1
|
Lei Y, Liu X, Du Q, Li Y. Bibliometric analysis of Helicobacter pylori vaccine development from 1993 to 2023. Front Microbiol 2025; 16:1479195. [PMID: 40165784 PMCID: PMC11955499 DOI: 10.3389/fmicb.2025.1479195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Background Helicobacter pylori infects half the global population and imposes a huge health burden. Developing a vaccine targeting H. pylori appears to be the most ideal preventive option. Based on Web of Science Core Collection (WoSCC) publications from 1993 to 2023, this study visually analyses the current status and trends of this field through bibliometric analysis. Methods H. pylori vaccine-related articles and reviews were retrieved from WoSCC. Microsoft Excel, CiteSpace, and VOS viewer were used to analyze the data. Results 1,199 publications from 1993 to 2023 were included in this bibliometric analysis. The results of this analysis show an overall upward trend in the number of publications and citations in this field. The United States is undoubtedly the most important contributor to this field in terms of publications, citation frequency, and national cooperation. Vaccine has the highest number of publications. Thomas F. Meyer is one of the leading scholars in the field. The most frequently cited article is "Immunization of mice with urease vaccine affords protection against H. pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses." The literature and keyword analysis show that effective treatments and multi-epitope vaccines are focus area in this field. New antigen combinations (such as UreB, outer membrane vesicles, etc.) of H. pylori vaccines are novel research directions and frontiers. Conclusion Our study is the first bibliometric analysis of H. pylori vaccine research. By summarizing the current status of H. pylori vaccine research, our study highlighted the current research direction and frontier, providing valuable data for researchers to grasp the latest advancements and accelerate H. pylori vaccine development.
Collapse
Affiliation(s)
- Yeqing Lei
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaochen Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Du
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Hasanzadeh Haghighi F, Menbari S, Mohammadzadeh R, Pishdadian A, Farsiani H. Developing a potent vaccine against Helicobacter pylori: critical considerations and challenges. Expert Rev Mol Med 2024; 27:e12. [PMID: 39584502 PMCID: PMC11964096 DOI: 10.1017/erm.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 08/07/2024] [Indexed: 11/26/2024]
Abstract
Helicobacter pylori (H. pylori) is closely associated with gastric cancer and peptic ulcers. The effectiveness of antibiotic treatment against H. pylori is diminished by the emergence of drug-resistant strains, side effects, high cost and reinfections. Given the circumstances, it is imperative to develop a potent vaccination targeting H. pylori. Understanding H. pylori's pathogenicity and the host's immune response is essential to developing a vaccine. Furthermore, vaccine evaluation necessitates the careful selection of design formulation. This review article aims to provide a concise overview of the considerations involved in selecting the optimal antigen, adjuvant, vaccine delivery system and laboratory animal model for vaccine formulation. Furthermore, we will discuss some significant obstacles in the realm of developing a potent vaccination against H. pylori.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaho Menbari
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mohammadzadeh
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Xiao L, Zou X, Tian G, Qin C, Zhao H, Fu J, Hu J, Yin J. Antigenicity evaluation of synthetic α-(1,3)-linked D, D-heptoglycan of
Helicobacter pylori
serotype O6 lipopolysaccharide. J Carbohydr Chem 2024:1-28. [DOI: 10.1080/07328303.2024.2341716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Lei Xiao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hui Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Sijmons D, Collett S, Soliman C, Guy AJ, Scott AM, Durrant LG, Elbourne A, Walduck AK, Ramsland PA. Probing the expression and adhesion of glycans involved in Helicobacter pylori infection. Sci Rep 2024; 14:8587. [PMID: 38615147 PMCID: PMC11016089 DOI: 10.1038/s41598-024-59234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Simon Collett
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Caroline Soliman
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Andrew J Guy
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ZiP Diagnostics, Collingwood, VIC, 3066, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Paul A Ramsland
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
6
|
Hasanuzzaman M, Bang CS, Gong EJ. Antibiotic Resistance of Helicobacter pylori: Mechanisms and Clinical Implications. J Korean Med Sci 2024; 39:e44. [PMID: 38288543 PMCID: PMC10825452 DOI: 10.3346/jkms.2024.39.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium associated with various gastrointestinal diseases, including chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. The increasing rates of H. pylori antibiotic resistance and the emergence of multidrug-resistant strains pose significant challenges to its treatment. This comprehensive review explores the mechanisms underlying the resistance of H. pylori to commonly used antibiotics and the clinical implications of antibiotic resistance. Additionally, potential strategies for overcoming antibiotic resistance are discussed. These approaches aim to improve the treatment outcomes of H. pylori infections while minimizing the development of antibiotic resistance. The continuous evolution of treatment perspectives and ongoing research in this field are crucial for effectively combating this challenging infection.
Collapse
Affiliation(s)
- Md Hasanuzzaman
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
7
|
Francis JE, Skakic I, Majumdar D, Taki AC, Shukla R, Walduck A, Smooker PM. Solid Lipid Nanoparticles Delivering a DNA Vaccine Encoding Helicobacter pylori Urease A Subunit: Immune Analyses before and after a Mouse Model of Infection. Int J Mol Sci 2024; 25:1076. [PMID: 38256149 PMCID: PMC10816323 DOI: 10.3390/ijms25021076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.
Collapse
Affiliation(s)
- Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Debolina Majumdar
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ravi Shukla
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| |
Collapse
|
8
|
Graham DY. Helicobacter pylori. Curr Top Microbiol Immunol 2024; 445:127-154. [PMID: 34224014 DOI: 10.1007/82_2021_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Helicobacter pylori (H. pylori) is an important human pathogen etiologically associated with peptic ulcers and gastric cancer. The infection is present in approximately one-half of the world's population. Population-based H. pylori eradiation has confirmed that cure or prevention of the infection produces a marked reduction in gastric cancer and peptic ulcer disease. Antimicrobial therapy has become increasingly ineffective, and complexity and costs of antimicrobial therapy for infected individuals residing in and, immigrating from, the developing world combined with the cost of treatment for cancer make vaccine development a cost-effective alternative. Challenge studies allowed making a "go-no go" decision regarding vaccine effectiveness. We provide detailed protocols regarding challenge strain selection and administration as well as guidance regarding the clinical and laboratory tests used to confirm and monitor experimental infection. Experience shows that reliance of noninvasive methods led to the erroneous conclusion that some subjects were not infected. The current data suggests that histologic assessment of gastric mucosal biopsies may be one of the most sensitive and specific means of assessment of the presence of experimental infection as well as of successful H. pylori eradication. We recommend detailed recommendations for acquiring, processing, embedding, sectioning, and examining the gastric biopsies.
Collapse
Affiliation(s)
- David Y Graham
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, RM 3A-390A (111D), 2002 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Abo YN, Jamrozik E, McCarthy JS, Roestenberg M, Steer AC, Osowicki J. Strategic and scientific contributions of human challenge trials for vaccine development: facts versus fantasy. THE LANCET. INFECTIOUS DISEASES 2023; 23:e533-e546. [PMID: 37573871 DOI: 10.1016/s1473-3099(23)00294-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 08/15/2023]
Abstract
The unprecedented speed of delivery of SARS-CoV-2 pandemic vaccines has redefined the limits for all vaccine development. Beyond the aspirational 100-day timeline for tomorrow's hypothetical pandemic vaccines, there is a sense of optimism that development of other high priority vaccines can be accelerated. Early in the COVID-19 pandemic, an intense and polarised academic and public discourse arose concerning the role of human challenge trials for vaccine development. A case was made for human challenge trials as a powerful tool to establish early proof-of-concept of vaccine efficacy in humans, inform vaccine down selection, and address crucial knowledge gaps regarding transmission, pathogenesis, and immune protection. We review the track record of human challenge trials contributing to the development of vaccines for 19 different pathogens and discuss relevant limitations, barriers, and pitfalls. This Review also highlights opportunities for efforts to broaden the scope and boost the effects of human challenge trials, to accelerate all vaccine development.
Collapse
Affiliation(s)
- Yara-Natalie Abo
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia.
| | - Euzebiusz Jamrozik
- Ethox and Pandemic Sciences Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Monash-WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, Parkville, VIC, Australia; Victorian Infectious Diseases Services, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Meta Roestenberg
- Controlled Human Infections Center, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Skakic I, Francis JE, Dekiwadia C, Aibinu I, Huq M, Taki AC, Walduck A, Smooker PM. An Evaluation of Urease A Subunit Nanocapsules as a Vaccine in a Mouse Model of Helicobacter pylori Infection. Vaccines (Basel) 2023; 11:1652. [PMID: 38005984 PMCID: PMC10674275 DOI: 10.3390/vaccines11111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Ibukun Aibinu
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Health, Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mohsina Huq
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aya C. Taki
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| |
Collapse
|
11
|
Friedrich V, Gerhard M. Vaccination against Helicobacter pylori - An approach for cancer prevention? Mol Aspects Med 2023; 92:101183. [PMID: 37018869 DOI: 10.1016/j.mam.2023.101183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The gram-negative bacterium Helicobacter pylori is the most common chronic bacterial infection and the main cause of gastric cancer. Due to the increasing antimicrobial resistance of H. pylori, the development of an efficacious vaccine is a valid option to protect from disease or infection and ultimately prevent gastric cancer. However, despite more than 30 years of research, no vaccine has entered the market yet. This review highlights the most relevant previous preclinical and clinical studies to allow conclusions to be drawn on which parameters need special attention in the future to develop an efficacious vaccine against H. pylori and thus prevent gastric cancer.
Collapse
Affiliation(s)
- Verena Friedrich
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany
| | - Markus Gerhard
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany.
| |
Collapse
|
12
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
13
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
14
|
Tas SK, Kirkik D, Altunkanat D, Uzunoglu AS, Uzunoglu MS, Celik BA, Ilgar E. Immune Response and Therapeutic Vaccination against Helicobacter pylori. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2023; 66. [DOI: 10.1590/1678-4324-2023230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
|
15
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Zhang X, Sang S, Guan Q, Tao H, Wang Y, Liu C. Oral Administration of a Shigella 2aT32-Based Vaccine Expressing UreB-HspA Fusion Antigen With and Without Parenteral rUreB-HspA Boost Confers Protection Against Helicobacter pylori in Mice Model. Front Immunol 2022; 13:894206. [PMID: 35769459 PMCID: PMC9234132 DOI: 10.3389/fimmu.2022.894206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen classified as a class I carcinogen. The H. pylori urease B subunit (UreB) and heat shock protein A (HspA) are two important vaccine candidate antigens. In this study, we evaluated the immunogenicity and immunoprotective effect of the attenuated Shigella vector vaccine SH02 expressing the UreB-HspA fusion protein of H. pylori in a mouse model. Oral SH02 with or without subcutaneous injection of rUreB-HspA induced antigen-specific serum IgG, mucosal sIgA, and T cells immune response. Subcutaneous injection of the candidate antigen rUreB-HspA enhanced the level of serum antigen-specific IgG antibodies (p < 0.0001) and the levels of IgG1/IgG2a/IgG2b subtypes. In addition, injection boost also increased the proportion of spleen antigen-specific CD4+CD154+ T cells (p < 0.001), and the proportion of CD4+CD154+ T cells that secrete IFN-γ and IL-17A. Following the H. pylori challenge, the levels of H. pylori colonization in the two experimental groups (Groups A and B) significantly reduced compared with the control group (p < 0.001), indicating that the candidate vaccine yielded a preventive effect of anti-H.pylori infection. Compared with the non-subcutaneous booster injection group (Group A), the subcutaneous booster injection group (Group B) exhibited less gastric inflammation, but there was no significant difference in the level of colonization (p > 0.05). These results lay a foundation for the development of a vaccine against H. pylori and the optimization of immunization methods and procedures to prevent H. pylori infection.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuli Sang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qing Guan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- *Correspondence: Chunjie Liu, ; Yanchun Wang,
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- *Correspondence: Chunjie Liu, ; Yanchun Wang,
| |
Collapse
|
17
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
18
|
Chapman PR, Giacomin P, Loukas A, McCarthy JS. Experimental human hookworm infection: a narrative historical review. PLoS Negl Trop Dis 2021; 15:e0009908. [PMID: 34882670 PMCID: PMC8659326 DOI: 10.1371/journal.pntd.0009908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In 1896, a serendipitous laboratory accident led to the understanding that hookworms propagate infection by penetrating skin, a theory that was then confirmed with the first experimental human infection, reported in 1901. Experimental human infections undertaken in the 20th century enabled understanding of the natural history of infection and the immune response. More recently, experimental hookworm infection has been performed to investigate the immunomodulatory potential of hookworm infection and for the evaluation of hookworm vaccines and chemotherapeutic interventions. Experimental human hookworm infection has been proven to be safe, with no deaths observed in over 500 participants (although early reports predate systematic adverse event reporting) and no serious adverse events described in over 200 participants enrolled in contemporary clinical trials. While experimental human hookworm infection holds significant promise, as both a challenge model for testing anti-hookworm therapies and for treating various diseases of modernity, there are many challenges that present. These challenges include preparation and storage of larvae, which has not significantly changed since Harada and Mori first described their coproculture method in 1955. In vitro methods of hookworm larval culture, storage, and the development of meaningful potency or release assays are required. Surrogate markers of intestinal infection intensity are required because faecal egg counts or hookworm faecal DNA intensity lack the fidelity required for exploration of hookworm infection as a vaccine/drug testing platform or as a regulated therapy.
Collapse
Affiliation(s)
- Paul R. Chapman
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| |
Collapse
|
19
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
21
|
Zhao J, Wang R, Zhang J, Zhao Y, Qiao S, Crouzier T, Yan H, Tian W. A novel 4D cell culture mimicking stomach peristalsis altered gastric cancer spheroids growth and malignance. Biofabrication 2021; 13. [PMID: 33836517 DOI: 10.1088/1758-5090/abf6bf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
In vitrocancer models that can largely mimic thein vivomicroenvironment are crucial for conducting more accurate research. Models of three-dimensional (3D) culture that can mimic some aspects of cancer microenvironment or cancer biopsies that can adequately represent tumor heterogeneity are intensely used currently. Those models still lack the dynamic stress stimuli in gastric carcinoma exposed to stomach peristalsisin vivo. This study leveraged a lab-developed four-dimensional (4D) culture model by a magnetic responsive alginate-based hydrogel to rotating magnets that can mimic stress stimuli in gastric cancer (GC). We used the 4D model to culture human GC cell line AGS and SGC7901, cells at the primary and metastasis stage. We revealed the 4D model altered the cancer cell growth kinetics mechanistically by alteringPCNAandp53expression compared to the 3D culture that lacks stress stimuli. We found the 4D model altered the cancer spheroids stemness as evidenced by enhanced cancer stem cells (CD44) marker expression in AGS spheroids but the expression was dampened in SGC7901 cells. We examined the multi-drug resistance (MDR1) marker expression and found the 4D model dampened the MDR1 expression in SGC7901 cell spheroids, but not in spheroids of AGS cells. Such a model provides the stomach peristalsis mimic and is promising for conducting basic or translational GC-associated research, drug screening, and culturing patient gastric biopsies to tailor the therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Juzhi Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinyu Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
22
|
Cen Q, Gao T, Ren Y, Lu X, Lei H. Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 2021; 26:e12772. [PMID: 33219579 DOI: 10.1111/hel.12772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a common human pathogenic bacterium that is associated with gastric diseases. The current leading clinical therapy is combination antibiotics, but this treatment has safety issues, especially the induction of drug resistance. Therefore, developing a safe and effective vaccine against H. pylori is one of the best alternatives. OBJECTIVE To develop Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines and then demonstrate the feasibility of this platform for preventing H. pylori infection in the absence of a mucosal adjuvant. MATERIALS AND METHODS Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines, including EBY100/pYD1-UreB and EBY100/pYD1-VacA, were generated and analyzed by Western blot, Immunofluorescence analysis, flow cytometric assay, and indirect enzyme-link immunosorbent assay (ELISA). Further, antibody responses induced by oral administration of EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA were measured in a mouse model. Lastly, the vaccinated mice were infected with H. pylori SS1, and colonization in the stomach were evaluated. RESULTS Saccharomyces cerevisiae-based H. pylori oral vaccines were successfully constructed. Mice orally administered with EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA exhibited a significant humoral immune response as well as a mucosal immune response. Importantly, S. cerevisiae-based oral vaccines could effectively reduce bacterial loads with statistical significance after H. pylori infection. CONCLUSIONS Our study shows that S. cerevisiae-based platforms can serve as an alternative approach for the future development of promising bacterial oral vaccine candidates.
Collapse
Affiliation(s)
- Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
23
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
25
|
Soluri MF, Puccio S, Caredda G, Edomi P, D’Elios MM, Cianchi F, Troilo A, Santoro C, Sblattero D, Peano C. Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Front Microbiol 2020; 11:1551. [PMID: 32849324 PMCID: PMC7396715 DOI: 10.3389/fmicb.2020.01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the interaction between Helicobacter pylori (HP) and the host in vivo is an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005; Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giada Caredda
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
26
|
Liu Q, Li X, Zhang Y, Song Z, Li R, Ruan H, Huang X. Orally-administered outer-membrane vesicles from Helicobacter pylori reduce H. pylori infection via Th2-biased immune responses in mice. Pathog Dis 2020; 77:5567182. [PMID: 31504509 DOI: 10.1093/femspd/ftz050] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/07/2019] [Indexed: 01/12/2023] Open
Abstract
As the trend of antibiotic resistance has increased, prevention and treatment of Helicobacter pylori infection have been challenged by the fact that no vaccines preventing H. pylori infection are available. Scientists continue to make sustained efforts to find better vaccine formulations and adjuvants to eradicate this chronic infection. In this study, we systemically analyzed the protein composition and potential vaccine function of outer-membrane vesicles (OMVs) derived from gerbil-adapted H. pylori strain 7.13. In total, we identified 169 proteins in H. pylori OMVs and found that outer-membrane, periplasmic and extracellular proteins (48.9% of the total proteins) were enriched. Furthermore, we evaluated the immune protective response of H. pylori OMVs in a C57BL/6 mouse model, and mice were orally immunized with OMVs or the H. pylori whole cell vaccine (WCV) alone, with or without cholera toxin (CT) as an adjuvant. The data demonstrated that oral immunization with OMVs can elicit a strong humoral and significantly higher mucosal immune response than the group immunized with the WCV plus the CT adjuvant. Moreover, our results also confirmed that OMVs predominantly induced T helper 2 (Th2)-biased immune responses that can significantly reduce bacterial loads after challenging with the H. pylori Sydney Strain 1 (SS1). In summary, OMVs as new antigen candidates in vaccine design would be of great value in controlling H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiuzhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Yingxuan Zhang
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Zifan Song
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Ruizhen Li
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China, 330006
| |
Collapse
|
27
|
Meyer TF, Morey P. A Future for a Vaccine Against the Cancer-Inducing Bacterium Helicobacter pylori? MUCOSAL VACCINES 2020:579-596. [DOI: 10.1016/b978-0-12-811924-2.00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Akter S, Jeverstam F, Lundgren A, Magnusson MK, Walduck A, Qadri F, Bhuiyan TR, Raghavan S. The frequency of circulating integrin α4β7 + cells correlates with protection against Helicobacter pylori infection in immunized mice. Helicobacter 2019; 24:e12658. [PMID: 31502365 PMCID: PMC6900148 DOI: 10.1111/hel.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic Helicobacter pylori infection is the cause of peptic ulcers in a subpopulation of individuals and a risk factor for the development of gastric cancer. A vaccine against H pylori infection can prevent the acquisition of the infection and protect against reinfections. Clinical trials to date evaluating the efficacy of H pylori vaccines in human challenge models have shown moderate to poor protection with difficulties in predicting efficacy. Thus, while further studies are needed to design an effective vaccine, we also need to find relevant correlates for vaccine efficacy. OBJECTIVE To find immune correlates to vaccine efficacy, the frequencies of neutrophils, eosinophils and inflammatory monocytes and CD4+ T-cell memory and mucosa homing integrin α4β7+ cells were assessed by flow cytometry in the blood of mice after vaccination. MATERIALS AND METHODS H pylori antigens and cholera toxin or the multiple mutant CT (mmCT) were administered via the sublingual (SL) and intragastric route (IG). The vaccinated mice were infected with H pylori strain SS1 bacteria, and colonization in the stomach and immune responses were evaluated. RESULTS The H pylori vaccine was effective in reducing bacterial load in the stomach of mice and enhancing immune responses compared to unvaccinated infection controls. In the blood of mice after SL or IG route of vaccination, we observed changes in frequencies of innate and adaptive immune cell subsets compared to infection controls. Remarkably, the frequency of circulating mucosal homing α4β7+ CD4+ T cells after vaccination correlated with low bacterial load in the stomach of individual mice irrespective of the immunization route. CONCLUSIONS Our study shows that the innate and adaptive immune cell subsets can be measured in the blood after vaccination and that increased frequency of α4β7+ CD4+ in the blood after immunization could be used as a predictive marker for the efficacy of vaccine against H pylori infection.
Collapse
Affiliation(s)
- Sarmin Akter
- International Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Frida Jeverstam
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Anna Lundgren
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Maria K. Magnusson
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Anna Walduck
- School of ScienceRMIT UniversityBundooraVic.Australia
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | | | - Sukanya Raghavan
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
29
|
Walduck AK, Raghavan S. Immunity and Vaccine Development Against Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:257-275. [PMID: 31016627 DOI: 10.1007/5584_2019_370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is a highly-adapted gastrointestinal pathogen of humans and the immunology of this chronic infection is extremely complex. Despite the availability of antibiotic therapy, the global incidence of H. pylori infection remains high, particularly in low to middle-income nations. Failure of therapy and the spread of antibiotic resistance among the bacteria are significant problems and provide impetus for the development of new therapies and vaccines to treat or prevent gastric ulcer, and gastric carcinoma. The expansion of knowledge on gastric conventional and regulatory T cell responses, and the role of TH17 in chronic gastritis from studies in mouse models and patients have provided valuable insights into how gastritis is initiated and maintained. The development of human challenge models for testing candidate vaccines has meant a unique opportunity to study acute infection, but the field of vaccine development has not progressed as rapidly as anticipated. One clear lesson learned from previous studies is that we need a better understanding of the immune suppressive mechanisms in vivo to be able to design vaccine strategies. There is still an urgent need to identify practical surrogate markers of protection that could be deployed in future field vaccine trials. Important developments in our understanding of the chronic inflammatory response, progress and problems arising from human studies, and an outlook for the future of clinical vaccine trials will be discussed.
Collapse
Affiliation(s)
- Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Ikuse T, Blanchard TG, Czinn SJ. Inflammation, Immunity, and Vaccine Development for the Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:1-19. [PMID: 31123883 DOI: 10.1007/978-3-030-15138-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
31
|
Neumann L, Moos V, Giesecke-Thiel C, Dörner T, Allers K, Aebischer T, Schneider T. T Cell-Dependent Maturation of Pathogen-Specific Igs in the Antrum of Chronically Helicobacter pylori-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:208-215. [PMID: 31101665 DOI: 10.4049/jimmunol.1900074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
Mucosal plasma cells (PC) and Ig production are essential to fend pathogens and to maintain mucosal homeostasis. In human Helicobacter pylori infection, mucosal PC express inducible NO synthase (iNOS), which positively correlates with clearance of experimental human infection. To characterize Ig genes and specificities of antral mucosal iNOS+ and iNOS- PC in H. pylori infection, we sequenced rearranged Ig genes from single cell-sorted PC from biopsy specimens of chronically infected patients and analyzed them with respect to their molecular features. The binding specificity of individual PC's Ig was determined following recombinant expression. We identified high rates of somatic hypermutations, especially targeting RGYW/WRCY hotspot motifs in the individual Ig genes, indicating T cell-dependent maturation. For seven of 14 recombinantly expressed Ig, Ag specificity could be determined. Two clones reacted to H. pylori proteins, and five were found to be polyreactive against LPSs, dsDNA, and ssDNA. All specific Ig originated from iNOS+ PC. H. pylori-specific Ig are encoded by V and J family genes previously shown to be also used in rearranged Ig loci of MALT B cell lymphomas. In summary, mucosal iNOS+ PC producing H. pylori-specific Ig accumulate in infection and appear to be a product of T cell-dependent B cell maturation. Moreover, the Ig's molecular features partly resembled that of MALT B cell lymphoma Ig genes, suggestive of a mechanism in which a progressive molecular evolution of pathogen-specific B cells to MALT B cell lymphoma occurs.
Collapse
Affiliation(s)
- Laura Neumann
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Claudia Giesecke-Thiel
- Abteilung für Medizin, Rheumatologie und Klinische Immunology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; and
| | - Thomas Dörner
- Abteilung für Medizin, Rheumatologie und Klinische Immunology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; and
| | - Kristina Allers
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | | | - Thomas Schneider
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
32
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against
Helicobacter pylori
infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Microbiology and Virology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Eslami
- Cancer Research Center Semnan University of Medical Sciences Semnan Iran
| | - Bahman Yousefi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch Islamic Azad University Tehran Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Microbiology and Virology, School of Medicine Jiroft University of Medical Sciences Jiroft Iran
| |
Collapse
|
33
|
Maleki Kakelar H, Barzegari A, Dehghani J, Hanifian S, Saeedi N, Barar J, Omidi Y. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer 2019; 22:23-36. [PMID: 30145749 DOI: 10.1007/s10120-018-0867-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.
Collapse
Affiliation(s)
- Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
34
|
Karkhah A, Ebrahimpour S, Rostamtabar M, Koppolu V, Darvish S, Vasigala VKR, Validi M, Nouri HR. Helicobacter pylori evasion strategies of the host innate and adaptive immune responses to survive and develop gastrointestinal diseases. Microbiol Res 2018; 218:49-57. [PMID: 30454658 DOI: 10.1016/j.micres.2018.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/09/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen that resides in more than half of the human population and has co-evolved with humans for more than 58,000 years. This bacterium is orally transmitted during childhood and is a key cause of chronic gastritis, peptic ulcers and two malignant cancers including MALT (mucosa-associated lymphoid tissue) lymphoma and adenocarcinoma. Despite the strong innate and adaptive immune responses, H. pylori has a long-term survival in the gastric mucosa. In addition to the virulence factors, survival of H. pylori is strongly influenced by the ability of bacteria to escape, disrupt and manipulate the host immune system. This bacterium can escape from recognition by innate immune receptors via altering its surface molecules. Moreover, H. pylori subverts adaptive immune response by modulation of effector T cell. In this review, we discuss the immune-pathogenicity of H. pylori by focusing on its ability to manipulate the innate and acquired immune responses to increase its survival in the gastric mucosa, leading up to gastrointestinal disorders. We also highlight the mechanisms that resulted to the persistence of H. pylori in gastric mucosa.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Veerendra Koppolu
- Scientist Biopharmaceutical Development Medimmune Gaithersburg, MD, 20878 USA
| | - Sorena Darvish
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Majid Validi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
35
|
Malfertheiner P, Selgrad M, Wex T, Romi B, Borgogni E, Spensieri F, Zedda L, Ruggiero P, Pancotto L, Censini S, Palla E, Kanesa-Thasan N, Scharschmidt B, Rappuoli R, Graham DY, Schiavetti F, Del Giudice G. Efficacy, immunogenicity, and safety of a parenteral vaccine against Helicobacter pylori in healthy volunteers challenged with a Cag-positive strain: a randomised, placebo-controlled phase 1/2 study. Lancet Gastroenterol Hepatol 2018; 3:698-707. [DOI: 10.1016/s2468-1253(18)30125-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
|
36
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
37
|
Stubljar D, Jukic T, Ihan A. How far are we from vaccination against Helicobacter pylori infection? Expert Rev Vaccines 2018; 17:935-945. [PMID: 30238819 DOI: 10.1080/14760584.2018.1526680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Helicobacter pylori infection results in chronic gastritis, peptic ulcer, or gastric cancer; therefore, eradication of this bacterium is essential. The strategy for developing effective vaccines against H. pylori entails immunization of mice with a combination of classical and recombinant H. pylori antigens, but this has proven to be onerous in all cases. AREAS COVERED We have reviewed literature databases in PubMed and Scopus using the key words H. pylori, vaccine, and vaccination and have conducted a systematic review of published clinical trials and animal model studies on vaccines against H. pylori and have tried to summarize why the vaccines are not effective or only partially effective. EXPERT COMMENTARY This is the perfect time to review vaccine development against H. pylori as, after several failed attempts, promising results were reported by Zeng et al. in 2015. Successful vaccine development requires knowledge of both the immune mechanisms active during natural infection by H. pylori, owing to the complicated host response against the pathogen, and the factors that allow the persistence of bacteria, such as genetic diversity of H. pylori. Moreover, various clinical trials are needed to prove vaccine efficacy.
Collapse
Affiliation(s)
- David Stubljar
- a Department of Research & Development , In-Medico , Metlika , Slovenia
| | - Tomislav Jukic
- b Department of Biomedicine and Public Health , Faculty of Medicine Osijek , Osijek , Croatia
| | - Alojz Ihan
- c Medical Faculty of Ljubljana , Institute of Microbiology and Immunology , Ljubljana , Slovenia
| |
Collapse
|
38
|
Sutton P, Boag JM. Status of vaccine research and development for Helicobacter pylori. Vaccine 2018; 37:7295-7299. [PMID: 29627231 PMCID: PMC6892279 DOI: 10.1016/j.vaccine.2018.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Gastric adenocarcinoma is globally the third leading cause of death due to malignancy, with the bulk of this disease burden being suffered by low and middle income countries (LMIC), especially in Asia. The majority of these cancers develop as a result of a chronic gastritis that arises in response to infection with the stomach-dwelling bacterium, Helicobacter pylori. A vaccine against this pathogen would therefore be a powerful tool for preventing gastric adenocarcinoma. However, notwithstanding a proof-of-concept that vaccination can protect children from acquisition of H. pylori infection, there are currently no advanced vaccine candidates with only a single vaccine in Phase I clinical trial. Further, the development of a vaccine against H. pylori is not a current strategic priority of major pharmaceutical companies despite the large global disease burden. Given the involvement of such companies is likely to be critical for late stage development, there is therefore a need for an increased appreciation of the burden of this disease in LMIC and more investment to reinvigorate research in H. pylori vaccine Research and Development.
Collapse
Affiliation(s)
- Philip Sutton
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Joanne M Boag
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
39
|
Ding C, Ma J, Dong Q, Liu Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol Lett 2018; 197:70-77. [PMID: 29550258 DOI: 10.1016/j.imlet.2018.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Live bacteria, including attenuated bacteria and probiotics, can be engineered to deliver target antigen to excite the host immune system. The preponderance of these live bacterial vaccine vectors is that they can stimulate durable humoral and cellular immunity. Moreover, delivery strategies of heterologous antigen in live bacterial promote the applications of new vaccine development. Genetic technologies are evolving, which potentiate the developing of heterologous antigen delivery systems, including bacterial surface display system, bacterial secretion system and balanced lethal vector system. Although the live bacterial vaccine vector is a powerful adjuvant, certain disadvantages, such as safety risk, must also be taken into account. In this review, we compare the development of representative live bacterial vectors, and summarize the main characterizations of the various delivery strategies of heterologous antigen in live vector vaccines.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
40
|
Nell S, Estibariz I, Krebes J, Bunk B, Graham DY, Overmann J, Song Y, Spröer C, Yang I, Wex T, Korlach J, Malfertheiner P, Suerbaum S. Genome and Methylome Variation in Helicobacter pylori With a cag Pathogenicity Island During Early Stages of Human Infection. Gastroenterology 2018; 154:612-623.e7. [PMID: 29066327 DOI: 10.1053/j.gastro.2017.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori is remarkable for its genetic variation; yet, little is known about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori during experimental infection. METHODS We performed a randomized Phase I/II, observer-blind, placebo-controlled study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010. The volunteers were given a prophylactic vaccine candidate (n = 7) or placebo (n = 5) and then challenged with H pylori strain BCM-300. Biopsy samples were collected and H pylori were isolated. Genomes of the challenge strain and 12 reisolates, obtained 12 weeks after (or in 1 case, 62 weeks after) infection were sequenced by single-molecule, real-time technology, which, in parallel, permitted determination of genome-wide methylation patterns for all strains. Functional effects of genetic changes observed in H pylori strains during human infection were assessed by measuring release of interleukin 8 from AGS cells (to detect cag pathogenicity island function), neutral red uptake (to detect vacuolating cytotoxin activity), and adhesion assays. RESULTS The observed mutation rate was in agreement with rates previously determined from patients with chronic H pylori infections, without evidence of a mutation burst. A loss of cag pathogenicity island function was observed in 3 reisolates. In addition, 3 reisolates from the vaccine group acquired mutations in the vacuolating cytotoxin gene vacA, resulting in loss of vacuolization activity. We observed interstrain variation in methylomes due to phase variation in genes encoding methyltransferases. CONCLUSIONS We analyzed adaptation of a fully virulent strain of H pylori to 12 different volunteers to obtain a robust estimate of the frequency of genetic and epigenetic changes in the absence of interstrain recombination. Our findings indicate that the large amount of genetic variation in H pylori poses a challenge to vaccine development. ClinicalTrials.gov no: NCT00736476.
Collapse
Affiliation(s)
- Sandra Nell
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Iratxe Estibariz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Boyke Bunk
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - David Y Graham
- Baylor College of Medicine, Michael E. DeBakey VAMC, Houston, Texas
| | - Jörg Overmann
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Yi Song
- Pacific Biosciences, Menlo Park, California
| | - Cathrin Spröer
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany; National Reference Center for Helicobacter pylori, München, Germany.
| |
Collapse
|
41
|
Sun H, Yuan H, Tan R, Li B, Guo G, Zhang J, Jing H, Qin Y, Zhao Z, Zou Q, Wu C. Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 2018; 9:12050-12063. [PMID: 29552292 PMCID: PMC5844728 DOI: 10.18632/oncotarget.23927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has infected more than half of the world's population, causing gastritis, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. The oral recombinant Helicobacter pylori vaccine currently used has made great progress in addressing this problem, however, its efficacy and longevity still need to be improved. Th1 and Th17 cells play essential roles in local protection against Helicobacter pylori in the stomach mucosa. Additionally, protective immunodominant antigens are the preferred for a vaccine. In this work, Helicobacter pylori whole cell lysate was separated into 30 groups based on molecular weight by molecular sieve chromatography. The group best promoting CD4 T cells proliferation was selected and evaluated by immunization. The detail proteins were then analyzed by LC-MS/MS and expressed in Escherichia coli. Eleven proteins were selected and the dominant ones were demonstrated. As a result, three protective immunodominant antigens, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta, were selected from Helicobacter pylori whole cell. Two of them (inosine 5'-monophosphate dehydrogenase and type II citrate synthase) were newly identified, and one (urease subunit beta) was confirmed as previously reported. The mixture of the three antigens showed satisfactory protective efficiency, with significant lower H. pylori colonization level (P < 0.001) and stronger Th1 (P < 0.001) and Th17 (P < 0.001) responses than PBS control group. Thus, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta are three protective antigens inducing dominant Th1 and Th17 responses to defend against Helicobacter pylori infection.
Collapse
Affiliation(s)
- Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Ranjing Tan
- Department of Dermatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Gang Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Qin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
42
|
Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, Liu H, Ding S, Han X, Li Y, Tang F, Liu K. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter 2017; 22. [PMID: 28851031 DOI: 10.1111/hel.12428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. MATERIALS AND METHODS In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. RESULTS The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4+ T cells. CONCLUSIONS This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zisong Chang
- Dr. Notghi Contract Research GmbH, Berlin, Germany
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuebo Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuan Li
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
43
|
Pompaiah M, Bartfeld S. Gastric Organoids: An Emerging Model System to Study Helicobacter pylori Pathogenesis. Curr Top Microbiol Immunol 2017; 400:149-168. [PMID: 28124153 DOI: 10.1007/978-3-319-50520-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter research classically uses fixed human tissue, animal models or cancer cell lines. Each of these study objects has its advantages and has brought central insights into the infection process. Nevertheless, in model systems for basic and medical research, there is a gap between two-dimensional and most often transformed cell cultures and three-dimensional, highly organized tissues. In recent years, stem cell research has provided the means to fill this gap. The identification of the niche factors that support growth, expansion and differentiation of stem cells in vitro has allowed the development of three-dimensional culture systems called organoids. Gastric organoids are grown from gastric stem cells and are organized epithelial structures that comprise all the differentiated cell types of the stomach. They can be expanded without apparent limitation and are amenable to a wide range of standard laboratory techniques. Here, we review different stem cell-derived organoid model systems useful for Helicobacter pylori research and outline their advantages for infection studies.
Collapse
Affiliation(s)
- Malvika Pompaiah
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
44
|
Abstract
Biologics are a promising new class of drugs based on complex macromolecules such as proteins and nucleic acids. However, delivery of these macromolecules into the cytoplasm of target cells remains a significant challenge. Here we present one potential solution: bacterial nanomachines that have evolved over millions of years to efficiently deliver proteins and nucleic acids across cell membranes and between cells. In this review, we provide a brief overview of the different bacterial systems capable of direct delivery into the eukaryotic cytoplasm and the medical applications for which they are being investigated, along with a perspective on the future directions of this exciting field.
Collapse
|
45
|
Blanchard TG, Czinn SJ. Identification of Helicobacter pylori and the evolution of an efficacious childhood vaccine to protect against gastritis and peptic ulcer disease. Pediatr Res 2017; 81:170-176. [PMID: 27701380 DOI: 10.1038/pr.2016.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
Establishment of Helicobacter pylori infection as an etiologic agent of peptic ulcer disease and other gastric pathologies marked a revolution in gastroenterology which spurred an enormous interest in gastric physiology and immunology research. The association was soon also demonstrated in children as well. Application of antimicrobial therapies have proven remarkably efficacious in eradicating H. pylori and curing pediatric patients of duodenal ulcers as well as gastritis, negating a lifetime of ineffective therapy and life-threatening disease. Countries with high H. pylori prevalence and where H. pylori associated gastric cancer remains a primary cause of death due to cancer however would benefit from childhood vaccination. Studies in rodents and humans utilizing oral vaccination with bacterial exotoxin adjuvants demonstrated potential for limiting H. pylori colonization in the stomach. Almost 25 y of vaccine research recently culminated in a phase III clinical trial of over 4,000 children aged 6-15 y old to test an oral vaccine consisting of the H. pylori urease B subunit genetically fused to the E. coli heat labile toxin. Vaccination was demonstrated to have an efficacy of over 70%. Vaccination may now serve as an effective strategy to significantly reduce H. pylori associated disease in children throughout the world.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
46
|
Fehlings M, Drobbe L, Beigier-Bompadre M, Viveros PR, Moos V, Schneider T, Meyer TF, Aebischer T, Ignatius R. Usage of Murine T-cell Hybridoma Cells as Responder Cells Reveals Interference of Helicobacter Pylori with Human Dendritic Cell-mediated Antigen Presentation. Eur J Microbiol Immunol (Bp) 2016; 6:306-311. [PMID: 27980859 PMCID: PMC5146649 DOI: 10.1556/1886.2016.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 11/23/2022] Open
Abstract
Direct effects of Helicobacter pylori (H. pylori) on human CD4+ T-cells hamper disentangling a possible bacterial-mediated interference with major histocompatibility complex class II (MHC-II)-dependent antigen presentation to these cells. To overcome this limitation, we employed a previously described assay, which enables assessing human antigen-processing cell function by using murine T-cell hybridoma cells restricted by human leukocyte antigen (HLA) alleles. HLA-DR1+ monocyte-derived dendritic cells were exposed to H. pylori and pulsed with the antigen 85B from Mycobacterium tuberculosis (M. tuberculosis). Interleukin-2 (IL-2) secretion by AG85Baa97-112-specific hybridoma cells was then evaluated as an integral reporter of cognate antigen presentation. This methodology enabled revealing of interference of H. pylori with the antigen-presenting capacity of human dendritic cells.
Collapse
Affiliation(s)
- Michael Fehlings
- Department of Molecular Biology, Max Planck Institute for Infection Biology , Charitéplatz 1, 10117 Berlin, Germany
| | - Lea Drobbe
- Department of Molecular Biology, Max Planck Institute for Infection Biology , Charitéplatz 1, 10117 Berlin, Germany
| | - Macarena Beigier-Bompadre
- Department of Molecular Biology, Max Planck Institute for Infection Biology , Charitéplatz 1, 10117 Berlin, Germany
| | - Pablo Renner Viveros
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin , 12203 Berlin, Germany
| | - Verena Moos
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin , Hindenburgdamm 30, 12200 Berlin, Germany
| | - Thomas Schneider
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin , Hindenburgdamm 30, 12200 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology , Charitéplatz 1, 10117 Berlin, Germany
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institute , Berlin, Germany
| | - Ralf Ignatius
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin , 12203 Berlin, Germany
| |
Collapse
|
47
|
Allers K, Puyskens A, Epple HJ, Schürmann D, Hofmann J, Moos V, Schneider T. Distribution and Activation of CD8+ T Cells in the Duodenal Mucosa before and after HIV Seroconversion. THE JOURNAL OF IMMUNOLOGY 2016; 198:481-491. [PMID: 27872210 DOI: 10.4049/jimmunol.1601278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
CD8+ T cells in the intestinal mucosa influence the HIV-associated pathogenesis, but little is known about the dynamics of mucosal CD8+ T cell counts and activation of these cells during the course of infection. In this study, mucosal CD8+ T cells in the duodenum were studied at different stages of HIV infection, starting from the seronegative phase. In seronegative acute HIV infection, CD8+ T cell counts increased in the epithelium, but not in the lamina propria. Infiltration of the lamina propria by peripherally expanded CD8+ T cells was observed after seroconversion. Highest increase in the expression of perforin, the rate-limiting molecule for cytotoxic CD8+ T cell activity, was evident in the lamina propria of seronegative acutely HIV-infected patients. The number of perforin-expressing cells in the lamina propria of acutely HIV-infected patients was positively associated with biomarkers of enterocyte damage and microbial translocation. After seroconversion, perforin expression was downregulated in the lamina propria, but not in the epithelium. In conclusion, our findings demonstrate that intraepithelial and lamina propria CD8+ T cells exhibit different dynamics of numerical alteration and cytotoxic activity in HIV-infected patients. Moreover, our results suggest that perforin-dependent cytotoxic mechanisms by CD8+ T cells could impair the intestinal mucosal barrier already in the seronegative phase of acute HIV infection, thereby inducing microbial translocation as one of the earliest pathological events in HIV infection.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| | - Andreas Puyskens
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Hans-Jörg Epple
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Dirk Schürmann
- Division of Infectious Disease and Pulmonary Medicine, Department of Internal Medicine, Charité-University Medicine Berlin, 13353 Berlin, Germany; and
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-University Medicine Berlin, 10117 Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| |
Collapse
|
48
|
Stenström B, Windsor HM, Fulurija A, Benghezal M, Kumarasinghe MP, Kimura K, Tay CY, Viiala CH, Ee HC, Lu W, Schoep TD, Webberley KM, Marshall BJ. Helicobacter pylori overcomes natural immunity in repeated infections. Clin Case Rep 2016; 4:1026-1033. [PMID: 27830066 PMCID: PMC5093156 DOI: 10.1002/ccr3.687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Repeated experimental reinfection of two subjects indicates that Helicobacter pylori infection does not promote an immune response protective against future reinfection. Our results highlight the importance of preventing reinfection after eradication, through public health initiatives, and possibly treatment of family members. They indicate difficulties for vaccine development, especially therapeutic vaccines.
Collapse
Affiliation(s)
- Björn Stenström
- Department of Gastroenterology Sir Charles Gairdner Hospital Perth Western Australia Australia
| | - Helen M Windsor
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia
| | - Alma Fulurija
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia; Ondek Pty Ltd QEII Medical Centre Perth Western Australia Australia
| | - Mohammed Benghezal
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia; Ondek Pty Ltd QEII Medical Centre Perth Western Australia Australia; Swiss Vitamin Institute Épalinges Switzerland
| | - M Priyanthi Kumarasinghe
- Department of Anatomical Pathology PathWest, QEII Medical Centre Perth Western Australia Australia
| | - Kazufumi Kimura
- Department of Gastroenterology Sir Charles Gairdner Hospital Perth Western Australia Australia; The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia; Venasis Kanamachi Medical Clinic Tokyo-to Japan
| | - Chin Yen Tay
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia
| | - Charlie H Viiala
- Department of Gastroenterology Sir Charles Gairdner Hospital Perth Western Australia Australia
| | - Hooi C Ee
- Department of Gastroenterology Sir Charles Gairdner Hospital Perth Western Australia Australia
| | - Wei Lu
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia; Ondek Pty Ltd QEII Medical Centre Perth Western Australia Australia
| | - Tobias D Schoep
- Ondek Pty Ltd QEII Medical Centre Perth Western Australia Australia; Telethon Kids Institute Perth Western Australia Australia
| | - K Mary Webberley
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia
| | - Barry J Marshall
- The Marshall Centre for Infectious Diseases Research and Training School of Pathology and Laboratory Medicine The University of Western Australia Perth Western Australia Australia; UM Marshall Centre University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
49
|
Neumann L, Mueller M, Moos V, Heller F, Meyer TF, Loddenkemper C, Bojarski C, Fehlings M, Doerner T, Allers K, Aebischer T, Ignatius R, Schneider T. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2016; 197:1801-8. [PMID: 27456483 DOI: 10.4049/jimmunol.1501330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)-dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori-infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS(+) cell population in H. pylori-infected patients and confirmed intracellular NO production. Because we did not detect iNOS(+) PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS(+) PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA(+) PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS(+) PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection.
Collapse
Affiliation(s)
- Laura Neumann
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| | - Mattea Mueller
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Frank Heller
- Practice for Gastroenterology, 12163 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | - Christian Bojarski
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Michael Fehlings
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Thomas Doerner
- Department of Medicine, Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany
| | - Kristina Allers
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | | | - Ralf Ignatius
- Institute for Microbiology and Hygiene, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Thomas Schneider
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| |
Collapse
|
50
|
Solnick JV, Eaton KA, Peek RM. Animal Models of Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:273-297. [DOI: 10.1007/978-4-431-55936-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|