1
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
2
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Jones LO, Willms RJ, Xu X, Graham RDV, Eklund M, Shin M, Foley E. Single-cell resolution of the adult zebrafish intestine under conventional conditions and in response to an acute Vibrio cholerae infection. Cell Rep 2023; 42:113407. [PMID: 37948182 DOI: 10.1016/j.celrep.2023.113407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Vibrio cholerae is an aquatic bacterium that causes severe and potentially deadly diarrheal disease. Despite the impact on global health, our understanding of host mucosal responses to Vibrio remains limited, highlighting a knowledge gap critical for the development of effective prevention and treatment strategies. Using a natural infection model, we combine physiological and single-cell transcriptomic studies to characterize conventionally reared adult zebrafish guts and guts challenged with Vibrio. We demonstrate that Vibrio causes a mild mucosal immune response characterized by T cell activation and enhanced antigen capture; Vibrio suppresses host interferon signaling; and ectopic activation of interferon alters the course of infection. We show that the adult zebrafish gut shares similarities with mammalian counterparts, including the presence of Best4+ cells, tuft cells, and a population of basal cycling cells. These findings provide important insights into host-pathogen interactions and emphasize the utility of zebrafish as a natural model of Vibrio infection.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reegan J Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xinyue Xu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ralph Derrick V Graham
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mckenna Eklund
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Vidakovic L, Mikhaleva S, Jeckel H, Nisnevich V, Strenger K, Neuhaus K, Raveendran K, Ben-Moshe NB, Aznaourova M, Nosho K, Drescher A, Schmeck B, Schulte LN, Persat A, Avraham R, Drescher K. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae. Cell 2023; 186:2690-2704.e20. [PMID: 37295405 PMCID: PMC10256282 DOI: 10.1016/j.cell.2023.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.
Collapse
Affiliation(s)
| | - Sofya Mikhaleva
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah Jeckel
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Valerya Nisnevich
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Konstantin Neuhaus
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | | | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Aznaourova
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Antje Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Bernd Schmeck
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany; Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, 35043 Marburg, Germany; German Center for Infection Research (DZIF), 35043 Marburg, Germany; German Center for Lung Research (DZL), 35043 Marburg, Germany; Institute for Lung Health, 35392 Giessen, Germany
| | - Leon N Schulte
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany; German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
5
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Modelling the Gastrointestinal Carriage of Klebsiella pneumoniae Infections. mBio 2023; 14:e0312122. [PMID: 36598189 PMCID: PMC9972987 DOI: 10.1128/mbio.03121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization.
Collapse
|
7
|
Naidu A, Lulu S S. Mucosal and systemic immune responses to Vibrio cholerae infection and oral cholera vaccines (OCVs) in humans: a systematic review. Expert Rev Clin Immunol 2022; 18:1307-1318. [PMID: 36255170 DOI: 10.1080/1744666x.2022.2136650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Cholera is an enteric disease caused by Vibrio cholerae, a water-borne pathogen, and characterized by severe diarrhea. Vaccines have been recommended for use by the WHO in resource-limited settings. Efficacies of the currently licensed cholera vaccines are not optimal in endemic settings and low in children below the age of five, a section of the population most susceptible to the disease. Development of next generation of cholera vaccines would require a detailed understanding of the required protective immune responses. AREA COVERED In this review, we revisit clinical trials which are focused on the early transcriptional mucosal responses elicited during Vibrio cholerae infection and upon vaccination along with summarizing various components of the effector immune response against Vibrio cholerae. EXPERT OPINION The inability of currently licensed killed/inactivated vaccines to elicit key inflammatory pathways locally may explain their restricted efficacy in endemic settings. More studies are required to understand the immunogenicity of the live attenuated cholera vaccine in these regions. Various extrinsic and intrinsic factors influence anti-cholera immunity and need to be considered to develop region-specific next generation vaccines.
Collapse
Affiliation(s)
- Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Bhuiyan TR, Rahman MA, Trivedi S, Afroz T, Al Banna H, Hoq MR, Pop I, Jensen O, Rashu R, Uddin MI, Hossain M, Khan AI, Chowdhury F, Harris JB, Calderwood SB, Ryan ET, Qadri F, Leung DT. Mucosal-Associated Invariant T (MAIT) cells are highly activated in duodenal tissue of humans with Vibrio cholerae O1 infection: A preliminary report. PLoS Negl Trop Dis 2022; 16:e0010411. [PMID: 35551522 PMCID: PMC9129025 DOI: 10.1371/journal.pntd.0010411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes with a semi-conserved TCRα, activated by the presentation of vitamin B metabolites by the MHC-I related protein, MR1, and with diverse innate and adaptive effector functions. The role of MAIT cells in acute intestinal infections, especially at the mucosal level, is not well known. Here, we analyzed the presence and phenotype of MAIT cells in duodenal biopsies and paired peripheral blood samples, in patients during and after culture-confirmed Vibrio cholerae O1 infection. Immunohistochemical staining of duodenal biopsies from cholera patients (n = 5, median age 32 years, range 26-44, 1 female) identified MAIT cells in the lamina propria of the crypts, but not the villi. By flow cytometry (n = 10, median age 31 years, range 23-36, 1 female), we showed that duodenal MAIT cells are more activated than peripheral MAIT cells (p < 0.01 across time points), although there were no significant differences between duodenal MAIT cells at day 2 and day 30. We found fecal markers of intestinal permeability and inflammation to be correlated with the loss of duodenal (but not peripheral) MAIT cells, and single-cell sequencing revealed differing T cell receptor usage between the duodenal and peripheral blood MAIT cells. In this preliminary report limited by a small sample size, we show that MAIT cells are present in the lamina propria of the duodenum during V. cholerae infection, and more activated than those in the blood. Future work into the trafficking and tissue-resident function of MAIT cells is warranted.
Collapse
Affiliation(s)
- Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - M. Arifur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Taliman Afroz
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Hasan Al Banna
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Rubel Hoq
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ioana Pop
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Motaher Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ashraful I. Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts, United States of America
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet 2022; 399:1429-1440. [PMID: 35397865 DOI: 10.1016/s0140-6736(22)00330-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Cholera was first described in the areas around the Bay of Bengal and spread globally, resulting in seven pandemics during the past two centuries. It is caused by toxigenic Vibrio cholerae O1 or O139 bacteria. Cholera is characterised by mild to potentially fatal acute watery diarrhoeal disease. Prompt rehydration therapy is the cornerstone of management. We present an overview of cholera and its pathogenesis, natural history, bacteriology, and epidemiology, while highlighting advances over the past 10 years in molecular epidemiology, immunology, and vaccine development and deployment. Since 2014, the Global Task Force on Cholera Control, a WHO coordinated network of partners, has been working with several countries to develop national cholera control strategies. The global roadmap for cholera control focuses on stopping transmission in cholera hotspots through vaccination and improved water, sanitation, and hygiene, with the aim to reduce cholera deaths by 90% and eliminate local transmission in at least 20 countries by 2030.
Collapse
Affiliation(s)
- Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA; Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jaqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
10
|
Neutrophil-associated responses to
Vibrio cholerae
infection in a natural host model. Infect Immun 2022; 90:e0046621. [DOI: 10.1128/iai.00466-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae
, the cause of human cholera, is an aquatic bacterium found in association with a variety of animals in the environment, including many teleost fish species.
V. cholerae
infection induces a pro-inflammatory response followed by a non-inflammatory convalescent phase. Neutrophils are integral to this early immune response. However, the relationship between the neutrophil-associated protein calprotectin and
V. cholerae
has not been investigated, nor have the effects of limiting transition metals on
V. cholerae
growth. Zebrafish are useful as a natural
V. cholerae
model as the entire infectious cycle can be recapitulated in the presence of an intact intestinal microbiome and mature immune responses. Here, we demonstrate that zebrafish produce a significant neutrophil, IL-8, and calprotectin response following
V. cholerae
infection. Bacterial growth was completely inhibited by purified calprotectin protein or the chemical chelator TPEN, but growth was recovered by addition of transition metals zinc and manganese. Expression of downstream calprotectin targets also significantly increased in the zebrafish. These findings illuminate the role of host calprotectin in combating
V. cholerae
infection. Inhibition of
V. cholerae
growth through metal limitation may provide new approaches in the development of anti-
V. cholerae
therapeutics. This study also establishes a major role for calprotectin in combating infectious diseases in zebrafish.
Collapse
|
11
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
12
|
Sousa FBM, Pacheco G, Oliveira AP, Nicolau LAD, Lopes ALF, Ferreira-Fernandes H, Pinto GR, Medeiros JVR. Mechanism of preservation of the intestinal mucosa architecture and NF-κB/PGE2 reduction by hydrogen sulfide on cholera toxin-induced diarrhea in mice. Life Sci 2021; 284:119869. [PMID: 34358552 DOI: 10.1016/j.lfs.2021.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS Investigate the involvement of Hydrogen sulfide (H2S) in inflammatory parameters and intestinal morphology caused by cholera toxin (CT) in mice. MAIN METHODS Mice were subjected to the procedure of inducing diarrhea by CT in the isolated intestinal loop model. The intestinal loops were inoculated with H2S donor molecules (NaHS and GYY 4137) or saline and CT. To study the role of EP2 and EP4 prostaglandin E2 (PGE2) receptors in the H2S antisecretory effect, PAG (DL-propargylglycine - inhibitor of cystathionine-γ-lyase (CSE)), PF-04418948 (EP2 antagonist) and ONO-AE3-208 (EP4 antagonist) were used. The intestinal loops were evaluated for intestinal secretion, relation of the depth of villi and intestinal crypts, and real-time PCR for the mRNA of the CXCL2, IL-6, NOS-2, IL-17, NF-κB1, NF-κBIA, SLC6A4 and IFN-γ genes. KEY FINDINGS H2S restored the villus/crypt depth ratio caused by CT. NaHS and GYY 4137 increased the expression of NF-κB1 and for the NF-κBIA gene, only GYY 4137 increased the expression of this gene. The increased expression of NF-κB inhibitors, NF-κB1 and NF-κBIA by H2S indicates a possible decrease in NF-κB activity. The pretreatment with PAG reversed the protective effect of PF-04418948 and ONO-AE3-208, indicating that H2S probably decreases PGE2 because in the presence of antagonists of this pathway, PAG promotes intestinal secretion. SIGNIFICANCE Our results point to a protective activity of H2S against CT for promoting a protection of villus and crypt intestine morphology and also that its mechanism occurs at least in part due to decreasing the activity of NF-κB and PGE2.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - André L F Lopes
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Hygor Ferreira-Fernandes
- Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Giovanny R Pinto
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
13
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S, Boustanshenas M. Vibrio cholerae toxin coregulated pilus provokes inflammatory responses in Coculture model of Caco-2 and peripheral blood mononuclear cells (PBMC) leading to increased colonization. Microbiol Immunol 2021; 65:238-244. [PMID: 33913531 DOI: 10.1111/1348-0421.12889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to assess the modulatory effect of TcpA in the expression of CEACAM1 adhesin molecule and IL-1, IL-8, and TNF-α pro-inflammatory cytokines in the Coculture model of Caco-2/PBMC (peripheral blood mononuclear cell) that can mimic the intestinal milieu. The TcpA gene from Vibrio cholerae ATCC14035 was cloned in pET-28a and transformed into Escherichia coli Bl-21. The recombinant TcpA-His6 protein was expressed and purified using Ni-column chromatography. The sequencing of transformed plasmid and Western blot analysis of purified protein confirmed the identity of rTcp. The cytotoxicity of different concentrations of recombinant protein for human colon carcinoma cell line (human colorectal adenocarcinoma cell [Caco-2 cell]) was assessed by MTT assay and showed viability of 92%, 82%, and 70%, for 10 µg/mL of TcpA after 24, 48, and 72 h, respectively. Co-cultures of Caco-2 and PBMCs were used to mimic the intestinal milieu and treated with different concentrations of rTcpA (1, 5, 10, and 50 µg/mL). Our data showed about 2.04-, 3.37-, 3.68-, and 42.7-fold increase in CEACAM1 gene expression, respectively, compared with the nontreated Caco-2/PBMC Coculture. Moreover, the expression of IL-1, IL-8, and TNF-α genes was significantly increased up to 15.75-, 7.04-, and 80.95-folds, respectively. In conclusion, V. cholerae TcpA induces statistically significant dose-dependent stimulatory effect on TNF-α, IL-,1, and IL-8 pro-inflammatory cytokines expression. Of these, TNF-α was much more affected which, consequently, elevated the CEACAM1 expression level in IECs. This suggests that TcpA protein is a critical effector as an inducer of increased adhesion potential of V. cholera as well as inflammatory responses of host intestinal tissue.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Holmgren J. An Update on Cholera Immunity and Current and Future Cholera Vaccines. Trop Med Infect Dis 2021; 6:tropicalmed6020064. [PMID: 33925118 PMCID: PMC8167659 DOI: 10.3390/tropicalmed6020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
Individual resistance to cholera infection and disease depends on both innate host factors and adaptive immunity acquired by a previous infection or vaccination. Locally produced, intestinal-mucosal secretory IgA (SIgA) antibodies against bacterial surface lipopolysaccharide (LPS) O antigens and/or secreted cholera toxins are responsible for the protective adaptive immunity, in conjunction with an effective mucosal immunologic memory that can elicit a rapid anamnestic SIgA antibody response upon re-exposure to the antigen/pathogen even many years later. Oral cholera vaccines (OCVs), based on inactivated Vibrio cholerae whole-cell components, either together with the cholera toxin B subunit (Dukoral™) or administered alone (Shanchol™/Euvichol-Plus™) were shown to be consistently safe and effective in large field trials in all settings. These OCVs are recommended by the World Health Organisation (WHO) for the control of both endemic cholera and epidemic cholera outbreaks. OCVs are now a cornerstone in WHO’s global strategy found in “Ending Cholera: A Global Roadmap to 2030.” However, the forecasted global demands for OCV, estimated by the Global Alliance for Vaccines and Immunization (GAVI) to 1.5 billion doses for the period 2020–2029, markedly exceed the existing manufacturing capacity. This calls for an increased production capacity of existing OCVs, as well as the rapid introduction of additional and improved vaccines under development.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Antimicrobial Activity of Human Eosinophil Granule Proteins. Methods Mol Biol 2021; 2241:257-274. [PMID: 33486742 DOI: 10.1007/978-1-0716-1095-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophils secrete a number of proinflammatory mediators that include cytokines, chemokines, and granule proteins which are responsible for the initiation and maintenance of inflammatory responses. The eosinophil granule proteins, ECP, EDN, MBP, and EPO, possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.
Collapse
|
16
|
Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 2020; 10:582554. [PMID: 33194819 PMCID: PMC7644805 DOI: 10.3389/fcimb.2020.582554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, could proliferate in aquatic environment and infect humans through contaminated food and water. Enormous microorganisms residing in human gastrointestinal tract establish a special microecological system, which immediately responds to the invasion of V. cholerae, through “colonization resistance” mechanisms, such as antimicrobial peptide production, nutrients competition, and intestinal barrier maintenances. Meanwhile, V. cholerae could quickly sense those signals and modulate the expression of relevant genes to circumvent those stresses during infection, leading to successful colonization on the surface of small intestinal epithelial cells. In this review, we summarized the crosstalks profiles between gut microbiota and V. cholerae in the terms of Type VI Secretion System (T6SS), Quorum Sensing (QS), Reactive Oxygen Species (ROS)/pH stress, and Bioactive metabolites. These mechanisms can also be applied to molecular bacterial pathogenesis of other pathogens in host.
Collapse
Affiliation(s)
- Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Narendrakumar L, Jaikumar VS, Chandrika SK, Thomas S. Epidemiological and pathogenic characteristics of Haitian variant V. cholerae circulating in India over a decade (2000-2018). Microb Pathog 2020; 149:104538. [PMID: 32987116 DOI: 10.1016/j.micpath.2020.104538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Vibrio cholerae, causative agent of the water-borne disease cholera still threatens a large proportion of world's population. The major biotypes of the pathogen are classical and El Tor. There have been recent reports of variant V. cholerae strains circulating around the world. In the present study, the epidemiological status of V. cholerae strains circulating in the country over a decade was assessed. Also, a comprehensive analysis of the difference in pathogenicity between the different biotypes of V. cholerae strains was evaluated both in-vitro and in-vivo. The amount of CT produced by different biotypes of V. cholerae strains were analyzed by GM1 ELISA and the probable reasons for the difference in toxin production was discussed. MLST analysis grouped the isolates into a single Sequence Type (ST 69) whereas PFGE analysis clustered the isolates into ten different pulsotypes revealing molecular diversity. The circulating strains were identified to produce cholera toxin and CT mRNA intermediate to the classical and prototype El Tor strains. Also, the circulating strains were identified to possess four ToxR binding sequences. In-vivo pathogenicity analysis by rabbit ileal loop fluid accumulation assay revealed the Haitian variant strains to be more hyperemic than the prototype strains.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Vishnu S Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sivakumar K Chandrika
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India.
| |
Collapse
|
18
|
Abstract
Vibrio cholerae remains a challenge in the developing world and incidence of the disease it causes, cholera, is anticipated to increase with rising global temperatures and with emergent, highly infectious strains. At present, the underlying metabolic processes that support V. cholerae growth during infection are less well understood than specific virulence traits, such as production of a toxin or pilus. In this study, we determined that oxidative metabolism of host substrates such as mucin contribute significantly to V. cholerae population expansion in vivo. Identifying metabolic pathways critical for growth can provide avenues for controlling V. cholerae infection and the knowledge may be translatable to other pathogens of the gastrointestinal tract. Vibrio cholerae replicates to high cell density in the human small intestine, leading to the diarrheal disease cholera. During infection, V. cholerae senses and responds to environmental signals that govern cellular responses. Spatial localization of V. cholerae within the intestine affects nutrient availability and metabolic pathways required for replicative success. Metabolic processes used by V. cholerae to reach such high cell densities are not fully known. We sought to better define the metabolic traits that contribute to high levels of V. cholerae during infection. By disrupting the pyruvate dehydrogenase (PDH) complex and pyruvate formate-lyase (PFL), we could differentiate aerobic and anaerobic metabolic pathway involvement in V. cholerae proliferation. We demonstrate that oxidative metabolism is a key contributor to the replicative success of V. choleraein vivo using an infant mouse model in which PDH mutants were attenuated 100-fold relative to the wild type for colonization. Additionally, metabolism of host substrates, including mucin, was determined to support V. cholerae growth in vitro as a sole carbon source, primarily under aerobic growth conditions. Mucin likely contributes to population expansion during human infection as it is a ubiquitous source of carbohydrates. These data highlight oxidative metabolism as important in the intestinal environment and warrant further investigation of how oxygen and other host substrates shape the intestinal landscape that ultimately influences bacterial disease. We conclude from our results that oxidative metabolism of host substrates is a key driver of V. cholerae proliferation during infection, leading to the substantial bacterial burden exhibited in cholera patients.
Collapse
|
19
|
Murugaiah C, Nik Mohd Noor NZ, Al-Talib H, Mustafa S, Manickam R, Pattabhiraman L. Immunohistochemical, histological and ultrastructural evaluation of protection provided by cholera vaccine against V. cholerae O139. Microb Pathog 2020; 140:103964. [PMID: 31904450 DOI: 10.1016/j.micpath.2020.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 11/30/2022]
Abstract
In our previous study, complete protection was observed in rabbit immunized with 1 × 1010 CFU of live attenuated VCUSM21P vaccine against challenge with 1 × 109 CFU Vibrio cholerae O139. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological, immunohistochemical and ultrastructural techniques. Severe pathology is evident in wild type injected ileum in non-immunized, showing extensive villous destruction, edema, necrosis and inflammation with infiltration of large numbers of inflammatory cells, extensive damage to the villi and microvilli with pore formation. Histology of ileum injected with wild type in immunized rabbit shows no significant pathological changes except for a few inflammatory cells in lamina propria with mild edema in mucosa and submucosa. immunohistochemical staining revealed O139 antigens of wild type are seen in the lamina propria of edematous villi, muscularis mucosa and submucosa with weak presence in the muscle coat in non-immunized rabbit after challenged with wild type in non-immunized rabbits, but in immunized rabbit localisation of the O139 LPS antigen is seen at the tips of the intact villi, within lamina propria and muscularis mucosa only. These observations suggest that the vaccine can effectively protect animals from any pathologic changes and eliminate V. cholerae O139 from the immunized animals.
Collapse
Affiliation(s)
- Chandrika Murugaiah
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia; School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Nik Zuraina Nik Mohd Noor
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Hassanain Al-Talib
- Laboratory Medical Science Cluster, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, 47000, Selangor, Malaysia
| | - Shyamoli Mustafa
- Pathology Unit, Faculty of Medicine, AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Ravichandran Manickam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Lalitha Pattabhiraman
- Faculty of Medical Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia
| |
Collapse
|
20
|
Amadou Amani S, Lang ML. Bacteria That Cause Enteric Diseases Stimulate Distinct Humoral Immune Responses. Front Immunol 2020; 11:565648. [PMID: 33042146 PMCID: PMC7524877 DOI: 10.3389/fimmu.2020.565648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial enteric pathogens individually and collectively represent a serious global health burden. Humoral immune responses following natural or experimentally-induced infections are broadly appreciated to contribute to pathogen clearance and prevention of disease recurrence. Herein, we have compared observations on humoral immune mechanisms following infection with Citrobacter rodentium, the model for enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica species, and Clostridioides difficile. A comparison of what is known about the humoral immune responses to these pathogens reveals considerable variance in specific features of humoral immunity including establishment of high affinity, IgG class-switched memory B cell and long-lived plasma cell compartments. This article suggests that such variance could be contributory to persistent and recurrent disease.
Collapse
|
21
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
22
|
Role of coaggregation in the pathogenicity and prolonged colonisation of Vibrio cholerae. Med Microbiol Immunol 2019; 208:793-809. [PMID: 31263955 DOI: 10.1007/s00430-019-00628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
23
|
Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol 2019; 106:563-580. [PMID: 31121077 DOI: 10.1002/jlb.4mr0119-035r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Increased accumulation of cytoplasmic lipid droplets (LDs) in host nonadipose cells is commonly observed in response to numerous infectious diseases, including bacterial, parasite, and fungal infections. LDs are lipid-enriched, dynamic organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell and stimulus regulated. Far beyond being simply a deposit of neutral lipids, LDs have come to be seen as an essential platform for various cellular processes, including metabolic regulation, cell signaling, and the immune response. LD participation in the immune response occurs as sites for compartmentalization of several immunometabolic signaling pathways, production of inflammatory lipid mediators, and regulation of antigen presentation. Infection-driven LD biogenesis is a complexly regulated process that involves innate immune receptors, transcriptional and posttranscriptional regulation, increased lipid uptake, and new lipid synthesis. Accumulating evidence demonstrates that intracellular pathogens are able to exploit LDs as an energy source, a replication site, and/or a mechanism of immune response evasion. Nevertheless, LDs can also act in favor of the host as part of the immune and inflammatory response to pathogens. Here, we review recent findings that explored the new roles of LDs in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Livia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 2019; 128:41-46. [DOI: 10.1016/j.micpath.2018.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2017] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
25
|
Dias FF, Amaral KB, Malta KK, Silva TP, Rodrigues GSC, Rosa FM, Rodrigues GOL, Costa VV, Chiarini-Garcia H, Weller PF, Melo RCN. Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental Schistosoma mansoni Infection. Front Immunol 2018; 9:3019. [PMID: 30619361 PMCID: PMC6306457 DOI: 10.3389/fimmu.2018.03019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Eosinophils have been long associated with helminthic infections, although their functions in these diseases remain unclear. During schistosomiasis caused by the trematode Schistosoma mansoni, eosinophils are specifically recruited and migrate to sites of granulomatous responses where they degranulate. However, little is known about the mechanisms of eosinophil secretion during this disease. Here, we investigated the degranulation patterns, including the cellular mechanisms of major basic protein-1 (MBP-1) release, from inflammatory eosinophils in a mouse model of S. mansoni infection (acute phase). Fragments of the liver, a major target organ of this disease, were processed for histologic analyses (whole slide imaging), conventional transmission electron microscopy (TEM), and immunonanogold EM using a pre-embedding approach for precise localization of major basic protein 1 (MBP-1), a typical cationic protein stored pre-synthesized in eosinophil secretory (specific) granules. A well-characterized granulomatous inflammatory response with a high number of infiltrating eosinophils surrounding S. mansoni eggs was observed in the livers of infected mice. Moreover, significant elevations in the levels of plasma Th2 cytokines (IL-4, IL-13, and IL-10) and serum enzymes (alanine aminotransferase and aspartate aminotransferase) reflecting altered liver function were detected in response to the infection. TEM quantitative analyses revealed that while 19.1% of eosinophils were intact, most of them showed distinct degranulation processes: cytolysis (13.0%), classical and/or compound exocytosis identified by granule fusions (1.5%), and mainly piecemeal degranulation (PMD) (66.4%), which is mediated by vesicular trafficking. Immunonanogold EM showed a consistent labeling for MBP-1 associated with secretory granules. Most MBP-1-positive granules had PMD features (79.0 ± 4.8%). MBP-1 was also present extracellularly and on vesicles distributed in the cytoplasm and attached to/surrounding the surface of emptying granules. Our data demonstrated that liver-infiltrating mouse eosinophils are able to degranulate through different secretory processes during acute experimental S. mansoni infections with PMD being the predominant mechanism of eosinophil secretion. This means that a selective secretion of MBP-1 is occurring. Moreover, our study demonstrates, for the first time, a vesicular trafficking of MBP-1 within mouse eosinophils elicited by a helminth infection. Vesicle-mediated secretion of MBP-1 may be relevant for the rapid release of small concentrations of MBP-1 under cell activation.
Collapse
Affiliation(s)
- Felipe F Dias
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kátia B Amaral
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Gabriel S C Rodrigues
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Florence M Rosa
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Gisele O L Rodrigues
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Center for Drug Research and Development of Pharmaceuticals, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hélio Chiarini-Garcia
- Laboratory of Reproduction and Structural Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Peter F Weller
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, United States
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, United States
| |
Collapse
|
26
|
The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: A comparison between invasive and non-invasive bacteria. PLoS One 2018; 13:e0196941. [PMID: 29874233 PMCID: PMC5991357 DOI: 10.1371/journal.pone.0196941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to compare the effect of Lactobacillus acidophilus on the attachment, invasion, and interaction of Shigella sonnei and Vibrio cholerae with Caco-2 epithelial cells. Also, the anti-apoptotic and anti-inflammatory effect of L. acidophilus was investigated on S. sonnei and V. cholerae interaction with Caco-2 cells as the representatives of invasive and non-invasive intestinal bacteria. It was found that pretreatment with L. acidophilus significantly prevented from adherence and internalization of S. sonnei/V. cholerae and reduced the expression of tumour necrosis factor-α and interleukin-8 in host cells. No significant difference was observed in inhibitory effect of Lactobacilli in V. cholerae and S. sonnei attachment, emphasizing on the role of lactobacilli as a physical barrier in inhibiting direct contact with host cell by competitive exclusion, which may affect attachment and subsequent internalization of both invasive and non-invasive pathogenic bacteria in a same scale. The evaluation of early and late apoptosis in Caco-2 cells exposed to V. cholerae/S. sonnei and pretreated by L. acidophilus indicated no remarkable difference in L. acidophilus anti-apoptotic effect on Caco-2 cells against invasive and non-invasive bacterial infection. Moreover, L. acidophilus by itself showed no apoptotic effect on Caco-2 cells. Statistical analysis revealed that L. acidophilus in S. sonnei infected cells was able to reduce pro-inflammatory immune responses (TNF-α, IL-8 and IL-1β) and NO and PGE2 secretion more strongly compared with V. cholerae infected cells. These data showed for the first time that the protective effect of Lactobacilli, as a probiotic bacterium, in interaction suppression was more in invasive bacteria including S. sonnei than in non-invasive V. cholerae.
Collapse
|
27
|
Melo RCN, Weller PF. Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol 2018; 104:85-93. [PMID: 29749658 DOI: 10.1002/jlb.3mr1217-476r] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Eosinophil secretory (specific) granules have a unique morphology and are both a morphologic hallmark of eosinophils and fundamental to eosinophil-mediated responses. Eosinophil mediators with multiple functional activities are presynthesized and stored within these granules, poised for very rapid, stimulus-induced secretion. The structural organization and changes of eosinophil specific granules are revealing in demonstrating the complex and diverse secretory activities of this cell. Here, we review our current knowledge on the architecture, composition, and function of eosinophil specific granules as highly elaborated organelles able to produce vesiculotubular carriers and to interplay with the intracellular vesicular trafficking. We reconsider prior identifications of eosinophil cytoplasmic granules, including "primary," "secondary," "microgranules," and "small granules"; and consonant with advances, we provide a contemporary recognition that human eosinophils contain a single population of specific granules and their developmental precursors and derived secretory vesicles.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| |
Collapse
|
28
|
Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect Immun 2018; 86:IAI.00594-17. [PMID: 29133347 DOI: 10.1128/iai.00594-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.
Collapse
|
29
|
Vibrio cholerae OmpU induces IL-8 expression in human intestinal epithelial cells. Mol Immunol 2017; 93:47-54. [PMID: 29145158 DOI: 10.1016/j.molimm.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/22/2023]
Abstract
Although Vibrio cholerae colonizes the small intestine and induces acute inflammatory responses, less is known about the molecular mechanisms of V. cholerae-induced inflammatory responses in the intestine. We recently reported that OmpU, one of the most abundant outer membrane proteins of V. cholerae, plays an important role in the innate immunity of the whole bacteria. In this study, we evaluated the role of OmpU in induction of IL-8, a representative chemokine that recruits various inflammatory immune cells, in the human intestinal epithelial cell (IEC) line, HT-29. Recombinant OmpU (rOmpU) of V. cholerae induced IL-8 expression at the mRNA and protein levels in a dose- and time-dependent manner. Interestingly, IL-8 was secreted through both apical and basolateral sides of the polarized HT-29 cells upon apical exposure to rOmpU but not upon basolateral exposure. rOmpU-induced IL-8 expression was inhibited by interference of lipid raft formation with nystatin, but not by blocking the formation of clathrin-coated pits with chlorpromazine. In addition, rOmpU-induced IL-8 expression was mediated via ERK1/2 and p38 kinase pathways, but not via JNK signaling pathway. Finally, V. cholerae lacking ompU elicited decreased IL-8 expression and adherence to HT-29 cells compared to the parental strain. Collectively, these results suggest that V. cholerae OmpU might play an important role in intestinal inflammation by inducing IL-8 expression in human IECs.
Collapse
|
30
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
31
|
Barrett KE. Rethinking cholera pathogenesis- No longer all in the same "camp". Virulence 2016; 7:751-3. [PMID: 27413815 PMCID: PMC5029295 DOI: 10.1080/21505594.2016.1212156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Kim E. Barrett
- Department of Medicine and Ph.D Program in Biomedical Sciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
32
|
Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain. Infect Immun 2016; 84:2473-81. [PMID: 27297393 PMCID: PMC4995894 DOI: 10.1128/iai.00189-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Vibrio cholerae O1 El Tor strains have been responsible for pandemic cholera since 1961. These strains have evolved over time, spreading globally in three separate waves. Wave 3 is caused by altered El Tor (AET) variant strains, which include the strain with the signature ctxB7 allele that was introduced in 2010 into Haiti, where it caused a devastating epidemic. In this study, we used phenotypic analysis to compare an early isolate from the Haiti epidemic to wave 1 El Tor isolates commonly used for research. It is demonstrated that the Haiti isolate has increased production of cholera toxin (CT) and hemolysin, increased motility, and a reduced ability to form biofilms. This strain also outcompetes common wave 1 El Tor isolates for colonization of infant mice, indicating that it has increased virulence. Monitoring of CT production and motility in additional wave 3 isolates revealed that this phenotypic variation likely evolved over time rather than in a single genetic event. Analysis of available whole-genome sequences and phylogenetic analyses suggested that increased virulence arose from positive selection for mutations found in known and putative regulatory genes, including hns and vieA, diguanylate cyclase genes, and genes belonging to the lysR and gntR regulatory families. Overall, the studies presented here revealed that V. cholerae virulence potential can evolve and that the currently prevalent wave 3 AET strains are both phenotypically distinct from and more virulent than many El Tor isolates.
Collapse
|
33
|
Carmo LAS, Bonjour K, Ueki S, Neves JS, Liu L, Spencer LA, Dvorak AM, Weller PF, Melo RCN. CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. J Leukoc Biol 2016; 100:391-401. [PMID: 26965633 PMCID: PMC6608091 DOI: 10.1189/jlb.3a1015-480r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Eosinophil activation leads to secretion of presynthesized, granule-stored mediators that determine the course of allergic, inflammatory, and immunoregulatory responses. CD63, a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) and present on the limiting membranes of eosinophil-specific (secretory) granules, is considered a potential surface marker for eosinophil degranulation. However, the intracellular secretory trafficking of CD63 in eosinophils and other leukocytes is not understood. Here, we provide a comprehensive investigation of CD63 trafficking at high resolution within human eosinophils stimulated with inflammatory stimuli, CCL11 and tumor necrosis factor α, which induce distinctly differing secretory processes in eosinophils: piecemeal degranulation and compound exocytosis, respectively. By using different transmission electron microscopy approaches, including an immunonanogold technique, for enhanced detection of CD63 at subcellular compartments, we identified a major intracellular pool of CD63 that is directly linked to eosinophil degranulation events. Transmission electron microscopy quantitative analyses demonstrated that, in response to stimulation, CD63 is concentrated within granules undergoing secretion by piecemeal degranulation or compound exocytosis and that CD63 tracks with the movements of vesicles and granules in the cytoplasm. Although CD63 was observed at the cell surface after stimulation, immunonanogold electron microscopy revealed that a strong CD63 pool remains in the cytoplasm. It is remarkable that CCL11 and tumor necrosis factor α triggered increased formation of CD63(+) large vesiculotubular carriers (eosinophil sombrero vesicles), which fused with granules in the process of secretion, likely acting in the intracellular translocation of CD63. Altogether, we identified active, intracellular CD63 trafficking connected to eosinophil granule-derived secretory pathways. This is important for understanding the complex secretory activities of eosinophils underlying immune responses.
Collapse
Affiliation(s)
- Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Linying Liu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Lisa A Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Ann M Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| |
Collapse
|
34
|
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils. Exp Cell Res 2015; 337:129-135. [PMID: 26254897 DOI: 10.1016/j.yexcr.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. METHODS Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. RESULTS STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. CONCLUSIONS The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos.
Collapse
|
35
|
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2015; 785:59-69. [PMID: 26164793 DOI: 10.1016/j.ejphar.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria.
| | - Stefanie Schlager
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
36
|
Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 2015; 83:1089-103. [PMID: 25561705 DOI: 10.1128/iai.02765-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.
Collapse
|
37
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
39
|
Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, Shen P, Gordon ME, Barra NG, Bassett JD, Kong J, Fattouh R, McCoy KD, Bowdish DM, Erjefält JS, Pabst O, Humbles AA, Kolbeck R, Waserman S, Jordana M. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. ACTA ACUST UNITED AC 2014; 211:1657-72. [PMID: 25071163 PMCID: PMC4113937 DOI: 10.1084/jem.20131800] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.
Collapse
Affiliation(s)
- Derek K Chu
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Rodrigo Jimenez-Saiz
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Christopher P Verschoor
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tina D Walker
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Susanna Goncharova
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Alba Llop-Guevara
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Pamela Shen
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Melissa E Gordon
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicole G Barra
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jennifer D Bassett
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joshua Kong
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ramzi Fattouh
- Clinical Microbiology, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5S 1A8, Canada
| | - Kathy D McCoy
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, 3008 Bern, Switzerland
| | - Dawn M Bowdish
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jonas S Erjefält
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden Department of Respiratory Medicine and Allergology, Lund University Hospital, SE-22185 Lund, Sweden
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Alison A Humbles
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MA 20878
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MA 20878
| | - Susan Waserman
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
40
|
Leung DT, Bhuiyan TR, Nishat NS, Hoq MR, Aktar A, Rahman MA, Uddin T, Khan AI, Chowdhury F, Charles RC, Harris JB, Calderwood SB, Qadri F, Ryan ET. Circulating mucosal associated invariant T cells are activated in Vibrio cholerae O1 infection and associated with lipopolysaccharide antibody responses. PLoS Negl Trop Dis 2014; 8:e3076. [PMID: 25144724 PMCID: PMC4140671 DOI: 10.1371/journal.pntd.0003076] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Mucosal Associated Invariant T (MAIT) cells are innate-like T cells found in abundance in the intestinal mucosa, and are thought to play a role in bridging the innate-adaptive interface. Methods We measured MAIT cell frequencies and antibody responses in blood from patients presenting with culture-confirmed severe cholera to a hospital in Dhaka, Bangladesh at days 2, 7, 30, and 90 of illness. Results We found that MAIT (CD3+CD4−CD161hiVα7.2+) cells were maximally activated at day 7 after onset of cholera. In adult patients, MAIT frequencies did not change over time, whereas in child patients, MAITs were significantly decreased at day 7, and this decrease persisted to day 90. Fold changes in MAIT frequency correlated with increases in LPS IgA and IgG, but not LPS IgM nor antibody responses to cholera toxin B subunit. Conclusions In the acute phase of cholera, MAIT cells are activated, depleted from the periphery, and as part of the innate response against V. cholerae infection, are possibly involved in mechanisms underlying class switching of antibody responses to T cell-independent antigens. Vibrio cholerae is the bacterium that causes cholera, which can be a potentially fatal diarrheal disease that affects millions of people worldwide each year. How our immune system provides protection against cholera is poorly understood. Mucosal Associated Invariant T (MAIT) cells are recently discovered immune cells found in the blood and intestinal tract of humans. In this study of cholera patients in Dhaka, Bangladesh, we found that blood MAIT cells are activated during cholera, and that in children, blood MAIT cells are decreased in number during the course of disease. We also found that the MAIT cell response correlates with the antibody response to V. cholerae O1 lipopolysaccharide, which in the past has been shown to be an important determinant of protection. These findings suggest that MAIT cells may play an important role in the body's defense against cholera.
Collapse
Affiliation(s)
- Daniel T. Leung
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Taufiqur R. Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Naoshin S. Nishat
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Rubel Hoq
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Arifur Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taher Uddin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Richelle C. Charles
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Abstract
Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTX) and part of rtxA was significantly reduced, suggesting a role for CTX-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection.
Collapse
|
42
|
LaRocque RC, Harris JB, Ryan ET, Qadri F, Calderwood SB. Postgenomic approaches to cholera vaccine development. Expert Rev Vaccines 2014; 5:337-46. [PMID: 16827618 DOI: 10.1586/14760584.5.3.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholera remains an important public health threat. A cholera vaccine that provides durable protection at the mucosal surface, especially among children in endemic settings, is urgently needed. The availability of the complete genome sequence of a clinical isolate of Vibrio cholerae O1 El Tor has allowed for comparative and functional genomic approaches in the study of cholera. This work holds promise for the identification of bacterial targets of protective human immune responses and may contribute to the development of a new generation of cholera vaccines.
Collapse
Affiliation(s)
- Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, GRJ 504, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
43
|
Chopra A, Batra JK. Antimicrobial activity of human eosinophil granule proteins. Methods Mol Biol 2014; 1178:267-281. [PMID: 24986624 DOI: 10.1007/978-1-4939-1016-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Eosinophils secrete a number of proinflammatory mediators, like cytokines, chemokines, and granule proteins which are responsible for the initiation and sustenance of inflammatory response caused by them. The eosinophil granule proteins, ECP, EDN, MBP, and EPO possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.
Collapse
Affiliation(s)
- Anu Chopra
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
44
|
Provenzano D, Kovác P, Wade WF. The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine. Microbiol Immunol 2013; 50:899-927. [PMID: 17179659 DOI: 10.1111/j.1348-0421.2006.tb03866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.
Collapse
Affiliation(s)
- Daniele Provenzano
- Department of Biological Sciences, University of Texas-Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
45
|
Seper A, Hosseinzadeh A, Gorkiewicz G, Lichtenegger S, Roier S, Leitner DR, Röhm M, Grutsch A, Reidl J, Urban CF, Schild S. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog 2013; 9:e1003614. [PMID: 24039581 PMCID: PMC3764145 DOI: 10.1371/journal.ppat.1003614] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/27/2013] [Indexed: 02/07/2023] Open
Abstract
The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.
Collapse
Affiliation(s)
- Andrea Seper
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ava Hosseinzadeh
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | | | | - Sandro Roier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Marc Röhm
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Andreas Grutsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Constantin F. Urban
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
46
|
Promotion of colonization and virulence by cholera toxin is dependent on neutrophils. Infect Immun 2013; 81:3338-45. [PMID: 23798539 DOI: 10.1128/iai.00422-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response to Vibrio cholerae infection is poorly understood, but this knowledge is critical for the design of safe, effective vaccines. Using an adult mouse intestinal infection model, this study examines the contribution of neutrophils to host immunity, as well as the effect of cholera toxin and other secreted factors on this response. Depletion of neutrophils from mice with anti-Ly6G IA8 monoclonal antibody led to similar survival rates of mice infected with low or moderate doses of toxigenic V. cholerae El Tor O1. At a high dose, neutropenic mice showed increased rates of survival compared to neutrophil-replete animals. Expression of cholera toxin was found to be protective to the neutropenic host, and this phenotype can be replicated by the administration of purified toxin. Neutrophils do not effectively clear colonizing bacteria from the small intestine, nor do they alter induction of early immune-modulating signals. In both neutropenic and neutrophil-replete animals, the local response to infection is characterized by expression of interleukin 6 (IL-6), IL-10, and macrophage inflammatory protein 2 alpha (MIP-2). Overall, these data indicate that the innate immune response to toxigenic V. cholerae infection differs dramatically from the host response to nontoxigenic infection or vaccination, where neutrophils are protective to the host. In the absence of neutrophils, cholera toxin induces immunomodulatory effects that increase host survival. In cholera toxin-producing strains, similar to nontoxigenic infection, accessory toxins are critical to virulence, indicating that cholera toxin and the other secreted toxins modulate the host response by different mechanisms, with both contributing to bacterial persistence and virulence.
Collapse
|
47
|
Chatterjee D, Chaudhuri K. Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses. J Biol Chem 2012; 288:4299-309. [PMID: 23275338 DOI: 10.1074/jbc.m112.408302] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like other Gram-negative pathogens, Vibrio cholerae, the causative agent of the diarrheal disease cholera, secretes outer membrane vesicles (OMVs). OMVs are complex entities composed of a subset of envelope lipid and protein components and play a role in the delivery of effector molecules to host cells. We previously showed that V. cholerae O395 cells secrete OMVs that are internalized by host cells, but their role in pathogenesis has not been well elucidated. In the present study, we evaluated the interaction of OMVs with intestinal epithelial cells. These vesicles induced expression of proinflammatory cytokines such as IL-8 and GM-CSF and chemokines such as CCL2, CCL20, and thymic stromal lymphopoietin in epithelial cells through activation of MAPK and NF-κB pathways in NOD1-dependent manner. Epithelial cells stimulated with OMVs activated dendritic cells (DCs) in a direct co-culture system. Activated DCs expressed high levels of co-stimulatory molecules; released inflammatory cytokines IL-1β, IL-6, TNF-α, and IL-23 and chemokines CCL22 and CCL17; and subsequently primed CD4(+) T cells leading to IL-4, IL-13, and IL-17 expression. These results suggest that V. cholerae O395 OMVs modulate the epithelial proinflammatory response and activate DCs, which promote T cell polarization toward an inflammatory Th2/Th17 response.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Molecular and Human Genetics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | |
Collapse
|
48
|
Saha A, Chowdhury MI, Nazim M, Alam MM, Ahmed T, Hossain MB, Hore SK, Sultana GNN, Svennerholm AM, Qadri F. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children. Vaccine 2012. [PMID: 23200936 DOI: 10.1016/j.vaccine.2012.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. RESULTS The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, P<0.001) and the LAA (75%, P<0.001) children after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (P<0.001, P=0.048 respectively), whereas there were no differences in the measles specific IgG responses between the groups. Complement C3 and C4 levels in sera were higher in participants from the HAA than the LAA groups (P<0.001, P=0.049 respectively). CONCLUSIONS The study demonstrates that the oral cholera vaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas.
Collapse
Affiliation(s)
- Amit Saha
- Centre for Vaccine Sciences, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Leung DT, Chowdhury F, Calderwood SB, Qadri F, Ryan ET. Immune responses to cholera in children. Expert Rev Anti Infect Ther 2012; 10:435-44. [PMID: 22512753 DOI: 10.1586/eri.12.23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholera is a severe acute dehydrating diarrheal disease caused by Vibrio cholerae O1 or O139 infection, and is associated with significant mortality and morbidity globally. Although young children bear a high burden of the disease, currently available oral vaccines give a lower efficacy and shorter duration of protection in this group than in adults. According to the studies of natural infection, young children achieve comparable systemic anti-V. cholerae antigen-specific antibody, gut-homing antibody-secreting cell and memory B-cell responses as adults. Studies on innate and cell-mediated immune responses are lacking in children, and may offer important insights into differences in vaccine efficacy. The impact of host factors such as malnutrition, genetics and coinfection with other pathogens also remains to be fully defined.
Collapse
Affiliation(s)
- Daniel T Leung
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | |
Collapse
|
50
|
Melo RCN, Dvorak AM. Lipid body-phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy? PLoS Pathog 2012; 8:e1002729. [PMID: 22792061 PMCID: PMC3390411 DOI: 10.1371/journal.ppat.1002729] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles—the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
| | | |
Collapse
|