1
|
Li J, Chen W, Cao Y, Li ZR. The Identification of Alternative Polyadenylation in Stomach Adenocarcinomas Using the Genotype-Tissue Expression Project and the Cancer Genome Atlas- Stomach Adenocarcinoma Profiles. Int J Gen Med 2021; 14:6035-6045. [PMID: 34588807 PMCID: PMC8475968 DOI: 10.2147/ijgm.s329064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/27/2021] [Indexed: 12/09/2022] Open
Abstract
Objective Alternative polyadenylation (APA) is a common mechanism that is present in most human genes and determines the length of the messenger ribonucleic acid (mRNA) three prime untranslated region (3ʹ-UTR), which can give rise to changes in mRNA stability and localization. However, little is known about the specific changes related to APA in stomach adenocarcinomas (STADs). Methods We integrated RNA sequencing data from The Cancer Genome Atlas and Genotype-Tissue Expression project to comprehensively analyze APA events in 289 cases of STAD. Results Our results showed that APA events were widespread in patients with STAD and were rich in genes related to known STAD pathways. The APA events result in the loss of tumor-suppressing micro-ribonucleic acid (miRNA) binding sites and increased heterogeneity in the length of the 3ʹ-UTR altered genes. Survival analysis revealed that specific subsets of 3ʹ-UTR-altered genes independently characterized a poor prognostic cohort among patients with STAD, thereby indicating the potential of APA as a new prognostic biomarker. Conclusion Our single-cancer analysis showed that by losing miRNA regulation, APA can become a driving factor for regulating the expression of oncogenic genes in STAD and promote its development. Our research revealed that APA events regulated STAD genes that were functionally related, thereby providing a new approach for gaining a better understanding of the progress of STADs and a means for identifying new drug targets as avenues of treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330000, People's Republic of China
| | - Wen Chen
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| | - Zheng-Rong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| |
Collapse
|
2
|
Soyocak A, Ergun DD, Koc G, Ergun S, Ozsobaci NP. Investigation of Aryl Hydrocarbon Receptor, Zinc, and Vitamin B12 Levels in Chronic Gastritis with Helicobacter pylori Infection. Biol Trace Elem Res 2021; 199:2431-2437. [PMID: 33723799 DOI: 10.1007/s12011-021-02667-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori (H. pylori) infection is known as the most common cause of worldwide common chronic gastritis. Pathogenic mechanisms caused by H. pylori in diseases are still not fully understood. In addition, it has been reported that H. pylori can alter gene expressions in infected tissues and affect transcription factor activation. It is reported that aryl hydrocarbon receptor (AhR), which is a cytoplasmic transcription factor, functions in the immune system and plays a role in immune cells in barrier organs such as the gastrointestinal system, skin, and lungs. H. pylori infection affects the absorption of micronutrients such as trace elements, minerals, and vitamins by disrupting gastric secretion and acidification functions. Zinc (Zn) trace element is thought to be able to modulate the induction of AhR-responsive genes in endothelial cells. Although it is emphasized that trace elements are related with gastritis, relationship between Zn and AhR is not fully known, especially in chronic gastritis accompanied by H. pylori infection. In this study, serum levels of AhR, Zn, and AhR antagonist vitamin B12 were determined in chronic gastritis with H. pylori infection. Fifty volunteers diagnosed with H. pylori positive and negative chronic gastritis were included in this study. Collected from individuals participating were 5 ml of venous blood samples, and their serums were separated. AhR serum level of the study group was determined using enzyme-linked immunosorbent assay method. Zn concentrations in serum samples were measured using inductively coupled plasma atomic emission spectroscopy. When AhR and Zn serum levels were compared in H. pylori positive and negative chronic gastritis patients, it was found that AhR serum level of H. pylori positive chronic gastritis patients increased but it was not statistically significant (p = 0.595). However it was determined Zn and B12 serum levels were statistically significantly decreased (p < 0.001). This study has a crucial importance since to be the first one investigating relationship between serum AhR, Zn, and vitamin B12 levels in the pathogenesis of H. pylori gastritis in adults. Examination of AhR, Zn and B12 levels in H. pylori positive gastritis patients contributes to elucidating molecular mechanism of the disease.
Collapse
Affiliation(s)
- Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Sefa Ergun
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of General Surgery, Istanbul Avcılar Murat Koluk State Hospital, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Badr MT, Omar M, Häcker G. Comprehensive Integration of Genome-Wide Association and Gene Expression Studies Reveals Novel Gene Signatures and Potential Therapeutic Targets for Helicobacter pylori-Induced Gastric Disease. Front Immunol 2021; 12:624117. [PMID: 33717131 PMCID: PMC7945594 DOI: 10.3389/fimmu.2021.624117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that colonizes the human gastric mucosa and can lead to gastric inflammation, ulcers, and stomach cancer. Due to the increase in H. pylori antimicrobial resistance new methods to identify the molecular mechanisms of H. pylori-induced pathology are urgently needed. Here we utilized a computational biology approach, harnessing genome-wide association and gene expression studies to identify genes and pathways determining disease development. We mined gene expression data related to H. pylori-infection and its complications from publicly available databases to identify four human datasets as discovery datasets and used two different multi-cohort analysis pipelines to define a H. pylori-induced gene signature. An initial Helicobacter-signature was curated using the MetaIntegrator pipeline and validated in cell line model datasets. With this approach we identified cell line models that best match gene regulation in human pathology. A second analysis pipeline through NetworkAnalyst was used to refine our initial signature. This approach defined a 55-gene signature that is stably deregulated in disease conditions. The 55-gene signature was validated in datasets from human gastric adenocarcinomas and could separate tumor from normal tissue. As only a small number of H. pylori patients develop cancer, this gene-signature must interact with other host and environmental factors to initiate tumorigenesis. We tested for possible interactions between our curated gene signature and host genomic background mutations and polymorphisms by integrating genome-wide association studies (GWAS) and known oncogenes. We analyzed public databases to identify genes harboring single nucleotide polymorphisms (SNPs) associated with gastric pathologies and driver genes in gastric cancers. Using this approach, we identified 37 genes from GWA studies and 61 oncogenes, which were used with our 55-gene signature to map gene-gene interaction networks. In conclusion, our analysis defines a unique gene signature driven by H. pylori-infection at early phases and that remains relevant through different stages of pathology up to gastric cancer, a stage where H. pylori itself is rarely detectable. Furthermore, this signature elucidates many factors of host gene and pathway regulation in infection and can be used as a target for drug repurposing and testing of infection models suitability to investigate human infection.
Collapse
Affiliation(s)
- Mohamed Tarek Badr
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- IMM-PACT-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Berlamont H, De Witte C, Bauwens E, Min Jou H, Ducatelle R, De Meester E, Gansemans Y, Deforce D, Van Nieuwerburgh F, Haesebrouck F, Smet A. Distinct transcriptome signatures of Helicobacter suis and Helicobacter heilmannii strains upon adherence to human gastric epithelial cells. Vet Res 2020; 51:62. [PMID: 32381076 PMCID: PMC7206758 DOI: 10.1186/s13567-020-00786-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
The porcine Helicobacter suis and canine-feline H. heilmannii are gastric Helicobacter species with zoonotic potential. However, little is known about the pathogenesis of human infections with these Helicobacter species. To gain more insight into the interactions of both zoonotic Helicobacter species with human gastric epithelial cells, we investigated bacterial genes that are differentially expressed in a H. suis and H. heilmannii strain after adhesion to the human gastric epithelial cell line MKN7. In vitro Helicobacter-MKN7 binding assays were performed to obtain bacterial RNA for sequencing analysis. H. suis and H. heilmannii bacteria attached to the gastric epithelial cells (i.e. cases) as well as unbound bacteria (i.e. controls) were isolated, after which prokaryotic RNA was purified and sequenced. Differentially expressed genes were identified using the DESeq2 package and SARTools pipeline in R. A list of 134 (83 up-regulated and 51 down-regulated) and 143 (60 up-regulated and 83 down-regulated) differentially expressed genes (padj ≤ 0.01; fold change ≥ 2) were identified for the adherent H. suis and H. heilmannii strains, respectively. According to BLASTp analyses, only 2 genes were commonly up-regulated and 4 genes commonly down-regulated in both pathogens. Differentially expressed genes of the H. suis and H. heilmannii strains belonged to multiple functional classes, indicating that adhesion of both strains to human gastric epithelial cells evokes pleiotropic adaptive responses. Our results suggest that distinct pathways are involved in human gastric colonization of H. suis and H. heilmannii. Further research is needed to elucidate the clinical significance of these findings.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hannah Min Jou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Annemieke Smet
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Antwerp University, 2610, Antwerp, Belgium.
| |
Collapse
|
5
|
Association between the pig genome and its gut microbiota composition. Sci Rep 2019; 9:8791. [PMID: 31217427 PMCID: PMC6584621 DOI: 10.1038/s41598-019-45066-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota has been evolving with its host along the time creating a symbiotic relationship. In this study, we assess the role of the host genome in the modulation of the microbiota composition in pigs. Gut microbiota compositions were estimated through sequencing the V3-V4 region of the 16S rRNA gene from rectal contents of 285 pigs. A total of 1,261 operational taxonomic units were obtained and grouped in 18 phyla and 101 genera. Firmicutes (45.36%) and Bacteroidetes (37.47%) were the two major phyla obtained, whereas at genus level Prevotella (7.03%) and Treponema (6.29%) were the most abundant. Pigs were also genotyped with a high-throughput method for 45,508 single nucleotide polymorphisms that covered the entire pig genome. Subsequently, genome-wide association studies were made among the genotypes of these pigs and their gut microbiota composition. A total of 52 single-nucleotide polymorphisms distributed in 17 regions along the pig genome were associated with the relative abundance of six genera; Akkermansia, CF231, Phascolarctobacterium, Prevotella, SMB53, and Streptococcus. Our results suggest 39 candidate genes that may be modulating the microbiota composition and manifest the association between host genome and gut microbiota in pigs.
Collapse
|
6
|
Nam S, Kim JH, Lee DH. RHOA in Gastric Cancer: Functional Roles and Therapeutic Potential. Front Genet 2019; 10:438. [PMID: 31156701 PMCID: PMC6529512 DOI: 10.3389/fgene.2019.00438] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
The well-known signal mediator and small GTPase family member, RHOA, has now been associated with the progression of specific malignancies. In this review, we appraise the biomedical literature regarding the role of this enzyme in gastric cancer (GC) signaling, suggesting potential clinical significance. To that end, we examined RHOA activity, with regard to second-generation hallmarks of cancer, finding particular association with the hallmark "activation of invasion and metastasis." Moreover, an abundance of studies show RHOA association with Lauren classification diffuse subtype, in addition to poorly differentiated GC. With regard to therapeutic value, we found RHOA signaling to influence the activity of specific widely used chemotherapeutics, and its possible antagonism by various dietary constituents. We also review currently available targeted therapies for GC. The latter, however, showed a paucity of such agents, underscoring the urgent need for further investigation into treatments for this highly lethal malignancy.
Collapse
Affiliation(s)
- Seungyoon Nam
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, South Korea.,Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, South Korea.,Gachon Advanced Institute of Health Sciences and Technology, Gachon University, Incheon, South Korea.,Department of Life Sciences, Gachon University, Seongnam, South Korea
| | - Jung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, School of Medicine, Gachon University, Incheon, South Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
7
|
Yamada S, Kato S, Matsuhisa T, Makonkawkeyoon L, Yoshida M, Chakrabandhu T, Lertprasertsuk N, Suttharat P, Chakrabandhu B, Nishiumi S, Chongraksut W, Azuma T. Predominant mucosal IL-8 mRNA expression in non- cagA Thais is risk for gastric cancer. World J Gastroenterol 2013; 19:2941-2949. [PMID: 23704827 PMCID: PMC3660819 DOI: 10.3748/wjg.v19.i19.2941] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/17/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study gastric mucosal interleukine-8 (IL-8) mRNA expression, the cytotoxin-associated gene A (cagA) mutation, and serum pepsinogen (PG) I/II ratio related risk in Thai gastric cancer.
METHODS: There were consent 134 Thai non-cancer volunteers who underwent endoscopic narrow band imaging examination, and 86 Thais advance gastric cancer patients who underwent endoscopic mucosal biopsies and gastric surgery. Tissue samples were taken by endoscopy with 3 points biopsies. The serum PG I, II, and Helicobacter pylori (H. pylori) immunoglobulin G (IgG) antibody for H. pylori were tested by enzyme-linked immunosorbent assay technique. The histopathology description of gastric cancer and non-cancer with H. pylori detection was defined with modified Sydney Score System. Gastric mucosal tissue H. pylori DNA was extracted and genotyped for cagA mutation. Tissue IL-8 and cyclooxygenase-2 (COX-2) mRNA expression were conducted by real time relative quantitation polymerase chain reaction. From 17 Japanese advance gastric cancer and 12 benign gastric tissue samples, all were tested for genetic expression with same methods as well as Thai gastric mucosal tissue samples. The multivariate analysis was used for the risk study. Correlation and standardized t-test were done for quantitative data, P value < 0.05 was considered as a statistically significant.
RESULTS: There is a high non cagA gene of 86.8 per cent in Thai gastric cancer although there are high yields of the East Asian type in the positive cagA. The H. pylori infection prevalence in this study is reported by combined histopathology and H. pylori IgG antibody test with 77.1% and 97.4% of sensitivity and specificity, respectively. The serum PG I/II ratio in gastric cancer is significantly lower than in the non-cancer group, P = 0.045. The serum PG I/II ratio of less than 3.0 and IL-8 mRNA expression ≥ 100 or log10≥ 2 are significant cut off risk differences between Thai cancer and non-cancer, P = 0.03 and P < 0.001, respectively. There is a significantly lower PGI/II ratio in Japanese than that in Thai gastric cancer, P = 0.026. Serum PG I/II ratio at cut off less than 3.0 and IL-8 mRNA expression Raw RQ > 100 or log10 > 2 are significantly difference between Thai cancer group when compared to non-cancer group, P = 0.013 and P < 0.001, respectively. In the correlation study, low PG I/II ratio does not associate with chronic atrophic gastritis severity score in Thais non-cancer cases. However, there is a trend, but not significant convert correlation between IL-8 mRNA expression level and low PG I/II ratio in Thai positive H. pylori infection. The high expression of IL-8 gene demonstrates a poorer prognosis by stage and histology.
CONCLUSION: Predominant gastric mucosal IL-8 mRNA expression level, H. pylori infection, and low PG I/II ratio are relative risks for Thai gastric cancer without correlation with cagA mutation.
Collapse
|
8
|
The immediate early gene Ier2 promotes tumor cell motility and metastasis, and predicts poor survival of colorectal cancer patients. Oncogene 2011; 31:3796-806. [DOI: 10.1038/onc.2011.535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Bennett G, Sadlier D, Doran PP, Macmathuna P, Murray DW. A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer. BMC Cancer 2011; 11:50. [PMID: 21284875 PMCID: PMC3041777 DOI: 10.1186/1471-2407-11-50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/01/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND NET1, a RhoA guanine exchange factor, is up-regulated in gastric cancer (GC) tissue and drives the invasive phenotype of this disease. In this study, we aimed to determine the role of NET1 in GC by monitoring the proliferation, motility and invasion of GC cells in which NET1 has been stably knocked down. Additionally, we aimed to determine NET1-dependent transcriptomic events that occur in GC. METHODS An in vitro model of stable knockdown of NET1 was achieved in AGS human gastric adenocarcinoma cells via lentiviral mediated transduction of short-hairpin (sh) RNA targeting NET1. Knockdown was assessed using quantitative PCR. Cell proliferation was assessed using an MTS assay and cell migration was assessed using a wound healing scratch assay. Cell invasion was assessed using a transwell matrigel invasion assay. Gene expression profiles were examined using affymetrix oligonucleotide U133A expression arrays. A student's t test was used to determine changes of statistical significance. RESULTS GC cells were transduced with NET1 shRNA resulting in a 97% reduction in NET1 mRNA (p < 0.0001). NET1 knockdown significantly reduced the invasion and migration of GC cells by 94% (p < 0.05) and 24% (p < 0.001) respectively, while cell proliferation was not significantly altered following NET1 knockdown. Microarray analysis was performed on non-target and knockdown cell lines, treated with and without 10 μM lysophosphatidic acid (LPA) allowing us to identify NET1-dependent, LPA-dependent and NET1-mediated LPA-induced gene transcription. Differential gene expression was confirmed by quantitative PCR. Shortlisted NET1-dependent genes included STAT1, TSPAN1, TGFBi and CCL5 all of which were downregulatd upon NET1 downregulation. Shortlisted LPA-dependent genes included EGFR and PPARD where EGFR was upregulated and PPARD was downregulated upon LPA stimulation. Shortlisted NET1 and LPA dependent genes included IGFR1 and PIP5K3. These LPA induced genes were downregulated in NET1 knockdown cells. CONCLUSIONS NET1 plays an important role in GC cell migration and invasion, key aspects of GC progression. Furthermore, the gene expression profile further elucidates the molecular mechanisms underpinning NET1-mediated aggressive GC cell behaviour.
Collapse
Affiliation(s)
- Gayle Bennett
- UCD Clinical Research Centre, UCD School of Medicine and Medical Sciences, Misericordiae University Hospital, Dublin 7, Ireland
| | | | | | | | | |
Collapse
|
10
|
Peterson AJ, Nguyen N, Okamoto H, Giraud AS, van Driel IR, Judd LM. Loss of RegI in conjunction with gastrin deficiency in mice facilitates efficient gastric ulcer healing but is dispensable for hyperplasia and tumourigenesis. ACTA ACUST UNITED AC 2009; 160:9-18. [PMID: 19969026 DOI: 10.1016/j.regpep.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 11/10/2009] [Accepted: 12/02/2009] [Indexed: 01/08/2023]
Abstract
RegI (Regenerating islet derived-1) was originally characterized as a growth factor involved in pancreatic islet cell regeneration. It is also considered a gastrointestinal mitogen as its expression is increased during pathologies involving aberrant cell proliferation that can lead to neoplasia. However, the absolute requirement for RegI to directly stimulate gastric mucosal cell proliferation in vivo requires further investigation. We used RegI-deficient mice to determine the requirement for RegI in normal gastric mucosal development, wound healing, hyperplasia and tumourigenesis. We found that epithelial repair of acetic acid ulcers in compound mutant RegI/gastrin-deficient mice was significantly reduced compared to wild type, RegI-deficient or gastrin-deficient mice. In contrast, RegI was dispensable for normal gastric mucosal development, hyperplasia in HKbeta-deficient mice and tumourigenesis in gp130(F/F) mice. Although RegI was not required for proliferation in these pathological models, expression of multiple Reg family members were increased during gp130(F/F) tumourigenesis. Interestingly, loss of RegI in gp130(F/F) mice resulted in decreased expression of other Reg family members. Our results indicate that RegI and gastrin may synergistically regulate gastric mucosal proliferation during certain pathological settings like wound healing while gastric epithelial proliferation in other pathologies may require coordinated expression of multiple Reg genes.
Collapse
Affiliation(s)
- Anthony J Peterson
- GRIP Lab (Gastrointestinal Research, Inflammation & Pathology), Murdoch Children's Research Institute, Parkville 3052, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Axsen WS, Styer CM, Solnick JV. Inhibition of heat shock protein expression by Helicobacter pylori. Microb Pathog 2009; 47:231-6. [PMID: 19683049 DOI: 10.1016/j.micpath.2009.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 01/05/2023]
Abstract
Heat shock proteins (HSPs) are primarily known as molecular chaperones that are induced by cell stress and prevent protein aggregation and facilitate folding. Recent evidence suggests that exposure of cells to microbial pathogens can also induce HSPs, which then modulate both innate and adaptive immune responses. Paradoxically, Helicobacter pylori has been found to decrease expression of HSPs. We sought to investigate this phenomenon further and to examine the role of different H. pylori strains and recognized virulence factors in cell culture and in the mouse model. Co-culture of H. pylori with two gastric carcinoma cell lines reduced expression of HSP70 and, to a lesser extent, HSP60. Down modulation of HSPs was not dependent on the presence of the vacuolating cytotoxin (VacA) or the cag pathogenicity island (cag PAI). C57BL/6 mice infected with a human H. pylori strain also demonstrated reduced expression of HSP70, HSP8, and heat shock factor 1 (HSF-1), a transcriptional activator of HSP70. In contrast, the bacterial pathogen, S. Typhimurium up-regulated HSP expression. Since HSPs are thought to function as danger signals during microbial infection, H. pylori down-regulation of HSPs may be a mechanism of immune evasion that promotes chronic infection.
Collapse
Affiliation(s)
- Wendy S Axsen
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
12
|
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009; 66:2691-706. [PMID: 19448973 PMCID: PMC11115749 DOI: 10.1007/s00018-009-0045-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 02/08/2023]
Abstract
KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFbeta, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Jin-Tang Dong
- Department of Hematology and Medical Oncology, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
13
|
Vivas JR, Regnault B, Michel V, Bussière FI, Avé P, Huerre M, Labigne A, D' Elios MM, Touati E. Interferon gamma-signature transcript profiling and IL-23 upregulation in response to Helicobacter pylori infection. Int J Immunopathol Pharmacol 2008; 21:515-26. [PMID: 18831919 DOI: 10.1177/039463200802100305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Helicobacter pylori infection is the major cause of gastroduodenal pathologies including gastric cancer. The long persistence of bacteria and the type of immune and inflammatory response determine the clinical issue. In this study, the global gene expression profile after 6 and 12 months of H. pylori infection was investigated in the mouse stomach, using the Affymetrix GeneChip Mouse Expression Array A430. Genes related to the inflammatory and immune responses were focused. Levels of selected transcripts were confirmed by reverse transcription polymerase chain reaction. Twenty- five and nineteen percent of the differentially expressed genes observed at 6 and 12 months post-infection respectively, were related to immune response. They are characterized by an interferon (IFN)gamma-dependent expression associated to a T helper 1 (Th1) polarised response. In-depth analysis revealed that an up-regulation of IL-23p19, took place in the stomach of H. pylori infected-mice. Strong IL-23p19 levels were also confirmed in gastric biopsies from H. pylori-infected patients with chronic gastritis, as compared to healthy subjects. Our microarray analysis revealed also, a high decrease of H+K+-ATPase transcripts in the presence of the H. pylori infection. Association of gastric Th1 immune response with hypochlorhydria through the down-regulation of H+K+-ATPase contributes to the genesis of lesions upon the H. pylori infection. Our data highlight that the up-regulation of IL-23 and of many IFNgamma signature transcripts occur early on during the host response to H. pylori, and suggest that this type of immune response may promote the severity of the induced gastric lesions.
Collapse
Affiliation(s)
- J R Vivas
- Unite de Pathogénie Bacterienne des Muqueuses, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer 2008; 99:1322-9. [PMID: 18827818 PMCID: PMC2570507 DOI: 10.1038/sj.bjc.6604688] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The most lethal aspects of gastric adenocarcinoma (GA) are its invasive and metastatic properties. This aggressive phenotype remains poorly understood. We have recently identified neuroepithelial cell transforming gene 1 (NET1), a guanine exchange factor (GEF), as a novel GA-associated gene. Neuroepithelial cell transforming gene 1 expression is enhanced in GA and it is of functional importance in cell invasion. In this study, we demonstrate the activity of NET1 in driving cytoskeletal rearrangement, a key pathological mechanism in gastric tumour cell migration and invasion. Neuroepithelial cell transforming gene 1 expression was increased 10-fold in response to treatment with lysophosphatidic acid (LPA), resulting in an increase in active levels of RhoA and a 2-fold increase in cell invasion. Lysophosphatidic acid-induced cell invasion and migration were significantly inhibited using either NET1 siRNA or a RhoA inhibitor (C3 exoenzyme), thus indicating the activity of both NET1 and RhoA in gastric cancer progression. Furthermore, LPA-induced invasion and migration were also significantly reduced in the presence of cytochalasin D, an inhibitor of cytoskeletal rearrangements. Neuroepithelial cell transforming gene 1 knockdown resulted in AGS cell rounding and a loss of actin filament organisation, demonstrating the function of NET1 in actin organisation. These data highlight the importance of NET1 as a driver of tumour cell invasion, an activity mediated by RhoA activation and cytoskeletal reorganisation.
Collapse
|
15
|
Affiliation(s)
- Michael F Loughlin
- The University of Nottingham, Division of Food Sciences, School of Biosciences, Sutton Bonnington Campus, Loughborough, Leicestershire, LE12 5RD, UK ;
| |
Collapse
|
16
|
Kodama M, Murakami K, Okimoto T, Sato R, Watanabe K, Fujioka T. Expression of mutant type- p53 products in H pylori-associated chronic gastritis. World J Gastroenterol 2007; 13:1541-6. [PMID: 17461446 PMCID: PMC4146896 DOI: 10.3748/wjg.v13.i10.1541] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mutation of p53 immuno-histochemically in non-tumorous gastric mucosa with H pylori infection before and after H pylori eradication therapy.
METHODS: 53 subjects (36 male, 17 female, mean age ± SEM, 57.1 ± 12.1) undergoing endoscopic examination were included in this study. 42 of 53 patients were H pylori-positive, and 11 were H pylori-negative. All H pylori-positive patients had successful eradication therapy. Biopsy specimens were taken from five points of the stomach, as recommended by the updated Sydney system. Immunohistochemical studies were performed by using primary antibodies against p53 (DO-7 and PAb240).
RESULTS: p53 (DO-7 and PAb240) immunoreactivity was shown in the neck region of the gastric pits, however, quite a few cells were found to be immunopositive for p53 (PAb240) in the H pylori-infected gastric mucosa. The proportion of patients immunopositive for p53 (PAb240) was significantly reduced 6 mo after eradication [28/42 (66.7%) to 6/42 (14.3%)] (P < 0.05), while the biopsies taken from H pylori-negative patients showed no immunoreactivity for p53 (PAb240). p53 (PAb240)-positive patients were divided into two groups by the number of positive cells detected: one with more than six positive cells per 10 gastric pits (group A, n = 12), and the other with less than five positive cells per 10 gastric pits (group B, n = 30). Atrophy scores in group A were significant higher than those in group B at the greater curvature of the antrum (group A: 2.00 ± 0.14 vs group B: 1.40 ± 0.15, P = 0.012), the lesser curvature of the corpus (group A: 2.00 ± 0.21 vs group B: 1.07 ± 0.23, P = 0.017), and the greater curvature of the corpus (group A: 1.20 ± 0.30 vs group B: 0.47 ± 0.21, P = 0.031). Group A showed significant higher intestinal metaplasia scores than group B only at the lesser curvature of the antrum (group A: 2.10 ± 0.41 vs group B: 1.12 ± 0.29, P = 0.035).
CONCLUSION: H pylori-associated chronic gastritis expressed the mutant-type p53, which was significantly associated with more severe atrophic and metaplastic changes. H pylori eradication led to a significant reduction in the expression of the mutant-type p53. It is considered that H pylori-infected chronic gastritis is associated with a genetic instability that leads to gastric carcinogenesis, and H pylori eradication may prevent gastric cancer.
Collapse
Affiliation(s)
- Masaaki Kodama
- Department of Gastroenterology, Oita University, Hasama-machi, Oita, 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Resnick MB, Sabo E, Meitner PA, Kim SS, Cho Y, Kim HK, Tavares R, Moss SF. Global analysis of the human gastric epithelial transcriptome altered by Helicobacter pylori eradication in vivo. Gut 2006; 55:1717-24. [PMID: 16641130 PMCID: PMC1856477 DOI: 10.1136/gut.2006.095646] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The transcriptional profile of gastric epithelial cell lines cocultured with Helicobacter pylori and the global gene expression of whole gastric mucosa has been described previously. We aimed to overcome limitations of previous studies by determining the effects of H pylori eradication on the transcriptome of purified human gastric epithelium using each patient as their own control. DESIGN Laser capture microdissection (LCM) was used to extract mRNA from paraffin-embedded antral epithelium from 10 patients with peptic ulcer disease, before and after H pylori eradication. mRNA was reverse transcribed and applied on to Affymetrix cDNA microarray chips customised for formalin-fixed tissue. Differentially expressed genes were identified and a subset validated by real-time polymerase chain reaction (PCR). RESULTS A total of 13 817 transcripts decreased and 9680 increased after H pylori eradication. Applying cut-off criteria (p<0.02, fold-change threshold 2.5) reduced the sample to 98 differentially expressed genes. Genes detected included those previously implicated in H pylori pathophysiology such as interleukin 8, chemokine ligand 3, beta defensin and somatostatin, as well as novel genes such as GDDR (TFIZ1), chemokine receptors 7 and 8, and gastrokine. CONCLUSIONS LCM of archival specimens has enabled the identification of gastric epithelial genes whose expression is considerably altered after H pylori eradication. This study has confirmed the presence of genes previously implicated in the pathogenesis of H pylori, as well as highlighted novel candidates for further investigation.
Collapse
Affiliation(s)
- M B Resnick
- Department of Pathology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu ZF, Chen CY, Tang W, Zhang JY, Gong YQ, Jia JH. Gene-expression profiles in gastric epithelial cells stimulated with spiral and coccoid Helicobacter pylori. J Med Microbiol 2006; 55:1009-1015. [PMID: 16849720 DOI: 10.1099/jmm.0.46456-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human gastric epithelial immortalized GES-1 cells were infected with spiral and coccoid Helicobacter pylori. Scanning electron microscopy was used to determine the ability of the two forms of H. pylori to adhere to GES-1 cells. GES-1 cell apoptosis induced by coccoid and spiral H. pylori was analysed using flow cytometry. A cDNA microarray for 22,000 human genes was used to identify the gene-expression differences in GES-1 cells infected with the two forms of H. pylori, and the gene expression identified by the cDNA microarray was confirmed by RT-PCR. Scanning electron microscope observation showed that both coccoid and spiral bacteria can adhere to GES-1 cells. After 4 h infection, apoptosis induction was 27.4% for spiral-form infection and 10.2% for coccoid-form infection. Of 268 differentially expressed genes identified by cDNA microarray, 166 showed higher expression with the spiral H. pylori infection than with the coccoid H. pylori infection. To the best of the authors' knowledge, this is the first report that GES-1 cells infected with spiral H. pylori have higher expression of cxcl10, ccl11, ccl5, groalpha, TLR5, ATF3, fos, fosl2, gadd45a and myc. The cells infected with coccoid H. pylori had higher expression of survivin. The global profile of gene expression in GES-1 cells infected with coccoid and spiral H. pylori is described for the first time.
Collapse
Affiliation(s)
- Zhi-Fang Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, 44 WenhuaXi Road, Jinan, China
| | - Chun-Yan Chen
- Department of Oncology, the Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | | | | | - Yao-Qin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, 44 WenhuaXi Road, Jinan, China
| | - Ji-Hui Jia
- The Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, 44 WenhuaXi Road, Jinan, China
| |
Collapse
|
19
|
Manzo BA, Crabtree JE, Fiona Campbell M, Tweedle D, Potten CS, Bajaj-Elliott M, Sanderson IR, Wilson JW. Helicobacter pylori regulates the expression of inhibitors of DNA binding (Id) proteins by gastric epithelial cells. Microbes Infect 2006; 8:1064-74. [PMID: 16473539 DOI: 10.1016/j.micinf.2005.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/27/2005] [Accepted: 11/02/2005] [Indexed: 11/25/2022]
Abstract
Id transcription factors control proliferation, differentiation and apoptosis by inhibiting the DNA binding of basic helix-loop-helix transcription factors. Increased expression of Id proteins promotes proliferation, inhibits differentiation, and is associated with intestinal tumorigenesis. We aimed to determine how Helicobacter pylori may alter the expression of Id proteins by gastric epithelial cells: it was hypothesised that H. pylori, a known carcinogen, would result in increased expression of one or more Id family members. In vitro and in vivo models of infection were employed, including treatment of AGS gastric epithelial cells with wild-type H. pylori strains, 60190 and SS1, and Mongolian gerbils infected with H. pylori SS1. A small cohort of human gastric mucosal biopsies was also examined. Treatment of AGS cells with H. pylori resulted in down-regulation of Id1 and Id3. Unexpectedly, expression of the main target of Id proteins, the basic helix-loop-helix transcription factor E2A, was also suppressed, with an associated decrease in E-box binding activity. In contrast, H. pylori induced the expression of the CDK inhibitor p21(WAF-1/cip1), and the homeobox transcription factor, Cdx2, an early marker of intestinal metaplasia of the stomach epithelium. Gastric epithelium from H. pylori-infected gerbils demonstrated similar changes, with decreased Id2, Id3 and E2A, and elevated p21(WAF-1/cip1) expression. In human gastric epithelium also, H. pylori infection was associated with reduced Id and E2A expression. In conclusion, H. pylori alters the expression of Id proteins, in vitro and in vivo; it is hypothesised that these changes contribute to H. pylori-associated pathologies.
Collapse
Affiliation(s)
- Barbara Ada Manzo
- Research Centre for Gastroenterology, Institute of Cell and Molecular Sciences, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT,UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Backert S, Gressmann H, Kwok T, Zimny-Arndt U, König W, Jungblut PR, Meyer TF. Gene expression and protein profiling of AGS gastric epithelial cells upon infection with Helicobacter pylori. Proteomics 2006; 5:3902-18. [PMID: 16145711 DOI: 10.1002/pmic.200401240] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori, one of the most common bacterial pathogens, colonizes the human stomach and causes a variety of gastric diseases. This pathogen elicits a range of phenotypic responses in infected cultured AGS gastric epithelial cells, including expression of proinflammatory genes and changes in the actin cytoskeleton. Some of these responses are mediated by the type IV secretion system (T4SS) encoded by the cag pathogenicity island. We have used two global approaches, namely 2-DE combined with PMF and cDNA expression array analyses, to study in both a comprehensive and quantitative manner the protein profile and the temporal patterns of mRNA accumulation in AGS cells upon infection with H. pylori and isogenic T4SS mutants. We identified 140 transcripts and detected 190 protein species that were differentially regulated upon infection. Infection with wild-type H. pylori induced expression of a variety of host genes and changes in protein pattern involved in transcriptional responses, cell shape regulation and signal transduction. Among them, some were differentially regulated in a cag PAI-dependent manner, as shown by both the proteomic and cDNA expression array approaches. While 2-DE and PMF allowed us to examine the protein profiles in the infected host, array analysis enabled us to demonstrate dynamic temporal changes in host gene expression profile. In conclusion, our combined application of the two global approaches provides further molecular details on how the host cell responds to infection by H. pylori and its isogenic T4SS mutants on both transcriptional and protein levels. The findings pinpoint host proteins such as serine/threonine and tyrosine kinases, transcription factors, cell cycle related components and actin cytoskeletal signaling molecules as potential targets of individual H. pylori virulence determinants. This study serves as a basis for future work on transcription and proteome analyses of the H. pylori infection model.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Medical Microbiology, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ernst PB, Peura DA, Crowe SE. The translation of Helicobacter pylori basic research to patient care. Gastroenterology 2006; 130:188-206; quiz 212-3. [PMID: 16401482 DOI: 10.1053/j.gastro.2005.06.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/09/2005] [Indexed: 12/14/2022]
Abstract
In 1984, Barry Marshall and Robin Warren proposed a role for bacterial infections in the pathogenesis of gastroduodenal disease, which triggered an avalanche of research intended to prove or disprove their theory. The result has been a series of advances that have enhanced our understanding of these diseases and completely modernized the clinical approach to their management. In just over 20 years, many aspects of the immunopathogenesis of these diseases have been dissected at the molecular level, with key pathogenic mechanisms being validated by the identification of genes that are associated with the development of gastric cancer. There has been particular emphasis on understanding the molecular structures associated with Helicobacter pylori and their role in modifying the host responses. Gastric immune and inflammatory responses have emerged as key elements in the pathogenesis of gastritis and epithelial cell damage. This review summarizes important findings emanating from basic research primarily related to the immunopathogenesis of H pylori that have advanced the practice of medicine or our understanding of gastroduodenal disease.
Collapse
Affiliation(s)
- Peter B Ernst
- Digestive Health Center of Excellence, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia 22908-0708, USA.
| | | | | |
Collapse
|
22
|
Naito Y, Mizushima K, Yoshikawa T. Global analysis of gene expression in gastric ischemia-reperfusion: a future therapeutic direction for mucosal protective drugs. Dig Dis Sci 2005; 50 Suppl 1:S45-55. [PMID: 16184421 DOI: 10.1007/s10620-005-2806-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/06/2005] [Indexed: 12/09/2022]
Abstract
Gastric ischemia-reperfusion is a relatively common condition leading to mucosal injury and may affect mucosal repair via modulating the gene expression of growth factors. Therefore, precise understanding of the molecular mechanism of ischemia or ischemia-reperfusion may lead to the discovery of new mucosal protective drugs. DNA microarray analysis followed by powerful data analysis has the potential to uncover previously undescribed genes involved in gastric injury and lead to an increased understanding of gastric mucosal cytoprotection. We introduced the laser-assisted microdissection to obtain cell-specific RNA from gastric mucosa in vivo and obtained sufficient amounts of cRNA for GeneChip analysis. This comprehensive approach enabled the simultaneous analysis of many genes, including transcriptional factors, as well as the generation of novel hypothesis on the mechanism of action of gastro-protective agents.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | |
Collapse
|
23
|
Park S, Yeo M, Jin JH, Lee KM, Jung JY, Choue R, Cho SW, Hahm KB. Rescue of Helicobacter pylori-induced cytotoxicity by red ginseng. Dig Dis Sci 2005; 50:1218-27. [PMID: 16047463 DOI: 10.1007/s10620-005-2763-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori has been known to provoke gastric inflammation, ulceration, and DNA damage, based on which WHO defined H. pylori as a class I carcinogen. Although ginseng, the root of Panax ginseng C.A. Meyer, has been reported to possess antiadhesion or antimicrobial activity against H. pylori, in this study, we examined the protective effect of red ginseng extracts (RGE) against H. pylori-induced cytotoxicity and DNA damage. RGE significantly attenuated both H. pylori-induced DNA damage assessed by comet assay and apoptosis measured by DNA fragmentation. Inactivation of ERK1/2 signaling and attenuation of caspase-3 activation and PARP cleavage were revealed with RGE against H. pylori infection. RGE decreased H. pylori-stimulated IL-8 gene expression, which resulted from the transcriptional regression of NF-kappaB. In conclusion, RGE showed significant gastroprotective effects against H. pylori-associated gastric mucosal cell damage, suggesting that red ginseng could be used as a medicinal phytonutrient against H. pylori infection.
Collapse
Affiliation(s)
- Soojin Park
- Genomic Research Center for Gastroenterology, Ajou University School of Medicine, Suwon, Kyungkido, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gieseler S, König B, König W, Backert S. Strain-specific expression profiles of virulence genes in Helicobacter pylori during infection of gastric epithelial cells and granulocytes. Microbes Infect 2005; 7:437-47. [PMID: 15788154 DOI: 10.1016/j.micinf.2004.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/18/2004] [Accepted: 11/25/2004] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori expresses a variety of known virulence-associated factors, whose expression is likely to be dependent on the ecological niche of this pathogen. Here, we compared the temporal changes in the level of virulence-associated gene transcription in H. pylori strains isolated from patients with different pathology. Our aim was to study the coordinated gene expression profiles of these virulence factors during infection of AGS gastric epithelial cells and granulocytes. Using real-time quantitative (TaqMan) RT-PCR, we determined the mRNA expression of cagA, ureA, napA, katA, vacAs1 and vacAs2 alleles in a time course up to 6 h. The expression profiles of the investigated genes vary according to the strain, and were mainly either upregulated or unchanged upon bacterial contact with AGS cells. In contrast, upon contact with granulocytes, the majority of the genes were repressed in H. pylori. The following major results were obtained: (i) genetically diverse H. pylori exhibit different mRNA expression profiles, (ii) the expression patterns were strain-specific and time-dependent and (iii) the regulation of expression profiles was host cell dependent. These data were statistically significant and suggest that contact with target cells leads to an active cross-talk between the pathogen and its host. The use of Taqman-PCR to analyse the expression of mRNA of a bacterial pathogen in response to a changing host environment enabled us to identify variable and strain-specific transcription profiles in a sensitive and reproducible manner.
Collapse
Affiliation(s)
- Steffi Gieseler
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Street 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
25
|
Wang HT, Li ZH, Yuan JP, Zhao W, Shi XD, Tong SQ, Guo XK. Effect of Helicobacter pylori VacA on gene expression of gastric cancer cells. World J Gastroenterol 2005; 11:109-13. [PMID: 15609407 PMCID: PMC4205367 DOI: 10.3748/wjg.v11.i1.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 10/12/2003] [Accepted: 02/01/2004] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the effect of Helicobacter pylori VacA on gene expression of gastric cancer cells. METHODS Gene expression profile of a gastric cancer cell line, SGC7901, after challenged by VacA+ and VacA- H pylori broth culture supernatants (BCS), was detected by the cDNA microarray technique. Cytoskeleton changes of SGC7901 and HeLa cells were observed through high-resolution laser scanning confocal microscopy. RESULTS A total of 16,000 cDNA clones were detected. The percentage of genes with heterogeneous expression in SGC7901 cells challenged by VacA+ BCS reached 5%, compared with that challenged by VacA- BCS. There were 865 genes/EST with 2-fold differential expression levels and 198 genes/EST with 3-fold differential expression levels. Most of these genes were involved in vital cell events including signal transduction, regulation of gene expression, cytoskeleton, apoptosis, stress response and inflammation, cell cycle and tumor development. Cells co-cultured with VacA+ BCS showed collapsed and disrupted microtubular cytoarchitecture. CONCLUSION VacA+ BCS can disrupt cytoskeletal architecture, likely through affecting the expression of cytoskeleton-associated genes, directly induce the expression of tumor promoter-related genes and inhibit the expression of tumor suppressor genes, thus favoring the development of tumors. VacA+ BCS can also alter the expression of inflammation and stress response genes. This suggests that VacA may play an important role in the pathogenicity of H pylori.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Department of Microbiology and Parasitology, Shanghai Second Medical University, Shanghai 20025, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Baricević I, Nedić O, Nikolić JA, Bojić B, Jojić N. Circulating insulin-like growth factors in patients infected with Helicobacter pylori. Clin Biochem 2004; 37:997-1001. [PMID: 15498528 DOI: 10.1016/j.clinbiochem.2004.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 05/07/2004] [Accepted: 07/24/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The level of insulin-like growth factors (IGFs) and their binding proteins may change in acutely ill humans. The aim of this work was to examine the changes in the IGF system in patients suffering from infection induced by Helicobacter pylori (H. pylori). DESIGN AND METHODS The serum concentrations of IGF-I, IGF-II and cortisol were measured by radioimmunoassay. IGFBP patterns were characterized by ligand-affinity blotting, and a lectin-binding assay was used to investigate the possible changes in the glycocomponent of IGFBP-3. RESULTS Both IGF-I and IGF-II concentrations were significantly lower in patients with H. pylori infection (P < 0.001 for IGF-I and P = 0.016 for IGF-II) compared to healthy individuals, whereas the level of cortisol was significantly elevated in analyzed patients (P < 0.001). Autoradiography demonstrated the increased presence of IGFBP-2 and IGFBP-1, together with a decreased level of IGFBP-3. CONCLUSIONS The circulating IGF/IGFBP system is altered in patients infected with H. pylori. The increased level of cortisol suggests the involvement of the hypothalamic/pituitary/adrenal axis that stimulates the elevation of blood glucose, probably in coordination with decreased IGF activity to minimize anabolic metabolism.
Collapse
Affiliation(s)
- Ivona Baricević
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080 Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
27
|
Huff JL, Hansen LM, Solnick JV. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun 2004; 72:5216-26. [PMID: 15322016 PMCID: PMC517414 DOI: 10.1128/iai.72.9.5216-5226.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with Helicobacter pylori is usually asymptomatic but sometimes progresses to peptic ulcer disease or gastric adenocarcinoma. The development of disease involves both host and bacterial factors. In order to better understand host factors in pathogenesis, we studied the gastric transcription profile of H. pylori infection in the rhesus macaque by using DNA microarrays. Significant changes were found in the expression of genes important for innate immunity, chemokines and cytokines, cell growth and differentiation, apoptosis, structural proteins, and signal transduction and transcription factors. This broad transcription profile demonstrated expected up-regulation of cell structural elements and the host inflammatory and immune response, as well as the novel finding of down-regulation of heat shock proteins. These results provide a unique view of acute H. pylori infection in a relevant animal model system and will direct future studies regarding the host response to H. pylori infection.
Collapse
Affiliation(s)
- Jennifer L Huff
- Department of Medical Microbiology and Immunology, Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
28
|
Wen S, Felley CP, Bouzourene H, Reimers M, Michetti P, Pan-Hammarström Q. Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans. THE JOURNAL OF IMMUNOLOGY 2004; 172:2595-606. [PMID: 14764733 DOI: 10.4049/jimmunol.172.4.2595] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, ultimately leading to cellular hyperproliferation and malignant transformation. Hitherto, only expression of a single gene, or a limited number of genes, has been investigated in infected patients. cDNA arrays were therefore used to establish the global pattern of gene expression in gastric tissue of healthy subjects and of H. pylori-infected patients. Two main gene expression profiles were identified based on cluster analysis. The data obtained suggest a strong involvement of selected Toll-like receptors, adhesion molecules, chemokines, and ILs in the mucosal response. This pattern is clearly different from that observed using gastric epithelial cell lines infected in vitro with H. pylori. The presence of a "Helicobacter-infection signature," i.e., a set of genes that are up-regulated in biopsies from H. pylori-infected patients, could be derived from this analysis. The genotype of the bacteria (presence of genes encoding cytotoxin-associated Ag, vacuolating cytotoxin, and blood group Ag-binding adhesin) was analyzed by PCR and shown to be associated with differential expression of a subset of genes, but not the general gene expression pattern. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Future studies may help identify gene expression patterns predictive of complications of the infection.
Collapse
Affiliation(s)
- Sicheng Wen
- Department of Laboratory Medicine, Karolinska Institute at Huddinge Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Gastric cancer is a worldwide cancer especially frequent in Japan and South America. This cancer affects 10 to 70 people per 100,000 according to the countries. Since the end of the Second World War, the incidence of gastric cancer has been decreasing in France and accounts for less than 10 % of mortality. Helicobacter pylori infection, host genetic background, food regimen are known to be involved in this cancer. Helicobacter pylori should be eradicated in selected patients, such as patients' relatives with documented gastric cancer as well as patients having another gastrointestinal cancer.
Collapse
Affiliation(s)
- Iradj Sobhani
- Service d'hépato-gastro-entérologie, Hôpital Henri Mondor, 51, avenue du Maréchal de Lattre de Tassigny, 94010 Créteil Cedex, France.
| |
Collapse
|
30
|
Yoshida N, Ishikawa T, Ichiishi E, Yoshida Y, Hanashiro K, Kuchide M, Uchiyama K, Kokura S, Ichikawa H, Naito Y, Yamamura Y, Okanoue T, Yoshikawa T. The effect of rebamipide on Helicobacter pylori extract-mediated changes of gene expression in gastric epithelial cells. Aliment Pharmacol Ther 2003; 18 Suppl 1:63-75. [PMID: 12925142 DOI: 10.1046/j.1365-2036.18.s1.7.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have shown that Helicobacter pylori affects intracellular signal transduction in host cells, leading to the activation of transcriptional factors and the induction of pro-inflammatory cytokines. On the other hand, rebamipide, an anti-gastritis and anti-ulcer agent, could scavenge reactive oxygen species and reduce interleukin-8 (IL-8) expression in gastric epithelial cells induced by H. pylori-stimulation through the attenuated activation of nuclear factor-kappaB (NF-kappaB). AIMS In this study, we investigated the effects of rebamipide on gene expression in H. pylori-stimulated epithelial cells using DNA chip. METHODS H. pylori water extract (HPE) was prepared from NCTC11637, the type strain of H. pylori. Total RNA was extracted from MKN45 cells, a human gastric cancer cell line, following HPE-stimulation with and without rebamipide for 3 h, and differences in gene expression profiles were observed using GeneChip and Human 6800 probe array. RESULTS The GeneChip analysis demonstrated that 132 up-regulated genes and 873 down-regulated genes, such as growth factors, chemokines and transcription factors, were detected in MKN45 cells 3 h after stimulation of H. pylori. Among them, several genes, including bFGF, RANTES and MIP-2beta, were previously unknown to be expressed in H. pylori-stimulated human gastric cells. Rebamipide reduced expression of 119 genes encoding cytokines, growth factors and their receptors and transcription factors. CONCLUSIONS These findings suggest that rebamipide could inhibit inflammatory reactions and tumour progression by modifying H. pylori infection-induced gene expression in gastric epithelial cells.
Collapse
Affiliation(s)
- N Yoshida
- Molecular Gastroenterology and Hepatology and Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang Y, Deng CS, Peng JZ, Wong BCY, Lam SK, Xia HHX. Effect of Helicobacter pylori on apoptosis and apoptosis related genes in gastric cancer cells. Mol Pathol 2003; 56:19-24. [PMID: 12560457 PMCID: PMC1187283 DOI: 10.1136/mp.56.1.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2002] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Helicobacter pylori induces the apoptosis of gastric epithelial cells in vivo and in vitro. However, the molecular mechanism has not been clarified. The aim of this study was to investigate the effect of H pylori on the apoptosis of gastric epithelial cells and the expression of apoptosis related genes in vitro. METHODS Human gastric adenocarcinoma SGC-7901 cells were co-cultured with a cytotoxic H pylori strain, NCTC 11637, at various densities ranging from 3.2 x 10(4) to 1.0 x 10(8) colony forming units (CFU)/ml for 48 hours. Apoptosis in gastric cells was determined by transmission electron microscopy, Hoechst 33258 fluorochrome staining, and flow cytometry. The expression of apoptosis related proteins, Bcl-2, Bax, and c-Myc, was measured by an immunohistochemical method, and c-Myc mRNA expression was determined by the reverse transcription-polymerase chain reaction. RESULTS Helicobacter pylori induces morphological changes typical of apoptosis. Both fluorochrome staining and flow cytometry showed that the apoptotic index began to increase when H pylori were at a density of > 1.6 x 10(4) CFU/ml, and in a density dependent manner (p < 0.01; one way ANOVA). The expression of the Bax and c-Myc proteins and of c-Myc mRNA was increased, whereas Bcl-2 expression was decreased after co-culture for 48 hours. CONCLUSIONS Helicobacter pylori induced apoptosis in gastric epithelial cells is mediated by altered expression of the products of the Bcl-2, Bax, and c-Myc genes.
Collapse
Affiliation(s)
- Y Yang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, China Faculty of Medicine, Wuhan Science and Technology University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
32
|
Guillemin K, Salama NR, Tompkins LS, Falkow S. Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A 2002; 99:15136-41. [PMID: 12411577 PMCID: PMC137556 DOI: 10.1073/pnas.182558799] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infects over half the world's population and causes a wide range of diseases, including gastritis, peptic ulcer, and two forms of gastric cancer. H. pylori infection elicits a variety of phenotypic responses in cultured gastric epithelial cells, including the expression of proinflammatory genes and changes in the actin cytoskeleton. Both of these responses are mediated by the type IV secretion system (TFSS) encoded by the cag pathogenicity island (cag PAI). We used human cDNA microarrays to examine the temporal transcriptional profiles of gastric AGS cells infected with H. pylori strain G27 and a panel of isogenic mutants to dissect the contributions of various genes in the cag PAI. Infection with G27 induced expression of genes involved in the innate immune response, cell shape regulation, and signal transduction. A mutant lacking the cagA gene, which encodes an effector molecule secreted by the TFSS and required for the host cell cytoskeletal response, induced the expression of fewer cytoskeletal genes. A mutant lacking cagE, which encodes a structural component of the TFSS, failed to up-regulate a superset of host genes, including the cagA-dependent genes, and many of the immune response genes. A mutant lacking the entire cag PAI failed to induce both the cagE-dependent genes and several transiently expressed cagE independent genes. Host cell transcriptional profiling of infection with isogenic strains offered a detailed molecular picture of H. pylori infection and provided insight into potential targets of individual virulence determinants such as tyrosine kinase and Rho GTPase signaling molecules.
Collapse
Affiliation(s)
- Karen Guillemin
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|
33
|
Sepulveda AR, Tao H, Carloni E, Sepulveda J, Graham DY, Peterson LE. Screening of gene expression profiles in gastric epithelial cells induced by Helicobacter pylori using microarray analysis. Aliment Pharmacol Ther 2002; 16 Suppl 2:145-57. [PMID: 11966535 DOI: 10.1046/j.1365-2036.16.s2.4.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND H. pylori infection is a major risk factor in gastric cancer development. The availability of cDNA microarrays creates the unprecedented opportunity to examine simultaneously dynamic changes of multiple pathways affected by H. pylori infection. AIM In this study we examined broad patterns of gene expression induced by H. pylori in the gastric cancer cell line 1739-CRL AGS cells in culture using the U95A microarray. METHODS H. pylori were cocultured with AGS cells for 4, 12, 24 and 48 h. Total RNA was extracted and after labelling was used for detection of genes represented in the human U95A microarray set. Data analyses were performed using GeneChip and CLUSFAVOR software. RESULTS Nearly 6000 genes present in the array were expressed by AGS cells. We report approximately 200 genes that showed the most marked changes. Our studies confirm the up-regulation of c-jun, jun-B, c-fos and cyclin D1 by H. pylori. We report for the first time the induction of the serine threonine kinase pim-1 and ATF3 by H. pylori infection of AGS cells. CONCLUSIONS In this microarray analysis of gene expression induced by H. pylori in gastric epithelial cells, we identified a large number of unsuspected genes affected by H. pylori. Further, we show that unsupervised hierarchical cluster analysis can provide useful insight into the possible contribution of genes in specific pathways, based on their profile of expression.
Collapse
Affiliation(s)
- A R Sepulveda
- Department of Pathology, University of Pittsburgh, PA 15213-2582, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lu XL, Qian KD, Tang XQ, Zhu YL, Du Q. Detection of H.pylori DNA in gastric epithelial cells by in situ hybridization. World J Gastroenterol 2002; 8:305-7. [PMID: 11925613 PMCID: PMC4658372 DOI: 10.3748/wjg.v8.i2.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 10/22/2001] [Accepted: 11/01/2001] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the presence of H.pylori DNA within gastric epithelial cells in patients with H.pylori infection and its possible carcinogenic mechanism. METHODS Total 112 patients, with pathologically confirmed chronic superficial gastritis, chronic atrophic gastritis, intestinal metaplasia, atypical hyperplasia or gastric cancer were studied. Among them, 28 were H.pylori negative and 84 H.pylori positive. H.pylori DNA in gastric epithelial cells was detected by GenPoint catalyzed signal amplification system for in situ hybridization. RESULTS In the H.pylori positive group, zero out of 24 chronic superficial gastritis (0.0%), four out of 25 precancerous changes (16.0%) and thirteen out of 35 gastric cancers (37.1%) showed H.pylori DNA in the nucleus of gastric epithelial cells, the positive rates of H.pylori DNA in the nucleus of gastric epithelial cells were progressively increased in chronic superficial gastritis, precancerous changes and gastric cancer groups (chi(2)=12.56, P=0.002); One out of 24 chronic superficial gastritis (4.2%), eleven out of 25 precancerous changes (44.0%) and thirteen out of 35 gastric cancers (37.1%) showed H.pylori DNA in the cytoplasm of gastric epithelial cells (chi(2)=10.86, P=0.004). In the H.pylori negative group, only one patient with gastric cancer was found H.pylori DNA in the nucleus of gastric epithelial cells; Only two patients, one patient with precancerous changes and another with gastric cancer, showed H.pylori DNA in the cytoplasm of gastric epithelial cells. Furthermore, H.pylori DNA must have been in the cytoplasm as long as it existed in the nucleus of gastric epithelial cells. CONCLUSION H.pylori DNA exists both in the nucleus and the cytoplasm of gastric epithelial cells in patients with H.pylori infections. The pathological progression from chronic superficial gastritis, precancerous changes to gastric cancer is associated with higher positive rates of H.pylori DNA presence in the nucleus of gastric epithelial cells.
Collapse
Affiliation(s)
- Xin-Liang Lu
- Department of Digestive Diseases, Second Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310009, Zhejiang Province, China.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Helicobacter pylori is known to be the cause of most gastric diseases, including both peptic ulcer disease and gastric cancer. In the absence of eradication, infection tends to be lifelong and the immune response ineffective in clearing the bacteria. A number of groups have investigated whether the immune clearance of infection can be achieved through a vaccination strategy, but to date, the results have been inconclusive. In fact, in most cases of natural infection, the host immune response leads to a chronic inflammation within the gastric mucosa that actually promotes the development of atrophy and neoplasia. In most cases, eradication of the organism leads to resolution of inflammation, which in many instances can result in reduction in atrophy and gastric cancer risk. This finding suggests that even at late stages, cancer progression is dependent, to a large extent, on infection/immune response. Work from a number of laboratories has led to the hypothesis that T-cells and the Th1 immune response, governed largely by host genetic factors, are strongly associated with the H. pylori-mediated induction of atrophy and cancer. Interleukin-1beta appears to be a particularly important cytokine that inhibits acid secretion and increases serum gastrin levels, factors strongly associated with cancer induction. The induction by H. pylori of cytokines and chemokines and growth-related genes is mediated by the MAPK and NF-kappaB signaling pathway. Recent studies have shown that NF-kappaB is activated through a NF-kappaB-inducing kinase/p21-activated kinase 1 pathway. H. pylori can also promote cellular apoptosis through a number of mechanisms, the most important of which is upregulation of the Fas/FasL pathway. Finally, understanding of H. pylori pathogenesis has been broadened and deepened by the application of genomics and proteomics to the organism.
Collapse
Affiliation(s)
- James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
36
|
Kellam P. Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol 2001; 11:313-29. [PMID: 11590669 DOI: 10.1002/rmv.328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-genomic research encompasses many diverse aspects of modern science. These include the two broad subject areas of computational biology (bioinformatics) and functional genomics. Laboratory based functional genomics aims to measure and assess either the messenger RNA (mRNA) levels (transcriptome studies) or the protein content (proteome studies) of cells and tissues. All of these methods have been applied recently to the study of host and pathogen interactions for both bacteria and viruses. A basic overview of the technology is given in this review together with approaches to data analysis. The wealth of information produced from even these preliminary studies has shown the generalities, subtleties and specificities of host-pathogen interactions. Such research should ultimately result in new methods for diagnosing and treating infectious diseases.
Collapse
Affiliation(s)
- P Kellam
- Wohl Virion Centre, Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|