1
|
Ming J, Liao Y, Song W, Wang Z, Cui J, He L, Chen G, Xu K. Role of intracranial bone marrow mesenchymal stem cells in stroke recovery: A focus on post-stroke inflammation and mitochondrial transfer. Brain Res 2024; 1837:148964. [PMID: 38677450 DOI: 10.1016/j.brainres.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.
Collapse
Affiliation(s)
- Jiang Ming
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yidong Liao
- Department of Cardio-Thoracic Surgery, The First Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Wenxue Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Longcai He
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Hyperbaric Oxygen, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
2
|
Gong ZZ, Li T, Yan H, Xu MH, Lian Y, Yang YX, Wei W, Liu T. Exploring the autophagy-related pathogenesis of active ulcerative colitis. World J Clin Cases 2024; 12:1622-1633. [PMID: 38576744 PMCID: PMC10989433 DOI: 10.12998/wjcc.v12.i9.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The pathogenesis of ulcerative colitis (UC) is complex, and recent therapeutic advances remain unable to fully alleviate the condition. AIM To inform the development of novel UC treatments, bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC. METHODS The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria. Differential analysis was conducted to obtain differentially expressed genes (DEGs). Autophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes (DEARGs) associated with active UC. DEARGs were then subjected to KEGG, GO, and DisGeNET disease enrichment analyses using R software. Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm. The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs, and the top five targets in the Dgree ranking were designated as core targets. RESULTS A total of 4822 DEGs were obtained, of which 58 were classified as DEARGs. SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified as core targets. GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy. KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways. Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls. CONCLUSION Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients.
Collapse
Affiliation(s)
- Zhuo-Zhi Gong
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Teng Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - He Yan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Min-Hao Xu
- College of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing 100102, China
| | - Yue Lian
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yi-Xuan Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Tao Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
3
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hasoglu I, Karatug Kacar A. The therapeutic effects of exosomes the first time isolated from pancreatic islet-derived progenitor cells in the treatment of pancreatic cancer. PROTOPLASMA 2024; 261:281-291. [PMID: 37798610 DOI: 10.1007/s00709-023-01896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Insulinoma is an excessive insulin-released beta cell tumor. Pancreas cancer is one of the deadliest malignant neoplasms. Exosomes are secreted cell membrane vesicles containing a large number of proteins, lipids, and nucleic acids. The aim of this study is to investigate the effects of exosomes on two cell lines of benign and malignant character. For the first time, exosomes were isolated from pancreatic island-derived progenitor cells (PID-PCs) and applied to INS-1 and MiaPaCa-2 cells. In addition, exosomes isolated from PID-PC, MiaPaca-2, and INS-1 cells were characterized in order to compare their sizes with other previously isolated exosomes. Alix, TSG101, CD9, and CD81 were analyzed. The size and concentration of exosomes and the cell viability were detected. The cells were marked with HSP90, HSF-1, Kaspaz-8, Active-Kaspaz-3, Beclin, and p-Bcl-2. The cell cytotoxicity and insulin levels kit were measured. Alix in all exosomes, and PID-PC, MiaPaca-2 cell lysates; TSG101 in PID-PC and MiaPaca-2 cell lysates; CD9 in INS-1 exosomes were detected. The dimensions of isolated exosomes were 103.6 ± 28.6 nm, 100.7 ± 10 nm, and 147.2 ± 12.3 nm for PID-PCs, MiaPaca-2, and INS-1 cells. The cell viability decreased and HSP90 increased in the MiaPaca-2 cells. The HSF-1 was higher in the control MiaPaca-2 cell compared to the control INS-1 cell, and the exosome-treated MiaPaca-2 cell compared to the exosome-treated INS-1 cell. Beclin and p-Bcl-2 were decreased in the exosome-treated MiaPaca-2 cells. The insulin level in the cell lysates increased compared to cell secretion in INS-1 cells. In conclusion, exosomes isolated from the PID-PC caused cell death in the MiaPaca-2 cells in a time- and dose-dependent manner. The IC50 value determined for MiaPaca-2 cells has no effect on cell viability in INS-1 cells, which best mimics pancreatic beta cells and can be used instead of healthy pancreatic beta cells. Isolated exosomes can kill cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Imren Hasoglu
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
5
|
Kumar S, Chauhan SB, Upadhyay S, Singh SS, Verma V, Kumar R, Engwerda C, Nylén S, Sundar S. Altered IL-7 signaling in CD4+ T cells from patients with visceral leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0011960. [PMID: 38408097 PMCID: PMC10919868 DOI: 10.1371/journal.pntd.0011960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/07/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND CD4+ T cells play a central role in control of L. donovani infection, through IFN-γ production required for activation of macrophages and killing of intracellular parasites. Impaired control of parasites can in part be explained by hampered CD4+ T cells effector functions in visceral leishmaniasis (VL) patients. In a recent studies that defined transcriptional signatures for CD4+ T cells from active VL patients, we found that expression of the IL-7 receptor alpha chain (IL-7Rα; CD127) was downregulated, compared to CD4+ T cells from endemic controls (ECs). Since IL-7 signaling is critical for the survival and homeostatic maintenance of CD4+ T cells, we investigated this signaling pathway in VL patients, relative to ECs. METHODS CD4+ T cells were enriched from peripheral blood collected from VL patients and EC subjects and expression of IL7 and IL7RA mRNA was measured by real time qPCR. IL-7 signaling potential and surface expression of CD127 and CD132 on CD4+ T cell was analyzed by multicolor flow cytometry. Plasma levels of soluble IL-7 and sIL-7Rα were measured by ELISA. RESULT Transcriptional profiling data sets generated previously from our group showed lower IL7RA mRNA expression in VL CD4+ T cells as compared to EC. A significant reduction was, however not seen when assessing IL7RA mRNA by RT-qPCR. Yet, the levels of soluble IL-7Rα (sIL-7Rα) were reduced in plasma of VL patients compared to ECs. Furthermore, the levels of soluble IL-7 were higher in plasma from VL patients compared to ECs. Interestingly, expression of the IL-7Rα protein was higher on VL patient CD4+ T cells as compared to EC, with activated CD38+ CD4+ T cells showing higher surface expression of IL-7Rα compared to CD38- CD4+ T cells in VL patients. CD4+ T cells from VL patients had higher signaling potential baseline and after stimulation with recombinant human IL-7 (rhIL-7) compared to EC, as measured by phosphorylation of STAT5 (pSTAT5). Interestingly, it was the CD38 negative cells that had the highest level of pSTAT5 in VL patient CD4+ T cells after IL-7 stimulation. Thus, despite unaltered or potentially lowered IL7RA mRNA expression by CD4+ T cells from VL patients, the surface expression of the IL-7Rα was higher compared to EC and increased pSTAT5 was seen following exposure to rhIL-7. Accordingly, IL-7 signaling appears to be functional and even enhanced in VL CD4+ T cells and cannot explain the impaired effector function of VL CD4+ T cells. The enhanced plasma IL-7 may serve as part of homeostatic feedback mechanism regulating IL7RA expression in CD4+ T cells.
Collapse
Affiliation(s)
- Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Shashi Bhushan Chauhan
- School of Medicine & Health Sciences, The George Washington University, Washington, Washington, United States of America
| | - Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Siddharth Sankar Singh
- University of Massachusetts Chan Medical School, Shrewsbury, Massachusetts, United States of America
| | - Vimal Verma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Banaras Hindu University, Varanasi, India
| | | | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| |
Collapse
|
6
|
Zhong Y, Xiao Q, Huang J, Yu S, Chen L, Wan Q, Zhang Z, Luo L, Song L, Zhao H, Zhou W, Liu D. Ginsenoside Rg1 Alleviates Ulcerative Colitis in Obese Mice by Regulating the Gut Microbiota-Lipid Metabolism-Th1/Th2/Th17 Cells Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20073-20091. [PMID: 38064669 DOI: 10.1021/acs.jafc.3c04811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) has various pharmacological properties including antiobesity, immunomodulatory, and anti-inflammatory effects. This study aimed to explore the therapeutic effects and underlying mechanisms of G-Rg1 on colitis complicated by obesity. The results indicate that G-Rg1 effectively alleviates colitis in obese mice and improves serum lipid levels and liver function. Importantly, G-Rg1 improved the composition of gut microbiota in obese mice with colitis, with increases in alpha diversity indexes Sobs, Ace, and Chao, a significant down-regulation of the relative abundance of Romboutsia, and a significant up-regulation of Rikenellaceae_RC9_gut_group, Lachnospiraceae_NK4A136_group, Enterorhabdus, Desulfovibrio, and Alistipes. Meanwhile, G-Rg1 improved lipid metabolism in the colonic contents of obese mice with colitis. Additionally, G-Rg1 significantly reduced the percentages of helper T (Th)1, Th17, central memory T (TCM), and effector memory T (TEM) cells in obese mice with colitis while significantly increasing Naïve T and Th2 cells. In conclusion, G-Rg1 could be a promising therapeutic option for alleviating obesity complicated by colitis through regulation of the gut microbiota and lipid metabolism as well as Th1/Th2/Th17 cell differentiation.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jiaqi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Songren Yu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qi Wan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zheyan Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lin Luo
- College of Acupuncture and Massage, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lizhao Song
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Wen Zhou
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Nanchang Medical College, Nanchang, Jiangxi 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
7
|
Min H, Valente LA, Xu L, O'Neil SM, Begg LR, Kurtzberg J, Filiano AJ. Improving thymus implantation for congenital athymia with interleukin-7. Clin Transl Immunology 2023; 12:e1475. [PMID: 38020730 PMCID: PMC10665642 DOI: 10.1002/cti2.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Thymus implantation is a recently FDA-approved therapy for congenital athymia. Patients receiving thymus implantation develop a functional but incomplete T cell compartment. Our objective was to develop a mouse model to study clinical thymus implantation in congenital athymia and to optimise implantation procedures to maximise T cell education and expansion of naïve T cells. Methods Using Foxn1 nu athymic mice as recipients, we tested MHC-matched and -mismatched donor thymi that were implanted as fresh tissue or cultured to remove donor T cells. We first implanted thymus under the kidney capsule and then optimised intramuscular implantation. Using competitive adoptive transfer assays, we investigated whether the failure of newly developed T cells to expand into a complete T cell compartment was because of intrinsic deficits or whether there were deficits in engaging MHC molecules in the periphery. Finally, we tested whether recombinant IL-7 would promote the expansion of host naïve T cells educated by the implanted thymus. Results We determined that thymus implants in Foxn1 nu athymic mice mimic many aspects of clinical thymus implants in patients with congenital athymia. When we implanted cultured, MHC-mismatched donor thymus into Foxn1 nu athymic mice, mice developed a limited T cell compartment with notably underdeveloped naïve populations and overrepresented memory-like T cells. Newly generated T cells were predominantly educated by MHC molecules expressed by the donor thymus, thus potentially undergoing another round of selection once in the peripheral circulation. Using competitive adoptive transfer assays, we compared expansion rates of T cells educated on donor thymus versus T cells educated during typical thymopoiesis in MHC-matched and -mismatched environments. Once in the circulation, regardless of the MHC haplotypes, T cells educated on a donor thymus underwent abnormal expansion with initially more robust proliferation coupled with greater cell death, resembling IL-7 independent spontaneous expansion. Treating implanted mice with recombinant interleukin (IL-7) promoted homeostatic expansion that improved T cell development, expanded the T cell receptor repertoire, and normalised the naïve T cell compartment. Conclusion We conclude that implanting cultured thymus into the muscle of Foxn1 nu athymic mice is an appropriate system to study thymus implantation for congenital athymia and immunodeficiencies. T cells are educated by the donor thymus, yet naïve T cells have deficits in expansion. IL-7 greatly improves T cell development after thymus implantation and may offer a novel strategy to improve outcomes of clinical thymus implantation.
Collapse
Affiliation(s)
- Hyunjung Min
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Laura A Valente
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
| | - Li Xu
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Shane M O'Neil
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Lauren R Begg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Joanne Kurtzberg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PediatricsDuke UniversityDurhamNCUSA
| | - Anthony J Filiano
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
- Department of NeurosurgeryDuke UniversityDurhamNCUSA
- Department of ImmunologyDuke UniversityDurhamNCUSA
| |
Collapse
|
8
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
10
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
11
|
Takahara M, Takaki A, Hiraoka S, Takei K, Yasutomi E, Igawa S, Yamamoto S, Oka S, Ohmori M, Yamasaki Y, Inokuchi T, Kinugasa H, Harada K, Udono H, Okada H. Metformin ameliorates chronic colitis in a mouse model by regulating interferon-γ-producing lamina propria CD4 + T cells through AMPK activation. FASEB J 2022; 36:e22139. [PMID: 35064693 DOI: 10.1096/fj.202100831rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 07/30/2024]
Abstract
Metformin, a commonly prescribed drug for type 2 diabetes mellitus, has been shown to activate AMP-activated protein kinase (AMPK). Notably, AMPK activation has recently been observed to be associated with anti-inflammatory responses. Metformin is also reported to elicit anti-inflammatory responses in CD4+ T cells, resulting in improvement in experimental chronic inflammatory diseases, such as systemic lupus erythematosus. To investigate the effect of metformin on inflammatory bowel disease (IBD), we developed a T cell-transfer model of chronic colitis in which SCID mice were injected with CD4+ CD45RBhigh T cells to induce colitis. We examined the effects of metformin via in vitro and in vivo experiments on lamina propria (LP) CD4+ T cells. We observed that metformin suppresses the frequency of interferon (IFN) -γ-producing LP CD4+ T cells in vitro, which were regulated by AMPK activation, a process possibly induced by the inhibition of oxidative phosphorylation. Furthermore, we examined the effects of metformin on an in vivo IBD model. Metformin-treated mice showed AMPK activation in LP CD4+ T cells and ameliorated colitis. Our study demonstrates that metformin-induced AMPK activation in mucosal CD4+ T cells contributes to the improvement of IBD by suppressing IFN-γ production. Moreover, our results indicate that AMPK may be a target molecule for the regulation of mucosal immunity and inflammation. Thus, AMPK-activating drugs such as metformin may be potential therapeutic agents for the treatment of IBD.
Collapse
Affiliation(s)
- Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kensuke Takei
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Yasutomi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shoko Igawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shohei Oka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayasu Ohmori
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Harada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
12
|
Wang Z, Chai C, Wang R, Feng Y, Huang L, Zhang Y, Xiao X, Yang S, Zhang Y, Zhang X. Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med 2021; 11:e650. [PMID: 34965030 PMCID: PMC8715893 DOI: 10.1002/ctm2.650] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The heterogeneity of mesenchymal stem cells (MSCs) is poorly understood, thus limiting clinical application and basic research reproducibility. Advanced single-cell RNA sequencing (scRNA-seq) is a robust tool used to analyse for dissecting cellular heterogeneity. However, the comprehensive single-cell atlas for human MSCs has not been achieved. METHODS This study used massive parallel multiplexing scRNA-seq to construct an atlas of > 130 000 single-MSC transcriptomes across multiple tissues and donors to assess their heterogeneity. The most widely clinically utilised tissue resources for MSCs were collected, including normal bone marrow (n = 3), adipose (n = 3), umbilical cord (n = 2), and dermis (n = 3). RESULTS Seven tissue-specific and five conserved MSC subpopulations with distinct gene-expression signatures were identified from multiple tissue origins based on the high-quality data, which has not been achieved previously. This study showed that extracellular matrix (ECM) highly contributes to MSC heterogeneity. Notably, tissue-specific MSC subpopulations were substantially heterogeneous on ECM-associated immune regulation, antigen processing/presentation, and senescence, thus promoting inter-donor and intra-tissue heterogeneity. The variable dynamics of ECM-associated genes had discrete trajectory patterns across multiple tissues. Additionally, the conserved and tissue-specific transcriptomic-regulons and protein-protein interactions were identified, potentially representing common or tissue-specific MSC functional roles. Furthermore, the umbilical-cord-specific subpopulation possessed advantages in immunosuppressive properties. CONCLUSION In summary, this work provides timely and great insights into MSC heterogeneity at multiple levels. This MSC atlas taxonomy also provides a comprehensive understanding of cellular heterogeneity, thus revealing the potential improvements in MSC-based therapeutic efficacy.
Collapse
Affiliation(s)
- Zheng Wang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Chengyan Chai
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Rui Wang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Yimei Feng
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Lei Huang
- Department of Urologythe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgerythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Xia Xiao
- Time Plastic Surgery HospitalChongqingChina
| | - Shijie Yang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Yunfang Zhang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Xi Zhang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|
14
|
Human Adipose Tissue-Derived Mesenchymal Stromal Cells Inhibit CD4+ T Cell Proliferation and Induce Regulatory T Cells as Well as CD127 Expression on CD4+CD25+ T Cells. Cells 2021; 10:cells10010058. [PMID: 33401501 PMCID: PMC7824667 DOI: 10.3390/cells10010058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) exert their immunomodulatory potential on several cell types of the immune system, affecting and influencing the immune response. MSC efficiently inhibit T cell proliferation, reduce the secretion of pro-inflammatory cytokines, limit the differentiation of pro-inflammatory Th subtypes and promote the induction of regulatory T cells (Treg). In this study, we analyzed the immunomodulatory potential of human adipose tissue-derived MSC (ASC), on CD4+ T cells, addressing potential cell-contact dependency in relation to T cell receptor stimulation of whole human peripheral blood mononuclear cells (PBMC). ASC were cultured with not stimulated or anti-CD3/CD28-stimulated PBMC in direct and transwell cocultures; PBMC alone were used as controls. After 7 days, cocultures were harvested and we analyzed: (1) the inhibitory potential of ASC on CD4+ cell proliferation and (2) phenotypic changes in CD4+ cells in respect of Treg marker (CD25, CD127 and FoxP3) expression. We confirmed the inhibitory potential of ASC on CD4+ cell proliferation, which occurs upon PBMC stimulation and is mediated by indoleamine 2,3-dioxygenase. Importantly, ASC reduce both pro- and anti-inflammatory cytokine secretion, without indications on specific Th differentiation. We found that stimulation induces CD25 expression on CD4+ cells and that, despite inhibiting overall CD4+ cell proliferation, ASC can specifically induce the proliferation of CD4+CD25+ cells. We observed that ASC induce Treg (CD4+CD25+CD127−FoxP3+) only in not stimulated cocultures and that ASC increase the ratio of CD4+CD25+CD127+FoxP3− cells at the expense of CD4+CD25+CD127−FoxP3− cells. Our study provides new insights on the interplay between ASC and CD4+ T cells, proposing that ASC-dependent induction of Treg depends on PBMC activation which affects the balance between the different subpopulations of CD4+CD25+ cells expressing CD127 and/or FoxP3.
Collapse
|
15
|
Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL, Mannon PJ, Elson CO. CD4 + T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol 2020; 5:5/54/eabc6373. [PMID: 33310866 DOI: 10.1126/sciimmunol.abc6373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Microbiota-reactive CD4+ T memory (TM) cells are generated during intestinal infections and inflammation, and can revert to pathogenic CD4+ T effector (TE) cells, resulting in chronicity of inflammatory bowel disease (IBD). Unlike TE cells, TM cells have a low rate of metabolism unless they are activated by reencountering cognate antigen. Here, we show that the combination of cell activation and metabolic checkpoint inhibition (CAMCI), by targeting key metabolic regulators mTORC and AMPK, resulted in cell death and anergy, but enhanced the induction of the regulatory subset. Parenteral application of this treatment with a synthetic peptide containing multiple flagellin T cell epitopes (MEP1) and metabolic inhibition successfully prevented the development of CD4+ T cell-driven colitis. Microbiota-specific CD4+ T cells, especially the pathogenic TE subsets, were decreased 10-fold in the intestinal lamina propria. Furthermore, using the CAMCI strategy, we were able to prevent antigen-specific TM cell formation upon initial antigen encounter, and ablate existing TM cells upon reactivation in mice, leading to an altered transcriptome in the remaining CD4+ T cells after ablation. Microbiota flagellin-specific CD4+ T cells from patients with Crohn's disease were ablated in a similar manner after CAMCI in vitro, with half of the antigen-specific T cells undergoing cell death. These results indicate that parenteral activation of microbiota-specific CD4+ T cells with concomitant metabolic inhibition is an effective way to ablate pathogenic CD4+ TM cells and to induce T regulatory (Treg) cells that provide antigen-specific and bystander suppression, supporting a potential immunotherapy to prevent or ameliorate IBD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennard W Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengyuan Huang
- Department of Genetics, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter J Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Liu J, Liu Q, Chen X. The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Front Immunol 2020; 11:1843. [PMID: 32922398 PMCID: PMC7456948 DOI: 10.3389/fimmu.2020.01843] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated in many preclinical and clinical studies. This potential is dominantly based on the immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC transplantation are still not fully characterized, accumulating evidence has revealed that B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The immunosuppressive effects of Bregs have been demonstrated, and these cells are being evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable of educating B cells and inducing regulatory B cell production via cell-to-cell contact, soluble factors, and extracellular vesicles (EVs). These cells thus have the potential to complement each other's immunomodulatory functions, and a combined approach may enable synergistic effects for the treatment of immunological diseases. However, compared with investigations regarding other immune cells, investigations into how MSCs specifically regulate Bregs have been superficial and insufficient. In this review, we discuss the current findings related to the immunomodulatory effects of MSCs on regulatory B cells and provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
The Achievements and Challenges of Mesenchymal Stem Cell-Based Therapy in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Stem Cells Int 2020; 2020:7819824. [PMID: 32256612 PMCID: PMC7104387 DOI: 10.1155/2020/7819824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Approximately 18.1 × 106 new cases of cancer were recorded globally in 2018, out of which 9.6 million died. It is known that people who have Inflammatory Bowel Disease (IBD) turn to be prone to increased risks of developing colorectal cancer (CRC), which has global incident and mortality rates of 10.2% and 9.2%, respectively. Over the years, conventional treatments of IBD and its associated CRC have been noted to provide scarce desired results and often with severe complications. The introduction of biological agents as a better therapeutic approach has witnessed a great deal of success in both experimental and clinical models. With regard to mesenchymal stem cell (MSC) therapy, the ability of these cells to actively proliferate, undergo plastic differentiation, trigger strong immune regulation, exhibit low immunogenicity, and express abundant trophic factors has ensured their success in regenerative medicine and immune intervention therapies. Notwithstanding, MSC-based therapy is still confronted with some challenges including the likelihood of promoting tumor growth and metastasis, and possible overestimated therapeutic potentials. We review the success story of MSC-based therapy in IBD and its associated CRC as documented in experimental models and clinical trials, examining some of the challenges encountered and possible ways forward to producing an optimum MSC therapeutic imparts.
Collapse
|
18
|
Chen Q, Duan X, Xu M, Fan H, Dong Y, Wu H, Zhang M, Liu Y, Nan Z, Deng S, Liu X. BMSC-EVs regulate Th17 cell differentiation in UC via H3K27me3. Mol Immunol 2020; 118:191-200. [DOI: 10.1016/j.molimm.2019.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
|
19
|
Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2019; 14:493-507. [PMID: 29895977 DOI: 10.1038/s41581-018-0023-5] [Citation(s) in RCA: 752] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs; also referred to as mesenchymal stromal cells) have attracted much attention for their ability to regulate inflammatory processes. Their therapeutic potential is currently being investigated in various degenerative and inflammatory disorders such as Crohn's disease, graft-versus-host disease, diabetic nephropathy and organ fibrosis. The mechanisms by which MSCs exert their therapeutic effects are multifaceted, but in general, these cells are thought to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment in the presence of vigorous inflammation. Studies over the past few years have demonstrated that when exposed to an inflammatory environment, MSCs can orchestrate local and systemic innate and adaptive immune responses through the release of various mediators, including immunosuppressive molecules, growth factors, exosomes, chemokines, complement components and various metabolites. Interestingly, even nonviable MSCs can exert beneficial effects, with apoptotic MSCs showing immunosuppressive functions in vivo. Because the immunomodulatory capabilities of MSCs are not constitutive but rather are licensed by inflammatory cytokines, the net outcomes of MSC activation might vary depending on the levels and the types of inflammation within the residing tissues. Here, we review current understanding of the immunomodulatory mechanisms of MSCs and the issues related to their therapeutic applications.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianquan Hou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
Belarif L, Danger R, Kermarrec L, Nerrière-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, Thepenier V, Martin JC, Chang C, Rahman A, Guen NSL, Braudeau C, Abidi A, David G, Malard F, Takoudju C, Martinet B, Gérard N, Neveu I, Neunlist M, Coron E, MacDonald TT, Desreumaux P, Mai HL, Le Bas-Bernardet S, Mosnier JF, Merad M, Josien R, Brouard S, Soulillou JP, Blancho G, Bourreille A, Naveilhan P, Vanhove B, Poirier N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 2019; 129:1910-1925. [PMID: 30939120 DOI: 10.1172/jci121668] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4β7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.
Collapse
Affiliation(s)
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Laetitia Kermarrec
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Véronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | | | - Tony Durand
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | | | | | | | - Aneta Kucik
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | | | - Jerome C Martin
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Christie Chang
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Adeeb Rahman
- Precision Immunology Institute.,Charles Bronfman Institute for Personalized Medicine, and.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Salabert-Le Guen
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Cécile Braudeau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France
| | - Ahmed Abidi
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Laboratoire de génétique, immunologie et pathologies humaines, Faculté des sciences de Tunis, Tunis, Tunisia
| | - Grégoire David
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Florent Malard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Celine Takoudju
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Nathalie Gérard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Isabelle Neveu
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Michel Neunlist
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Thomas T MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Pierre Desreumaux
- Hepato-Gastroenterology Department, Claude Huriez Hospital, University of Lille 2, Lille, France
| | - Hoa-Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Stephanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-François Mosnier
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Miriam Merad
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Arnaud Bourreille
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Philippe Naveilhan
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | | | | |
Collapse
|
21
|
Alhattab D, Jamali F, Ali D, Hammad H, Adwan S, Rahmeh R, Samarah O, Salah B, Hamdan M, Awidi A. An insight into the whole transcriptome profile of four tissue-specific human mesenchymal stem cells. Regen Med 2019; 14:841-865. [PMID: 30702025 DOI: 10.2217/rme-2018-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Variations in the clinical outcomes using mesenchymal stem cells (MSCs) treatments exist, reflecting different origins and niches. To date, there is no consensus on the best source of MSCs most suitable to treat a specific disease. Methods: Total transcriptome analysis of human MSCs was performed. MSCs were isolated from two adult sources bone marrow, adipose tissue and two perinatal sources umbilical cord and placenta. Results: Each MSCs type possessed a unique expression pattern that reflects an advantage in terms of their potential therapeutic use. Advantages in immune modulation, neurogenesis and other aspects were found. Discussion: This study is a milestone for evidence-based choice of the type of MSCs used in the treatment of diseases.
Collapse
Affiliation(s)
- Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hana Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Sofia Adwan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Omar Samarah
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Mohammad Hamdan
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
22
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
23
|
Sylvester FA. Inflammatory Bowel Disease: Effects on Bone and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:133-150. [PMID: 29101654 DOI: 10.1007/978-3-319-66653-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with decreased bone mass and alterations in bone geometry from the time of diagnosis, before anti-inflammatory therapy is instituted. Deficits in bone mass can persist despite absence of symptoms of active IBD. The effects of IBD on the skeleton are complex. Protein-calorie malnutrition, inactivity, hypogonadism, deficits in calcium intake and vitamin D consumption and synthesis, stunted growth in children, decreased skeletal muscle mass, and inflammation all likely play a role. Preliminary studies suggest that the dysbiotic intestinal microbial flora present in IBD may also affect bone at a distance. Several mechanisms are possible. T cells activated by the gut microbiota may serve as "inflammatory shuttles" between the intestine and bone. Microbe-associated molecular patterns leaked into the circulation in IBD may activate immune responses in the bone marrow by immune cells and by osteocytes, osteoblasts, and osteoclasts that lead to decreased bone formation and increased resorption. Finally, intestinal microbial metabolites such as H2S may also affect bone cell function. Uncovering these mechanisms will enable the design of microbial cocktails to help restore bone mass in patients with IBD.
Collapse
Affiliation(s)
- Francisco A Sylvester
- Division Chief of Pediatric Gastroenterology, The University of North Carolina at Chapel Hil, 333 South Columbia Street, MacNider Hall 247, Chapel Hill, NC, 27599-7229, USA.
| |
Collapse
|
24
|
Wei Q, Frenette PS. Niches for Hematopoietic Stem Cells and Their Progeny. Immunity 2018; 48:632-648. [PMID: 29669248 PMCID: PMC6103525 DOI: 10.1016/j.immuni.2018.03.024] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Steady-state hematopoietic stem cells' (HSCs) self-renewal and differentiation toward their mature progeny in the adult bone marrow is tightly regulated by cues from the microenvironment. Recent insights into the cellular and molecular constituents have uncovered a high level of complexity. Here, we review emerging evidence showing how HSCs and their progeny are regulated by an interdependent network of mesenchymal stromal cells, nerve fibers, the vasculature, and also other hematopoietic cells. Understanding the interaction mechanisms in these intricate niches will provide great opportunities for HSC-related therapies and immune modulation.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departmentof Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Liao L, Yu Y, Shao B, Su X, Wang H, Kuang H, Jing H, Situai Y, Yang D, Jin Y. Redundant let‐7a suppresses the immunomodulatory properties of BMSCs by inhibiting the Fas/FasL system in osteoporosis. FASEB J 2018; 32:1982-1992. [DOI: 10.1096/fj.201700885r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Liao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yang Yu
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Han Wang
- Department of StomatologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Huan Jing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yi Situai
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Department of StomatologyNanjing General Hospital of Nanjing Military Command, People's Liberation ArmyNanjingChina
| | - Deqin Yang
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| |
Collapse
|
26
|
Loganes C, Lega S, Bramuzzo M, Vecchi Brumatti L, Piscianz E, Valencic E, Tommasini A, Marcuzzi A. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage. Nutrients 2017; 9:nu9060578. [PMID: 28587282 PMCID: PMC5490557 DOI: 10.3390/nu9060578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Claudia Loganes
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Sara Lega
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Matteo Bramuzzo
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Liza Vecchi Brumatti
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Erica Valencic
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| |
Collapse
|
27
|
Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Inflammatory Bowel Disease in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5356760. [PMID: 28589143 PMCID: PMC5447283 DOI: 10.1155/2017/5356760] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
Exosomes secreted by mesenchymal stem cells (MSCs) have shown repairing effects on several tissue injury diseases. In this study, we aimed to investigate the effects of exosomes released from human umbilical cord mesenchymal stem cells (hucMSCs) on the treatment of dextran sulfate sodium- (DSS-) induced inflammatory bowel disease (IBD) and to explore the underlying mechanism. We found that indocyanine green (ICG) labeled exosomes homed to colon tissues of IBD mice at 12 hours after injection. Exosomes significantly relieved the severity of IBD in mice as hucMSCs. The expression of IL-10 gene was increased while that of TNF-α, IL-1β, IL-6, iNOS, and IL-7 genes was decreased in the colon tissues and spleens of exosomes-treated mice. Furthermore, the infiltration of macrophages into the colon tissues was decreased by exosome treatment in IBD mice. In addition, we provided evidence that in vitro coculture with exosomes inhibited the expression of iNOS and IL-7 in mouse enterocoelia macrophages. Moreover, we found that the expression of IL-7 was higher in the colon tissues of colitis patients than that of healthy controls. Our findings suggest that exosomes from hucMSCs have profound effects on alleviating DSS-induced IBD and may exert their impact through the modulation of IL-7 expression in macrophages.
Collapse
|
28
|
Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 2016; 22:7938-7950. [PMID: 27672289 PMCID: PMC5028808 DOI: 10.3748/wjg.v22.i35.7938] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’s protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regiments. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Increasing our knowledge about MYC-dependent pathways might provide direction to novel anti-inflammatory and colorectal cancer therapies.
Collapse
|
29
|
Di Rosa F. Two Niches in the Bone Marrow: A Hypothesis on Life-long T Cell Memory. Trends Immunol 2016; 37:503-512. [PMID: 27395354 DOI: 10.1016/j.it.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The concept is emerging that the bone marrow (BM) sustains life-long persistence of memory T cells, as it does for plasma cells. Recent studies revived the debate on how this is achieved: is the BM essentially a nest for the proliferation of recirculating memory T cells, or a storage depot for resting memory T cells? Learning from division of labor in hematopoietic stem cells, this article proposes that two distinct BM niches support memory T cell cycling and quiescence, thereby enabling memory T cells to maintain all their distinguishing features. This framework might be instrumental to interpret some puzzling findings and conceptualize the mechanisms preserving either stability of memory T cell numbers or the capacity to mount secondary responses.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
30
|
Ciccocioppo R, Cangemi GC, Kruzliak P, Corazza GR. Concise Review: Cellular Therapies: The Potential to Regenerate and Restore Tolerance in Immune-Mediated Intestinal Diseases. Stem Cells 2016; 34:1474-86. [PMID: 27016400 DOI: 10.1002/stem.2367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory enteropathies, including celiac disease, Crohn's disease, and ulcerative colitis, are lifelong disabling conditions whose cure is still an unmet need, despite the great strides made in understanding their complex pathogenesis. The advent of cellular therapies, mainly based on the use of stem cells, represents a great step forward thanks to their multitarget strategy. Both hematopoietic stem cells (HSC) and mesenchymal stem/stromal cells (MSC) have been employed in the treatment of refractory cases with promising results. The lack of immunogenicity makes MSC more suitable for therapeutic purposes as their infusion may be performed across histocompatibility locus antigen barriers without risk of rejection. The best outcome has been obtained when treating fistulizing Crohn's disease with local injections of MSC. In addition, both HSC and MSC proved successful in promoting regeneration of intestinal mucosa, and favoring the expansion of a T-cell regulatory subset. By virtue of the ability to favor mucosal homeostasis, this last cell population has been exploited in clinical trials, with inconsistent results. Finally, the recent identification of the epithelial stem cell marker has opened up the possibility of tissue engineering, with an array of potential applications for intestinal diseases. However, the underlying mechanisms of action of these interconnected therapeutic strategies are still poorly understood. It is conceivable that over the next few years their role will become clearer as the biological interactions with injured tissues and the hierarchy by which they deliver their action are unraveled through a continuous moving from bench to bedside and vice versa. Stem Cells 2016;34:1474-1486.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Giuseppina Cristina Cangemi
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Gino Roberto Corazza
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| |
Collapse
|
31
|
Di Rosa F, Gebhardt T. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. Front Immunol 2016; 7:51. [PMID: 26909081 PMCID: PMC4754413 DOI: 10.3389/fimmu.2016.00051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals – i.e., antigen, co-stimuli and cytokines – in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine Sapienza University , Rome , Italy
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
32
|
Wakkach A, Rouleau M, Blin-Wakkach C. Osteoimmune Interactions in Inflammatory Bowel Disease: Central Role of Bone Marrow Th17 TNFα Cells in Osteoclastogenesis. Front Immunol 2015; 6:640. [PMID: 26734007 PMCID: PMC4683185 DOI: 10.3389/fimmu.2015.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Osteoimmunology is an interdisciplinary research field dedicated to the study of the crosstalk between the immune and bone systems. CD4+ T cells are central players in this crosstalk. There is an emerging understanding that CD4+ T cells play an important role in the bone marrow (BM) under physiological and pathological conditions and modulate the differentiation of bone-resorbing osteoclasts. However, identification of the mechanisms that maintain CD4+ T cells in the BM is still a matter of investigation. This article describes the CD4+ T cell populations of the BM and reviews their role as osteoclastogenic population in inflammatory bowel disease.
Collapse
Affiliation(s)
- Abdelilah Wakkach
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| | - Matthieu Rouleau
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| |
Collapse
|
33
|
Schirrmacher V. Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). Int J Oncol 2015; 47:2005-16. [PMID: 26459860 DOI: 10.3892/ijo.2015.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
Cognate interactions between naïve tumor antigen (TA)-specific T cells and TA-presenting dendritic cells (DCs) are facilitated by secondary lymphoid organs such as lymph nodes or the spleen. These can result either in TA-specific tolerance or, depending on environmental costimulatory signals, in TA-specific immune responses. In the present review, we describe such events for the bone marrow (BM) when blood-borne TA, released from the primary tumor or expressed by blood circulating tumor cells or DCs enters the BM stroma and parenchyma. We argue that cognate T-DC interactions in the BM result in immune responses and generation of memory T cells (MTCs) rather than tolerance because T cells in the BM show an increased level of pre-activation. The review starts with the spontaneous induction of cancer-reactive MTCs in the BM and the involvement of such MTCs in the control of tumor dormancy. The main part deals with the therapeutic potency of BM MTCs. This is a new area of research in which the authors research group has performed pioneering studies which are summarized. These include studies in animal tumor models, studies with human cells in tumor xenotransplant models and clinical studies. Based on observations of an enormous expansion capacity, longevity and therapeutic capacity of BM MTCs, a hypothesis is presented which suggests the involvement of stem-like MTCs.
Collapse
|
34
|
Zhang Y, Jin Y, Lin Y, Lin LJ, Cao Y, Wang DX, Zheng CQ. Adipose-Derived Mesenchymal Stem Cells Ameliorate Ulcerative Colitis Through miR-1236 Negatively Regulating the Expression of Retinoid-Related Orphan Receptor Gamma. DNA Cell Biol 2015; 34:618-25. [PMID: 26237452 DOI: 10.1089/dna.2015.2961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ying Zhang
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Jin
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yan Lin
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lian-jie Lin
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Cao
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Dong-xu Wang
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chang-qing Zheng
- Second Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
35
|
El Azreq MA, Arseneault C, Boisvert M, Pagé N, Allaeys I, Poubelle PE, Tessier PA, Aoudjit F. Cooperation between IL-7 Receptor and Integrin α2β1 (CD49b) Drives Th17-Mediated Bone Loss. THE JOURNAL OF IMMUNOLOGY 2015; 195:4198-209. [DOI: 10.4049/jimmunol.1500437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/20/2015] [Indexed: 01/15/2023]
|
36
|
Algeri M, Conforti A, Pitisci A, Starc N, Tomao L, Bernardo ME, Locatelli F. Mesenchymal stromal cells and chronic inflammatory bowel disease. Immunol Lett 2015; 168:191-200. [PMID: 26170204 DOI: 10.1016/j.imlet.2015.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
Abstract
Recent experimental findings have shown the ability of mesenchymal stromal cells (MSCs) to home to damaged tissues and to produce paracrine factors with anti-inflammatory properties, potentially resulting in reduction of inflammation and functional recovery of the damaged tissues. Prompted by these intriguing properties and on the basis of encouraging preclinical data, MSCs are currently being studied in several immune-mediated disorders. Inflammatory bowel diseases (IBD) represent a setting in which MSCs-based therapy has been extensively investigated. Phase I and II studies have documented the safety and feasibility of MSCs. However, efficacy results have so far been conflicting. In this review, we will discuss the biologic rationale that makes MSCs a promising therapeutic tool for IBD, and analyze recent experimental and clinical findings, highlighting current limitations and future perspectives of MSCs-related immunotherapy for IBD.
Collapse
Affiliation(s)
- M Algeri
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - A Conforti
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - A Pitisci
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - N Starc
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy; Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - L Tomao
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - M E Bernardo
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - F Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, University of Pavia, Italy.
| |
Collapse
|
37
|
Sala E, Genua M, Petti L, Anselmo A, Arena V, Cibella J, Zanotti L, D'Alessio S, Scaldaferri F, Luca G, Arato I, Calafiore R, Sgambato A, Rutella S, Locati M, Danese S, Vetrano S. Mesenchymal Stem Cells Reduce Colitis in Mice via Release of TSG6, Independently of Their Localization to the Intestine. Gastroenterology 2015; 149:163-176.e20. [PMID: 25790743 DOI: 10.1053/j.gastro.2015.03.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Mesenchymal stem cells (MSCs) are pluripotent cells that can promote expansion of immune regulatory cells and might be developed for the treatment of immune disorders, including inflammatory bowel diseases. MSCs were reported to reduce colitis in mice; we investigated whether MSC localization to the intestine and production of paracrine factors, including tumor necrosis factor-induced protein 6 (TSG6), were required for these effects. METHODS MSCs were isolated from bone marrow (BM-MSCs) of 4- to 6-week-old C57BL/6, C57BL/6-green fluorescent protein, or Balb/c Tsg6-/- male mice. Colitis was induced by ad libitum administration of dextran sulfate sodium for 10 days; after 5 days the mice were given intraperitoneal injections of BM-MSCs or saline (controls). Blood samples and intestinal tissues were collected 24, 48, 96, and 120 hours later; histologic and flow cytometry analyses were performed. RESULTS Injection of BM-MSCs reduced colitis in mice, increasing body weight and reducing markers of intestinal inflammation, compared with control mice. However, fewer than 1% of MSCs reached the inflamed colon. Most of the BM-MSCs formed aggregates in the peritoneal cavity. The aggregates contained macrophages and B and T cells, and produced immune-regulatory molecules including FOXP3, interleukin (IL)10, transforming growth factor-β, arginase type II, chemokine (C-C motif) ligand 22 (CCL22), heme oxygenase-1, and TSG6. Serum from mice given BM-MSCs, compared with mice given saline, had increased levels of TSG6. Injection of TSG6 reduced the severity of colitis in mice, along with the numbers of CD45+ cells, neutrophils and metalloproteinase activity in the mucosa, while increasing the percentage of Foxp3CD45+ cells. TSG6 injection also promoted the expansion of regulatory macrophages that expressed IL10 and inducible nitric oxide synthase, and reduced serum levels of interferon-γ, IL6, and tumor necrosis factor. Tsg6-/- MSCs did not suppress the mucosal inflammatory response in mice with colitis. CONCLUSIONS BM-MSCs injected into mice with colitis do not localize to the intestine but instead form aggregates in the peritoneum where they produce immunoregulatory molecules, including TSG6, that reduce intestinal inflammation. TSG6 is sufficient to reduce intestinal inflammation in mice with colitis.
Collapse
Affiliation(s)
- Emanuela Sala
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Marco Genua
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Luciana Petti
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Achille Anselmo
- Department of Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Vincenzo Arena
- Department of Pathology, Catholic University of Rome, Rome, Italy
| | - Javier Cibella
- Department of Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Lucia Zanotti
- Department of Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Silvia D'Alessio
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Franco Scaldaferri
- Internal Medicine, Gastroenterology Division, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Alessandro Sgambato
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Rutella
- Clinical Research Center, Division of Translational Medicine, Sidra Medical & Research Center, Doha, Qatar
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Silvio Danese
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Stefania Vetrano
- Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
38
|
Ciucci T, Ibáñez L, Boucoiran A, Birgy-Barelli E, Pène J, Abou-Ezzi G, Arab N, Rouleau M, Hébuterne X, Yssel H, Blin-Wakkach C, Wakkach A. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 2015; 64:1072-81. [PMID: 25298539 DOI: 10.1136/gutjnl-2014-306947] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Under both physiological and pathological conditions, bone volume is determined by the rate of bone formation by osteoblasts and bone resorption by osteoclasts. Excessive bone loss is a common complication of human IBD whose mechanisms are not yet completely understood. Despite the role of activated CD4(+) T cells in inflammatory bone loss, the nature of the T cell subsets involved in this process in vivo remains unknown. The aim of the present study was to identify the CD4(+) T cell subsets involved in the process of osteoclastogenesis in vivo, as well as their mechanism of action. DESIGN CD4(+) T cells were studied in IL10-/- mice and Rag1-/- mice adoptively transferred with naive CD4(+)CD45RB(high) T cells, representing two well-characterised animal models of IBD and in patients with Crohn's disease. They were phenotypically and functionally characterised by flow cytometric and gene expression analysis, as well as in in vitro cocultures with osteoclast precursors. RESULTS In mice, we identified bone marrow (BM) CD4(+) T cells producing interleukin (IL)-17 and tumour necrosis factor (TNF)-α as an osteoclastogenic T cell subset referred to as Th17 TNF-α(+) cells. During chronic inflammation, these cells migrate to the BM where they survive in an IL-7-dependent manner and where they promote the recruitment of inflammatory monocytes, the main osteoclast progenitors. A population equivalent to the Th17 TNF-α(+) cells was also detected in patients with Crohn's disease. CONCLUSIONS Our results highlight the osteoclastogenic function of the Th17 TNF-α(+) cells that contribute to bone loss in vivo in IBD.
Collapse
Affiliation(s)
- Thomas Ciucci
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Lidia Ibáñez
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Agathe Boucoiran
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Eléonore Birgy-Barelli
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Jérôme Pène
- Inserm, U844, Hôpital saint Eloi, Montpellier, France Université Montpellier 1, 5 bd Henri IV 34967, Montpellier, France
| | - Grazia Abou-Ezzi
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Nadia Arab
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, service de gastro-entérologie et nutrition, Nice, France
| | - Matthieu Rouleau
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Xavier Hébuterne
- Université Nice Sophia Antipolis, parc Valrose, Nice, France Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, service de gastro-entérologie et nutrition, Nice, France
| | - Hans Yssel
- Inserm, U844, Hôpital saint Eloi, Montpellier, France Université Montpellier 1, 5 bd Henri IV 34967, Montpellier, France
| | - Claudine Blin-Wakkach
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| | - Abdelilah Wakkach
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France Université Nice Sophia Antipolis, parc Valrose, Nice, France
| |
Collapse
|
39
|
Xing Y, Chen X, Cao Y, Huang J, Xie X, Wei Y. Expression of Wnt and Notch signaling pathways in inflammatory bowel disease treated with mesenchymal stem cell transplantation: evaluation in a rat model. Stem Cell Res Ther 2015; 6:101. [PMID: 25998108 PMCID: PMC4487973 DOI: 10.1186/s13287-015-0092-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The purpose of this study was to investigate the expression of Wnt and Notch signaling pathway-related genes in inflammatory bowel disease (IBD) treated with mesenchymal stem cell transplantation (MSCT). METHODS TNBS (2,4,6-trinitrobenzene sulfonic acid) was used to establish IBD in a rat model. Mesenchymal stem cells (MSCs) were transplanted via tail vein transfusion. Saline water was used in a control group. The expression of Wnt and Notch main signaling molecules was screened by gene chips and verified by quantitative reverse transcription-polymerase chain reaction in the IBD rat model on day 14 and day 28 after transplantation. RESULTS The IBD rat models were successfully established and MSCs were transplanted into those models. Genome-wide expression profile chips identified a total of 388 differentially expressive genes, of which 191 were upregulated and 197 were downregulated in the MSC-transplanted group in comparison with the IBD control group. Real-time quantitative polymerase chain reaction results showed that the level of Olfm4 mRNA expression in the IBD group (2.54±0.20) was significantly increased compared with the MSCT group (1.39±0.54) and the normal group (1.62±0.25) (P <0.05). The Wnt3a mRNA was more highly expressed in IBD rats (2.92±0.94) and decreased in MSCT rats (0.17±0.63, P <0.05). The expression of GSK-3β mRNA was decreased in the setting of inflammation (0.65±0.04 versus 1.00±0.01 in normal group, P <0.05) but returned to normal levels after MSCT (0.81±0.17). The expression of β-catenin was observed to increase in IBD tissues (1.76±0.44) compared with normal tissues (1.00±0.01, P <0.05), but no difference was found in the MSCT group (1.12±0.36). Wnt11 declined at 14 days and returned to normal levels at 28 days in the IBD group; in comparison, a significantly lower expression was found in MSCT rats. There were no differences in the expression of Fzd3, c-myc, TCF4, and Wnt5a in inflammation, but all of those genes declined after MSCT treatment. CONCLUSIONS The canonical Wnt and Notch signaling pathways are activated in IBD and may be suppressed by stem cell transplantation to differentiate into intestinal epithelium after MSCT. Moreover, the non-canonical Wnt signaling may be inhibited by canonical Wnt signaling in the setting of inflammation and may also be suppressed by MSCT.
Collapse
Affiliation(s)
- Yanfen Xing
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| | - Xiaojie Chen
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| | - Yanwen Cao
- Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| | - Jianyun Huang
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| | - Xuhong Xie
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China. .,Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1. Panfu Road, Guangzhou, 510180, Guangdong Province, China.
| |
Collapse
|
40
|
Abstract
Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
41
|
Qu B, Jiang HY, Wang BB, Tong JZ, Yu B, Zhang YH, Liu BR, Zhu F, Jin SZ. Transplantation of bone marrow-derived mesenchymal stem cells facilitates epithelial repair and relieves the impairment of gastrointestinal function in a rat model of enteritis. Clin Res Hepatol Gastroenterol 2015; 39:114-20. [PMID: 25511921 DOI: 10.1016/j.clinre.2014.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND To examine whether the bone marrow-derived MSCs (BM-MSCs) could facilitate epithelial repair and thereby reduce impairment of gastrointestinal structure and function in chronic murine enteritis induced by indomethacin (IDM). METHODS MSCs were isolated from young Sprague-Dawley rats. After in vitro expansion and characterization, BM-MSCs were labelled with the fluorescent dye PKH26 and transfused, via the tail veins, into rats with enteritis induced by IDM. The controls were infused with sterile saline. The homing and differentiation of the transplanted BM-MSCs were tracked by means of fluorescent staining. The clinical symptoms of the IDM-treated rats were assessed, and the macroscopic and microscopic histological evaluations of the intestines were performed. RESULTS Compared to controls that received saline infusion, BM-MSCs treated rats showed lower scores of weight loss, stool consistency, and stool blood. The PKH26-labelled cells resided at the injured intestine, where they co-localize with the proliferating cell nuclear antigen (PCNA), Lgr-5, and Msi-1. The BM-MSCs treated rats showed significantly higher intestinal villi with larger areas relative to the saline-treated rats. CONCLUSION The transplanted BM-MSCs are able to recognize the injured intestine, where they proliferate and transdifferentiate into intestinal stem cells which repair the injured intestinal tissues. Therefore, BM-MSCs are able to relieve the impairment of gastrointestinal function in IMD-treated rats.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Hai-Yan Jiang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Jia-Zhao Tong
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bo Yu
- Department of Gastroenterology and Hepatology, the Tailai County People's Hospital, Heilongjiang Province, China
| | - Yong-Hong Zhang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Fang Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
42
|
Abstract
The understanding of the intestinal inflammation occurring in the inflammatory bowel diseases (IBD) has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD studies has been enabled by our improved knowledge of mucosal immunity and thus our improved ability to interpret the complex responses of mice with various causes of colitis; in addition, it has been powered by the availability of models in which the mice have specific genetic and/or immunologic defects that can be related to the origin of the inflammation. Finally, and more recently, it has been enhanced by our newly acquired ability to define the intestinal microbiome under various conditions and thus to understand how intestinal microorganisms impact on inflammation. In this brief review of murine models of intestinal inflammation we focus mainly on the most often used models that are, not incidentally, also the models that have yielded major insights into IBD pathogenesis.
Collapse
Affiliation(s)
| | | | - Warren Strober
- Correspondence Address correspondence to: Warren Strober, MD, National Institutes of Health, Mucosal Immunity Section, 10 Center Drive, CRC Bldg. 10 5west-3940, Bethesda, Maryland 20892. fax: (301) 402-2240.
| |
Collapse
|
43
|
Xu M, Fan H. Advances in stem cell treatment of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:214-220. [DOI: 10.11569/wcjd.v23.i2.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells have the characteristics of multipotent differentiation and self-renewal and can modulate the immune system and promote angiogenesis. The etiology and pathogenesis of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), are still not clear. It is currently widely recognized that the pathogenesis of UC is related with immune disorders and vascular lesions of the colonic mucosa. This article reviews the effect of stem cells on immune regulation and angiogenesis in UC.
Collapse
|
44
|
Gonçalves FDC, Schneider N, Pinto FO, Meyer FS, Visioli F, Pfaffenseller B, Lopez PLDC, Passos EP, Cirne-Lima EO, Meurer L, Paz AH. Intravenous vs intraperitoneal mesenchymal stem cells administration: What is the best route for treating experimental colitis? World J Gastroenterol 2014; 20:18228-18239. [PMID: 25561790 PMCID: PMC4277960 DOI: 10.3748/wjg.v20.i48.18228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/28/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of mesenchymal stem cells (MSCs) transplanted intraperitoneally and intravenously in a murine model of colitis.
METHODS: MSCs were isolated from C57BL/6 mouse adipose tissue. MSC cultures were analyzed according to morphology, cellular differentiation potential, and surface molecular markers. Experimental acute colitis was induced in C57BL/6 mice by oral administration of 2% dextran sulfate sodium (DSS) in drinking water ad libitum from days 0 to 7. Colitis mice were treated with 1 × 106 MSCs via intraperitoneal or intravenous injection on days 2 and 5. The disease activity index was determined daily based on the following parameters: weight loss, stool consistency and presence of blood in the feces and anus. To compare morphological and functional differences in tissue regeneration between different MSC injection modalities, mice were euthanized on day 8, and their colons were examined for length, weight, and histopathological changes. Inflammatory responses were determined by measuring the levels of different serum cytokines using a CBA Th1/Th2/Th17 kit. Apoptotic rates were evaluated by terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling assay.
RESULTS: Intravenous infusion of MSCs was more effective than intraperitoneal treatment (P < 0.001) in reducing the clinical and histopathologic severity of colitis, which includes weight loss, diarrhea and inflammation. An histological evaluation demonstrated decreased colonic inflammation based on reduced crypt loss and reduced infiltration of inflammatory cells. This therapeutic effect was most likely mediated by the down-regulation of pro-inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)]; and by the up-regulation of anti-inflammatory cytokines (IL-10 and IL-4). Intravenous transplantation also induced high levels of IFN that lead to activation of the immunosuppressive activity of the MSCs, which did not occur with intraperitoneal transplantation (P = 0.006). An increase in apoptotic T cells was observed after intravenous, but not intraperitoneal, MSC infusion, suggesting that MSCs can induce apoptosis in resistant T cells in colonic inflammation (P = 0.027).
CONCLUSION: Our results demonstrate that intravenous treatment is a superior method for reducing colon inflammation compared with intraperitoneal therapy.
Collapse
|
45
|
Schirrmacher V, Fournier P, Schlag P. Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function. Expert Rev Vaccines 2014; 13:117-30. [PMID: 24219122 DOI: 10.1586/14760584.2014.854169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Surgery remains the primary curative treatment but nearly 50% of patients relapse as consequence of micrometastatic or minimal residual disease (MRD) at the time of surgery. Spontaneous T-cell-mediated immune responses to CRC tumor-associated antigens (TAAs) in tumor-draining lymph nodes and in the bone marrow (BM) lead to infiltration of the tumors by lymphocytes. Certain types of such tumor-infiltrating lymphocytes (TILs) have a positive and others a negative impact on the patients' prognosis. This review focuses on advances in CRC active-specific immunotherapy (ASI), in particular on results from randomized controlled clinical studies employing therapeutic autologous tumor cell vaccines. The observed improvement of long-term survival is explained by activation and mobilization of a pre-existing repertoire of tumor-reactive memory T cells which, according to recent discoveries, reside in distinct niches of patients' bone marrow in neighborhood with hematopoietic (HSC) and mesenchymal (MSC) stem cells. Interestingly, memory T cells also contain a subset of stem memory T cells (SMTs) in addition to effector (EMTs) and central memory T cells (CMTs). The mechanism of function of a therapeutic vaccine in a chronic disease is distinct from that of prophylactic vaccines which have to generate de novo protective immune responses. The advantage of autologous vaccines for mobilization of a broad and highly individual repertoire of memory T cells will be discussed.
Collapse
Affiliation(s)
- Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
46
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
47
|
Shaker A, Gargus M, Fink J, Binkley J, Darwech I, Swietlicki E, Levin MS, Rubin DC. Epimorphin(-/-) mice are protected, in part, from acute colitis via decreased interleukin 6 signaling. Transl Res 2014; 164:70-83. [PMID: 24731292 PMCID: PMC4278761 DOI: 10.1016/j.trsl.2014.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022]
Abstract
Epimorphin (Epim), a member of the syntaxin family of membrane-bound, intracellular vesicle-docking proteins, is expressed in intestinal myofibroblasts and macrophages. We demonstrated previously that Epimorphin(-/-)(Epim(-/-)) mice are protected, in part, from dextran sodium sulfate (DSS)-induced colitis. Although interleukin (IL)-6/p-Stat3 signaling has been implicated in the pathogenesis of colitis, the myofibroblast contribution to IL-6 signaling in colitis remains unexplored. Our aim was to investigate the IL-6 pathway in Epim(-/-) mice in the DSS colitis model. Whole colonic tissue, epithelium, and stroma of WT and congenic Epim(-/-) mice treated with 5% DSS for 7 days were analyzed for IL-6 and a downstream effector, p-Stat3, by immunostaining and immunoblot. Colonic myofibroblast and peritoneal macrophage IL-6 secretion were evaluated by enzyme-linked immunosorbent assay. IL-6 and p-Stat3 expression were decreased in Epim(-/-) vs WT colon. A relative increase in stromal vs epithelial p-Stat3 expression was observed in WT mice but not in Epim(-/-) mice. Epim deletion abrogates IL-6 secretion from colonic myofibroblasts treated with IL-1β and decreases IL-6 secretion from peritoneal macrophages in a subset of DSS-treated mice. Epim deletion inhibits IL-6 secretion most profoundly from colonic myofibroblasts. Distribution of Stat3 activation is altered in DSS-treated Epim(-/-) mice. Our findings support the notion that myofibroblasts modulate IL-6/p-Stat3 signaling in DSS-treated Epim(-/-) mice.
Collapse
Affiliation(s)
- Anisa Shaker
- Divisions of Gastroenterology and Hepatology, Keck School of Medicine of USC, Los Angeles, CA.
| | - Matthew Gargus
- Divisions of Gastroenterology and Hepatology, Keck School of Medicine of USC, Los Angeles, CA
| | - Julie Fink
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo
| | - Jana Binkley
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo
| | - Isra Darwech
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo
| | - Elzbieta Swietlicki
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo
| | - Marc S Levin
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo; Department of Medicine, St. Louis Health Care System, St. Louis, Mo
| | - Deborah C Rubin
- Divisions of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Mo
| |
Collapse
|
48
|
Lee M, Jeong SY, Ha J, Kim M, Jin HJ, Kwon SJ, Chang JW, Choi SJ, Oh W, Yang YS, Kim JS, Jeon HB. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 2014; 446:983-9. [PMID: 24657442 DOI: 10.1016/j.bbrc.2014.03.051] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/27/2022]
Abstract
Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore "immunologically safe" for use in allogeneic clinical applications.
Collapse
Affiliation(s)
- Miyoung Lee
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Sang Young Jeong
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Jueun Ha
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Miyeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Soon-Jae Kwon
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Jong Wook Chang
- Research Institute for Future Medicine Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, Republic of Korea.
| |
Collapse
|
49
|
Martínez-Montiel MDP, Gómez-Gómez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol 2014; 20:1211-1227. [PMID: 24574796 PMCID: PMC3921504 DOI: 10.3748/wjg.v20.i5.1211] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) affects a part of the young population and has a strong impact upon quality of life. The underlying etiology is not known, and the existing treatments are not curative. Furthermore, a significant percentage of patients are refractory to therapy. In recent years there have been great advances in our knowledge of stem cells and their therapeutic applications. In this context, autologous hematopoietic stem cell transplantation (HSCT) has been used in application to severe refractory Crohn’s disease (CD), with encouraging results. Allogenic HSCT would correct the genetic defects of the immune system, but is currently not accepted for the treatment of IBD because of its considerable risks. Mesenchymal stem cells (MSCs) have immune regulatory and regenerative properties, and low immunogenicity (both autologous and allogenic MSCs). Based on these properties, MSCs have been used via the systemic route in IBD with promising results, though it is still too soon to draw firm conclusions. Their local administration in perianal CD is the field where most progress has been made in recent years, with encouraging results. The next few years will be decisive for defining the role of such therapy in the management of IBD.
Collapse
|
50
|
Wagnerova A, Gardlik R. In vivo reprogramming in inflammatory bowel disease. Gene Ther 2013; 20:1111-8. [PMID: 24025994 DOI: 10.1038/gt.2013.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/30/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023]
Abstract
The direct reprogramming of somatic cells has immense implications in various areas of medicine. Although remarkable progress has been made in developing novel reprogramming methods, the efficiency and fidelity of reprogramming still need to be improved. Inflammatory bowel disease (IBD) involves chronic inflammatory diseases of the gastrointestinal tract with a complex etiology caused by various genetic, immunological and environmental factors. Recently, the role of stem cells has been proposed in pathogenesis and therapy of IBD. However, the efficiency and the safety of the stem cell treatments depend on the origin of the stem cell and the administration method. We hypothesize that the reprogramming of the intestinal cells into a pluripotent state is of huge importance for IBD therapy and prevention. The vectors carrying reprogramming genes encoding pluripotency factors can be transferred to the damaged tissue, in this case the intestine, by means of invasive bacterial vectors able to colonize colon mucosa. Reconstruction of tissues in vivo might avoid problems encountered in tissue rebuilding in vitro because of lack of appropriate scaffolds and microenvironments. Herein we present a review of recent literature and a perspective of in vivo reprogramming in IBD using bacterial vectors and analyze the rationale for such approach.
Collapse
Affiliation(s)
- A Wagnerova
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|