussef-Piña S, Quiñones-Mateu ME, Sékaly RP, de Carvalho KIL, Levine AD. Decreased Enteric Bacterial Composition and Diversity in South American Crohn's Disease Vary With the Choice of Treatment Strategy and Time Since Diagnosis. J Crohns Colitis 2020; 14:791-800. [PMID: 31758685 PMCID: PMC7346893 DOI: 10.1093/ecco-jcc/jjz189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The symptomology of Crohn's disease [CD], a chronic inflammatory disease of the digestive tract, correlates poorly with clinical, endoscopic or immunological assessments of disease severity. The prevalence of CD in South America is rising, reflecting changes in socio-economic stability. Many treatment options are available to CD patients, including biological agents and corticosteroids, each of which offers variable efficacy attributed to host genetics and environmental factors associated with alterations in the gut microbiota. METHODS Based on 16S rRNA gene sequencing and taxonomic differences, we compared the faecal microbial population of Brazilian patients with CD treated with corticosteroid or anti-tumour necrosis factor [anti-TNF] immunotherapy. Faecal calprotectin and plasma sCD14 levels were quantified as markers for local and systemic inflammation, respectively. RESULTS Anti-TNF treatment led to an increased relative abundance of Proteobacteria and a decreased level of Bacteroidetes. In contrast, corticoid treatment was associated with an increase in the relative abundance of Actinobacteria, which has been linked to inflammation in CD. Disruption of the faecal microbiota was related to decreased bacterial diversity and composition. Moreover, the choice of clinical regimen and time since diagnosis modulate the character of the resulting dysbiosis. CONCLUSIONS Enteric microbial populations in CD patients who have been treated are modulated by disease pathogenesis, local inflammatory microenvironment and treatment strategy. The dysbiosis that remains after anti-TNF treatment due to decreased bacterial diversity and composition abates restoration of the microbiota to a healthy state, suggesting that the identification and development of new clinical treatments for CD must include their capacity to normalize the gut microbiota.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Samira Joussef-Piña
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | - Alan D Levine
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Departments of Pharmacology, Medicine, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
47
|
Costa RFA, Ferrari MLA, Bringer MA, Darfeuille-Michaud A, Martins FS, Barnich N. Characterization of mucosa-associated Escherichia coli strains isolated from Crohn's disease patients in Brazil. BMC Microbiol 2020; 20:178. [PMID: 32576138 PMCID: PMC7310525 DOI: 10.1186/s12866-020-01856-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Crohn’s disease (CD) is characterized by chronic inflammation of the human intestine. Several studies have demonstrated that the intestinal mucosa of CD patients in Western countries is abnormally colonized by adherent-invasive Escherichia coli (AIEC) strains. However, no studies to date have focused on the involvement of such E. coli strains in CD patients in Brazil. Here, we characterized E. coli strains associated with the ileal mucosa of Brazilian CD patients (ileal biopsies from 35 subjects, 24 CD patients and 11 controls). Results The colonization level of adherent Enterobacteriaceae associated with the ileal mucosa of CD patients was significantly higher than that of the controls. The proportions of E. coli strains belonging to phylogroups B1 and B2 were two-fold higher in strains isolated from CD patients than in those isolated from controls. CD patients in the active phase harbored 10-fold more E. coli belonging to group B2 than CD patients in remission. Only a few E. coli isolates had invasive properties and the ability to survive within macrophages, but 25% of CD patients in Brazil (6/24) harbored at least one E. coli strain belonging to the AIEC pathobiont. However, fimH sequence analysis showed only a few polymorphisms in the FimH adhesin of strains isolated in this study compared to the FimH adhesin of AIEC collections isolated from European patients. Conclusions Mucosa-associated E. coli strains colonize the intestinal mucosa of Brazilian CD patients. However, the strains isolated from Brazilian CD patients have probably not yet co-evolved with their hosts and therefore have not fully developed a strong adherent-invasive phenotype. Thus, it will be crucial to follow in the future the emergence and evolution of AIEC pathobionts in the Brazilian population.
Collapse
Affiliation(s)
- Rafaella F A Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maria L A Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Arlette Darfeuille-Michaud
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
48
|
Kim MJ, Kim JY, Kang M, Won MH, Hong SH, Her Y. Reduced Fecal Calprotectin and Inflammation in a Murine Model of Atopic Dermatitis Following Probiotic Treatment. Int J Mol Sci 2020; 21:ijms21113968. [PMID: 32486523 PMCID: PMC7312066 DOI: 10.3390/ijms21113968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin diseases with inflammation, chronic relapses, and intense pruritus. Its pathogenesis includes genetic susceptibility, an abnormal epidermal lipid barrier, and an increased production of IgE due to immune dysregulation. Recently, AD has been reported to be associated with intestinal inflammation and dysbiosis in human and murine models. Various probiotics are being used to control intestinal dysbiosis and inflammatory reactions. However, it is difficult to predict or determine the therapeutic effects of the probiotics, since it is rare for clinicians to use the probiotics alone to treat AD. It is also difficult to check whether the intestinal inflammation in patients with AD has improved since probiotic treatment. The aim of the present study was to determine whether mice with induced atopic dermatitis had any changes in fecal calprotectin, an indicator of intestinal inflammation, after probiotic administration. Our results showed that the fecal calprotectin levels in mice with induced dermatitis decreased significantly after the administration of probiotics. In addition, epidermal skin lesions were attenuated and inflammatory-related cytokines were downregulated after the administration of probiotics in mice with induced dermatitis. These results suggest that changes in fecal calprotectin levels could be used to assess the effectiveness of a probiotic strain as an adjuvant treatment for AD.
Collapse
Affiliation(s)
- Myoung-Ju Kim
- Department of Internal Medicine, School of Medicine, Kangon National University, Chuncheon 24341, Korea; (M.-J.K.); (J.-Y.K.)
| | - Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangon National University, Chuncheon 24341, Korea; (M.-J.K.); (J.-Y.K.)
| | - Minje Kang
- Division of Biomedical Convergence, Department of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangon National University, Chuncheon 24341, Korea; (M.-J.K.); (J.-Y.K.)
- Correspondence: (S.-H.H.); (Y.H.); Tel.: +82-33-250-7819 (S.-H.H. & Y.H.); Fax: +82-33-244-2367 (S.-H.H. & Y.H.)
| | - Young Her
- Department of Dermatology, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon 24341, Korea
- Correspondence: (S.-H.H.); (Y.H.); Tel.: +82-33-250-7819 (S.-H.H. & Y.H.); Fax: +82-33-244-2367 (S.-H.H. & Y.H.)
| |
Collapse
|
49
|
Abdelhalim KA, Uzel A, Gülşen Ünal N. Virulence determinants and genetic diversity of adherent-invasive Escherichia coli (AIEC) strains isolated from patients with Crohn's disease. Microb Pathog 2020; 145:104233. [PMID: 32360521 DOI: 10.1016/j.micpath.2020.104233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adherent invasive Escherichia coli (AIEC) are implicated in the pathogenesis of inflammatory bowel diseases (IBD) particularly Crohn's disease (CD). The aim of this study is to isolate, identify, genotype, and characterize the virulence factors and the clinical significance of AIEC strains. METHODS Ileal and colonic biopsies from 24 active CD patients and 15 healthy controls (HC) were collected. E. coli strains were identified by standard biochemical tests and confirmed by MALDI-TOF (bioMerieux, France) system. The AIEC phenotypes were determined by the adhesion, invasion, and survival within macrophages assays. The genetic virulence factors and genotyping characteristics were determined by PCR and PFGE respectively. The abundance and the antibiogram profile of E. coli strains was determined by qPCR and VITEK®2 (bioMerieux, France) automated system respectively. RESULTS E. coli strains from 17 CD patients and 14 HC were isolated, 10 (59%) and 7 (50%) of them were identified as AIEC strains, respectively. We found that chuA and ratA genes were the most significant genetic markers associated with AIEC compared to non-AIEC strains isolated from CD patients and HC p = 0.0119, 0.0094 respectively. The majority of E. coli strains obtained from CD patients showed antibiotic resistance (71%) compared to HC (29%) against at least one antibiotic. The AIEC-like strains were more resistant to antibiotics compared to non-AIEC-like strains (53%) and (21%) respectively. CONCLUSIONS We have determined significant differences between AIEC strains and non-AIEC strains in terms of the prevalence of chuA and ratA virulence genes and the antibiotic resistance profiles. In addition, AIEC strains isolated from CD patients were found to be more resistant to penicillin/beta lactam and aminoglycoside antibiotics than AIEC strains isolated from HC 80%, 14% respectively.
Collapse
Affiliation(s)
- Khalid A Abdelhalim
- Ege University, Faculty of Science, Department of Biology, Section of Basic and Industrial Microbiology, Izmir, Turkey
| | - Ataç Uzel
- Ege University, Faculty of Science, Department of Biology, Section of Basic and Industrial Microbiology, Izmir, Turkey
| | - Nalan Gülşen Ünal
- Ege University, Faculty of Medicine, Department of Internal Medicine, Division of Gastroenterology, Izmir, Turkey.
| |
Collapse
|
50
|
Abstract
The interest in the therapeutic use of probiotic microorganisms has been increased during the last decade although the doubts have ascended about the probiotics mainly because their beneficial effects are not fully understood, and, in many cases, their usefulness has not been validated in clinical trials. Consequently, the notion got a considerable interest in those strains having proven probiotic potential to be engineered for improvement in their beneficial features. The process of genetic engineering can also be used for probiotic strains for the reversion of antimicrobial resistance and other modifications for their safer and effective human applications. The lactic acid bacilli are predominantly opposite as they already have gained attention owing to their health-promoting benefits and their safety for human consumption; therefore, their use, especially as a delivery agent of vaccines and drugs, is gaining attention. The tailoring of probiotic strains will not only improve the data regarding the probiotic potential of these strains but also clinch the doubts concerning these probiotics. This article focuses on the approaches of bioengineered probiotics and discusses the potential prospects for their therapeutic applications including immunomodulation, cognitive health, and anticancer therapeutics.
Collapse
|