1
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Liu W, Wang Q, Bai Y, Xiao H, Li Z, Wang Y, Wang Q, Yang J, Sun H. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev Rep 2024; 20:124-137. [PMID: 37938407 DOI: 10.1007/s12015-023-10651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.
Collapse
Affiliation(s)
- Wenxiu Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Qian Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhunduo Li
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China.
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
3
|
Davoudi Z, Atherly T, Borcherding DC, Jergens AE, Wannemuehler M, Barrett TA, Wang Q. Study Transportation of Drugs within Newly Established Murine Colon Organoid Systems. Adv Biol (Weinh) 2023; 7:e2300103. [PMID: 37607116 PMCID: PMC10840714 DOI: 10.1002/adbi.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/18/2023] [Indexed: 08/24/2023]
Abstract
The development of 3D organoids of the small intestine is a tremendous breakthrough in drug development and biological research. However, the development of colonic organoids (i.e., colonoids) is particularly challenging due to a lack of simple, cost-effective protocols for colonoid cultivation. Here, intestinal homogenates are described as a supplement to the culture medium for maintaining and replicating colonic stem cells. Colonoids generated by this cultivation protocol demonstrate substantial proliferation and differentiation (3 months). There is a similarity between cultured colonoids and primary colon tissue regarding structure and functionality. To evaluate the functionality of colonoids, permeability testing is performed with suspensions of 4 and 40 kDa fluorescein isothiocyanate-dextran (FITC-DEX). It is observed that neither can permeate the healthy epithelial barrier. The P-glycoprotein receptor, a vital drug efflux pump mitigating potential drug toxicity, is functionally manipulated, as evidenced by its inhibition function by verapamil and monitoring uptake of Rhodamin 123. In addition, Forskolin treatment which affects chloride transport results in organoid swelling; this confirms the functional expression of the CFTR transporter in the colonoids. This protocol to generate colonoids is promising for high-throughput drug screening, toxicity testing, and oral drug development.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, Iowa State University
| | | | | | | | - Terrence A. Barrett
- Department of Internal Medicine, Division of Gastroenterology, University of Kentucky
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
4
|
Bao L, Cui X, Bai R, Chen C. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. NANO RESEARCH 2022; 16:3976-3990. [PMID: 36465523 PMCID: PMC9685037 DOI: 10.1007/s12274-022-5150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial-biology (nano-bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano-intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
5
|
Tomaz LB, Liu BA, Meroshini M, Ong SLM, Tan EK, Tolwinski NS, Williams CS, Gingras AC, Leushacke M, Dunn NR. MCC is a centrosomal protein that relocalizes to non-centrosomal apical sites during intestinal cell differentiation. J Cell Sci 2022; 135:jcs259272. [PMID: 36217793 PMCID: PMC10658790 DOI: 10.1242/jcs.259272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium. Our findings reveal that Mcc transcripts are restricted to proliferating crypt cells, including Lgr5+ stem cells, where the Mcc protein is distinctly associated with the centrosome. Upon intestinal cellular differentiation, Mcc is redeployed to the apical domain of polarized villus cells where non-centrosomal microtubule organizing centers (ncMTOCs) are positioned. Using intestinal organoids, we show that the shuttling of the Mcc protein depends on phosphorylation by casein kinases 1δ and ε, which are critical modulators of WNT signaling. Together, our findings support a role for MCC in establishing and maintaining the cellular architecture of the intestinal epithelium as a component of both the centrosome and ncMTOC.
Collapse
Affiliation(s)
- Lucian B. Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Bernard A. Liu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Meroshini M
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Sheena L. M. Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | | | | | - Anne-Claude Gingras
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc Leushacke
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - N. Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| |
Collapse
|
6
|
Altay G, Abad‐Lázaro A, Gualda EJ, Folch J, Insa C, Tosi S, Hernando‐Momblona X, Batlle E, Loza‐Álvarez P, Fernández‐Majada V, Martinez E. Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium. Adv Healthc Mater 2022; 11:e2201172. [PMID: 36073021 PMCID: PMC11468757 DOI: 10.1002/adhm.202201172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.
Collapse
Affiliation(s)
- Gizem Altay
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Institut de l'AuditionInstitut PasteurINSERMUniversité de ParisParis75012France
| | - Aina Abad‐Lázaro
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Emilio J. Gualda
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Jordi Folch
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Claudia Insa
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF)Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
| | - Xavier Hernando‐Momblona
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
| | - Eduard Batlle
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
- ICREAPasseig Lluís Companys 23Barcelona08010Spain
| | - Pablo Loza‐Álvarez
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Vanesa Fernández‐Majada
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos 3‐5 Pabellón 11 Planta 0Madrid28029Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)Martí i Franquès 1Barcelona08028Spain
| |
Collapse
|
7
|
Huang S, Zhang S, Chen L, Pan X, Wen Z, Chen Y, Zhang L, Liu J, Chen D. Lipopolysaccharide induced intestinal epithelial injury: a novel organoids-based model for sepsis in vitro. Chin Med J (Engl) 2022; 135:2232-2239. [PMID: 36355867 PMCID: PMC9771316 DOI: 10.1097/cm9.0000000000002348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Advances in organoid culture technology have provided a greater understanding of disease pathogenesis, which has been rarely studied in sepsis before. We aim to establish a suitable organoids-based intestinal injury model for sepsis. METHODS Stable passaged organoids were constructed and pre-treated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury. The LPS-induced sepsis model was used as a reference. We used quantitative real-time polymerase chain reaction to evaluate the RNA levels of inflammatory factors and antimicrobial peptides. Enzyme-linked immunosorbent assay was used to evaluate the protein levels, hematoxylin and eosin staining was used to evaluate the pathology of the small intestine of mice, and immunohistochemistry and immunofluorescence were used to evaluate the intestinal epithelial barrier function. Perkin Elmer Operetta™ was used to obtain high-resolution images of three-dimensional organoids. RESULTS An LPS concentration >150 μg/mL after 24 h was identified to cause organoid growth restriction. The fluorescence intensity of zonula occludens-1 and occludins at LPS concentrations >100 μg/mL decreased significantly after 24 h. After LPS stimulation for 8 h, the RNA expression levels of interleukin (IL)-1α, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, IL-6, and regenerating islet-derived protein 3 alpha, beta, and gamma increased. These results resembled those of intestinal epithelial layer alterations in a mouse sepsis model. For IL-10, the RNA expression level increased only when the LPS level >200 μg/mL for 24 h. CONCLUSIONS This study provides the primary intestinal in vitro model to study the effects of LPS-induced intestinal injury resembling sepsis. This model provides a platform for immune associated mechanism exploration and effective drug screening.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Limin Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| |
Collapse
|
8
|
Extending the viability of human precision-cut intestinal slice model for drug metabolism studies. Arch Toxicol 2022; 96:1815-1827. [PMID: 35428896 PMCID: PMC9095520 DOI: 10.1007/s00204-022-03295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
Human Precision-cut intestinal slices (hPCIS) are used to study intestinal physiology, pathophysiology, drug efficacy, toxicology, kinetics, and metabolism. However, the use of this ex vivo model is restricted to approximately a 24 h timeframe because of declining viability of the hPCIS during traditional culture. We hypothesized that we could extend the hPCIS viability by using organoid medium. Therefore, we cultured hPCIS for up to 72 h in organoid media [expansion medium (Emed) and differentiation medium (Dmed)]. After incubation, we assessed culture-induced changes on viability markers, specific cell type markers and we assessed the metabolic activity of enterocytes by measuring midazolam metabolite formation. We show that the adenosine triphosphate (ATP)/protein ratio of Emed-cultured hPCIS and morphology of both Emed- and Dmed-cultured hPCIS was improved compared to WME-cultured hPCIS. Emed-cultured hPCIS showed an increased expression of proliferation and stem cell markers, whereas Dmed-cultured hPCIS showed an increased expression of proliferation and enterocyte markers, along with increased midazolam metabolism. Using the Emed, the viability of hPCIS could be extended for up to 72 h, and proliferating stem cells remained preserved. Using Dmed, hPCS also remained viable for up to 72 h, and specifically rescued the metabolizing enterocytes during culture. In conclusion, by using two different organoid culture media, we could extend the hPCIS viability for up to 72 h of incubation and specifically steer stem cells or enterocytes towards their original function, metabolism, and proliferation, potentially allowing pharmacokinetic and toxicology studies beyond the 24 h timeframe.
Collapse
|
9
|
Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive Apoptosis in Ulcerative Colitis: Crosstalk Between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflamm Bowel Dis 2022; 28:639-648. [PMID: 34871402 DOI: 10.1093/ibd/izab277] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC), an etiologically complicated and relapsing gastrointestinal disease, is characterized by the damage of mucosal epithelium and destruction of the intestinal homeostasis, which has caused a huge social and economic burden on the health system all over the world. Its pathogenesis is multifactorial, including environmental factors, genetic susceptibility, epithelial barrier defect, symbiotic flora imbalance, and dysregulated immune response. Thus far, although immune cells have become the focus of most research, it is increasingly clear that intestinal epithelial cells play an important role in the pathogenesis and progression of UC. Notably, apoptosis is a vital catabolic process in cells, which is crucial to maintain the stability of intestinal environment and regulate intestinal ecology. In this review, the mechanism of apoptosis induced by reactive oxygen species and endoplasmic reticulum stress, as well as excessive apoptosis in intestinal epithelial dysfunction and gut microbiology imbalance are systematically and comprehensively summarized. Further understanding the role of apoptosis in the pathogenesis of UC may provide a novel strategy for its therapy in clinical practices and the development of new drugs.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | | |
Collapse
|
10
|
Taelman J, Diaz M, Guiu J. Human Intestinal Organoids: Promise and Challenge. Front Cell Dev Biol 2022; 10:854740. [PMID: 35359445 PMCID: PMC8962662 DOI: 10.3389/fcell.2022.854740] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The study of human intestinal biology in healthy and diseased conditions has always been challenging. Primary obstacles have included limited tissue accessibility, inadequate in vitro maintenance and ethical constrains. The development of three-dimensional organoid cultures has transformed this entirely. Intestinal organoids are self-organized three-dimensional structures that partially recapitulate the identity, cell heterogeneity and cell behaviour of the original tissue in vitro. This includes the capacity of stem cells to self-renew, as well as to differentiate towards major intestinal lineages. Therefore, over the past decade, the use of human organoid cultures has been instrumental to model human intestinal development, homeostasis, disease, and regeneration. Intestinal organoids can be derived from pluripotent stem cells (PSC) or from adult somatic intestinal stem cells (ISC). Both types of organoid sources harbour their respective strengths and weaknesses. In this mini review, we describe the applications of human intestinal organoids, discussing the differences, advantages, and disadvantages of PSC-derived and ISC-derived organoids.
Collapse
Affiliation(s)
- Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
- *Correspondence: Jordi Guiu,
| |
Collapse
|
11
|
Wang ZW, Gao YN, Huang SN, Wang JQ, Zheng N. Ex Vivo and In Vitro Studies Revealed Underlying Mechanisms of Immature Intestinal Inflammatory Responses Caused by Aflatoxin M1 Together with Ochratoxin A. Toxins (Basel) 2022; 14:toxins14030173. [PMID: 35324670 PMCID: PMC8953104 DOI: 10.3390/toxins14030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA), which are occasionally detected in milk and commercial baby foods, could easily enter and reach the gastrointestinal tract, posing impairment to the first line of defense and causing dysfunction of the tissue. The objective of this study was to investigate the immunostimulatory roles of individual and combined AFM1 and OTA on the immature intestine. Thus, we used ELISA assays to evaluate the generation of cytokines from ex vivo CD-1 fetal mouse jejunum induced by AFM1 and OTA and explored the related regulatory pathways and pivot genes using RNA-seq analysis. It was found that OTA exhibited much stronger ability in stimulating pro-inflammatory cytokine IL-6 from jejunum tissues than AFM1 (OTA of 4 μM versus AFM1 of 50 μM), whereas the combination of the two toxins seemed to exert antagonistic actions. In addition, transcriptomics also showed that most gene members in the enriched pathway ‘cytokine–cytokine receptor interaction’ were more highly expressed in OTA than the AFM1 group. By means of PPI network analysis, NFKB1 and RelB were regarded as hub genes in response to OTA but not AFM1. In the human FHs 74 Int cell line, both AFM1 and OTA enhanced the content of reactive oxygen species, and the oxidative response was more apparent in OTA-treated cells in comparison with AFM1. Furthermore, OTA and AFM1 + OTA raised the protein abundance of p50/RelB, and triggered the translocation of the dimer from cytosol to nucleus. Therefore, the experimental data ex vivo and in vitro showed that OTA-induced inflammation was thought to be bound up with the up-regulation and translocation of NF-κB, though AFM1 seemed to have no obvious impact. Since it was the first attempt to uncover the appearances and inner mechanisms regarding inflammation provoked by AFM1 and OTA on immature intestinal models, further efforts are needed to understand the detailed metabolic steps of the toxin in cells and to clarify their causal relationship with the signals proposed from current research.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Nan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
12
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
13
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Hosic S, Bindas AJ, Puzan ML, Lake W, Soucy JR, Zhou F, Koppes RA, Breault DT, Murthy SK, Koppes AN. Rapid Prototyping of Multilayer Microphysiological Systems. ACS Biomater Sci Eng 2021; 7:2949-2963. [PMID: 34275297 PMCID: PMC8290094 DOI: 10.1021/acsbiomaterials.0c00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microfluidic organs-on-chips aim to realize more biorelevant in vitro experiments compared to traditional two-dimensional (2D) static cell culture. Often such devices are fabricated via poly(dimethylsiloxane) (PDMS) soft lithography, which offers benefits (e.g., high feature resolution) along with drawbacks (e.g., prototyping time/costs). Here, we report benchtop fabrication of multilayer, PDMS-free, thermoplastic organs-on-chips via laser cut and assembly with double-sided adhesives that overcome some limitations of traditional PDMS lithography. Cut and assembled chips are economical to prototype ($2 per chip), can be fabricated in parallel within hours, and are Luer compatible. Biocompatibility was demonstrated with epithelial line Caco-2 cells and primary human small intestinal organoids. Comparable to control static Transwell cultures, Caco-2 and organoids cultured on chips formed confluent monolayers expressing tight junctions with low permeability. Caco-2 cells-on-chip differentiated ∼4 times faster, including increased mucus, compared to controls. To demonstrate the robustness of cut and assemble, we fabricated a dual membrane, trilayer chip integrating 2D and 3D compartments with accessible apical and basolateral flow chambers. As proof of concept, we cocultured a human, differentiated monolayer and intact 3D organoids within multilayered contacting compartments. The epithelium exhibited 3D tissue structure and organoids expanded close to the adjacent monolayer, retaining proliferative stem cells over 10 days. Taken together, cut and assemble offers the capability to rapidly and economically manufacture microfluidic devices, thereby presenting a compelling fabrication technique for developing organs-on-chips of various geometries to study multicellular tissues.
Collapse
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Marissa L Puzan
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Will Lake
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Fanny Zhou
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- Principal Faculty, Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, Massachusetts 02138, United States
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Tran L, Jochum SB, Shaikh M, Wilber S, Zhang L, Hayden DM, Forsyth CB, Voigt RM, Bishehsari F, Keshavarzian A, Swanson GR. Circadian misalignment by environmental light/dark shifting causes circadian disruption in colon. PLoS One 2021; 16:e0251604. [PMID: 34086699 PMCID: PMC8177509 DOI: 10.1371/journal.pone.0251604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/29/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Physiological circadian rhythms (CRs) are complex processes with 24-hour oscillations that regulate diverse biological functions. Chronic weekly light/dark (LD) shifting (CR disruption; CRD) in mice results in colonic hyperpermeability. However, the mechanisms behind this phenomenon are incompletely understood. One potential innovative in vitro method to study colonic CRs are colon organoids. The goals of this study were to utilize circadian clock gene Per2 luciferase reporter (Per2::Luc) mice to measure the effects of chronic LD shifting on colonic tissue circadian rhythmicity ex vivo and to determine if organoids made from shifted mice colons recapitulate the in vivo phenotype. METHODS Non-shifted (NS) and shifted (S) BL6 Per2::Luc mice were compared after a 22-week experiment. NS mice had a standard 12h light/12h dark LD cycle throughout. S mice alternated 12h LD patterns weekly, with light from 6am-6pm one week followed by shifting light to 6pm-6am the next week for 22 weeks. Mice were tested for intestinal permeability while colon tissue and organoids were examined for CRs of bioluminescence and proteins of barrier function and cell fate. RESULTS There was no absolute difference in NS vs. S 24h circadian period or phase. However, chronic LD shifting caused Per2::Luc S mice colon tissue to exhibit significantly greater variability in both the period and phase of Per2::Luc rhythms than NS mice colon tissue and organoids. Chronic LD shifting also resulted in increased colonic permeability of the Per2::Luc mice as well as decreased protein markers of intestinal permeability in colonic tissue and organoids from shifted Per2:Luc mice. CONCLUSIONS Our studies support a model in which chronic central circadian disruption by LD shifting alters the circadian phenotype of the colon tissue and results in colon leakiness and loss of colonic barrier function. These CRD-related changes are stably expressed in colon stem cell derived organoids from CRD mice.
Collapse
Affiliation(s)
- Laura Tran
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sarah B. Jochum
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Maliha Shaikh
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sherry Wilber
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Lijuan Zhang
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Dana M. Hayden
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Faraz Bishehsari
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Garth R. Swanson
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
17
|
Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury. Cell Death Dis 2021; 12:95. [PMID: 33462215 PMCID: PMC7813872 DOI: 10.1038/s41419-020-03379-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Intestinal ischemia-reperfusion (IR) injury is associated with high mortality rates, which have not improved in the past decades despite advanced insight in its pathophysiology using in vivo animal and human models. The inability to translate previous findings to effective therapies emphasizes the need for a physiologically relevant in vitro model to thoroughly investigate mechanisms of IR-induced epithelial injury and test potential therapies. In this study, we demonstrate the use of human small intestinal organoids to model IR injury by exposing organoids to hypoxia and reoxygenation (HR). A mass-spectrometry-based proteomics approach was applied to characterize organoid differentiation and decipher protein dynamics and molecular mechanisms of IR injury in crypt-like and villus-like human intestinal organoids. We showed successful separation of organoids exhibiting a crypt-like proliferative phenotype, and organoids exhibiting a villus-like phenotype, enriched for enterocytes and goblet cells. Functional enrichment analysis of significantly changing proteins during HR revealed that processes related to mitochondrial metabolism and organization, other metabolic processes, and the immune response were altered in both organoid phenotypes. Changes in protein metabolism, as well as mitophagy pathway and protection against oxidative stress were more pronounced in crypt-like organoids, whereas cellular stress and cell death associated protein changes were more pronounced in villus-like organoids. Profile analysis highlighted several interesting proteins showing a consistent temporal profile during HR in organoids from different origin, such as NDRG1, SDF4 or DMBT1. This study demonstrates that the HR response in human intestinal organoids recapitulates properties of the in vivo IR response. Our findings provide a framework for further investigations to elucidate underlying mechanisms of IR injury in crypt and/or villus separately, and a model to test therapeutics to prevent IR injury.
Collapse
|
18
|
Qu M, Xiong L, Lyu Y, Zhang X, Shen J, Guan J, Chai P, Lin Z, Nie B, Li C, Xu J, Deng H. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res 2021; 31:259-271. [PMID: 33420425 PMCID: PMC8027647 DOI: 10.1038/s41422-020-00453-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
The capacity of 3D organoids to mimic physiological tissue organization and functionality has provided an invaluable tool to model development and disease in vitro. However, conventional organoid cultures primarily represent the homeostasis of self-organizing stem cells and their derivatives. Here, we established a novel intestinal organoid culture system composed of 8 components, mainly including VPA, EPZ6438, LDN193189, and R-Spondin 1 conditioned medium, which mimics the gut epithelium regeneration that produces hyperplastic crypts following injury; therefore, these organoids were designated hyperplastic intestinal organoids (Hyper-organoids). Single-cell RNA sequencing identified different regenerative stem cell populations in our Hyper-organoids that shared molecular features with in vivo injury-responsive Lgr5+ stem cells or Clu+ revival stem cells. Further analysis revealed that VPA and EPZ6438 were indispensable for epigenome reprogramming and regeneration in Hyper-organoids, which functioned through epigenetically regulating YAP signaling. Furthermore, VPA and EPZ6438 synergistically promoted regenerative response in gut upon damage in vivo. In summary, our results demonstrated a new in vitro organoid model to study epithelial regeneration, highlighting the importance of epigenetic reprogramming that pioneers tissue repair.
Collapse
Affiliation(s)
- Molong Qu
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Liang Xiong
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Xiannian Zhang
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Jie Shen
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Jingyang Guan
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Peiyuan Chai
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhongqing Lin
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, 100000, China
| | - Boyao Nie
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, 100000, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Jun Xu
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
| | - Hongkui Deng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China. .,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
19
|
Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability. Int J Mol Sci 2020; 22:ijms22010009. [PMID: 33374948 PMCID: PMC7792613 DOI: 10.3390/ijms22010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-α (10 nm), and IFN-γ (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.
Collapse
|
20
|
Sun L, Rollins D, Qi Y, Fredericks J, Mansell TJ, Jergens A, Phillips GJ, Wannemuehler M, Wang Q. TNFα regulates intestinal organoids from mice with both defined and conventional microbiota. Int J Biol Macromol 2020; 164:548-556. [PMID: 32693143 PMCID: PMC7657954 DOI: 10.1016/j.ijbiomac.2020.07.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are key factors affecting the fate of intestinal stem cells (ISCs) and effective reagents to manipulate ISCs for research purpose. Tumor necrosis factor alpha (TNFα) is a cytokine produced primarily by monocytes and macrophages. It can induce apoptotic cell death and inflammation, and to inhibit tumorigenesis and viral replication. Additionally, TNFα has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). It is therefore important to identify the mechanism by which individual cytokines affect particular cell types. For this purpose, we used both conventional (CONV) and altered Schaedler flora (ASF) C3H/HeN mice to elucidate the effect of different microbial populations (complex versus defined) on growth of miniguts derived from two different intestinal environments. Furthermore, we studied the effects of different concentrations of TNFα extracted from the lymph and spleen on the growth and viability of ISCs recovered from mice bearing the ASF or CONV microbiota. The effect of TNFα on miniguts growth depends not only on the source and concentration, but also on the intestinal microenvironment from which the ISCs were derived. The findings suggest that TNFα influences the proliferation of miniguts derived from ISCs and, therefore, modulates mucosal homeostasis of the host.
Collapse
Affiliation(s)
- Liping Sun
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; School of Environmental & Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Derrick Rollins
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Department of Statistics, Iowa State University, Ames, IA, United States
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jorrell Fredericks
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.
| |
Collapse
|
21
|
Modasia A, Parker A, Jones E, Stentz R, Brion A, Goldson A, Defernez M, Wileman T, Ashley Blackshaw L, Carding SR. Regulation of Enteroendocrine Cell Networks by the Major Human Gut Symbiont Bacteroides thetaiotaomicron. Front Microbiol 2020; 11:575595. [PMID: 33240233 PMCID: PMC7677362 DOI: 10.3389/fmicb.2020.575595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbes have critical roles in maintaining host physiology, but their effects on epithelial chemosensory enteroendocrine cells (EEC) remain unclear. We investigated the role that the ubiquitous commensal gut bacterium Bacteriodes thetaiotaomicron (Bt) and its major fermentation products, acetate, propionate, and succinate (APS) have in shaping EEC networks in the murine gastrointestinal tract (GIT). The distribution and numbers of EEC populations were assessed in tissues along the GIT by fluorescent immunohistochemistry in specific pathogen free (SPF), germfree (GF) mice, GF mice conventionalized by Bt or Lactobacillus reuteri (Lr), and GF mice administered APS. In parallel, we also assessed the suitability of using intestinal crypt-derived epithelial monolayer cultures for these studies. GF mice up-regulated their EEC network, in terms of a general EEC marker chromogranin A (ChrA) expression, numbers of serotonin-producing enterochromaffin cells, and both hormone-producing K- and L-cells, with a corresponding increase in serum glucagon-like peptide-1 (GLP-1) levels. Bt conventionalization restored EEC numbers to levels in SPF mice with regional specificity; the effects on ChrA and L-cells were mainly in the small intestine, the effects on K-cells and EC cells were most apparent in the colon. By contrast, Lr did not restore EEC networks in conventionalized GF mice. Analysis of secretory epithelial cell monolayer cultures from whole small intestine showed that intestinal monolayers are variable and with the possible exclusion of GIP expressing cells, did not accurately reflect the EEC cell makeup seen in vivo. Regarding the mechanism of action of Bt on EECs, colonization of GF mice with Bt led to the production and accumulation of acetate, propionate and succinate (APS) in the caecum and colon, which when administered at physiological concentrations to GF mice via their drinking water for 10 days mimicked to a large extent the effects of Bt in GF mice. After withdrawal of APS, the changes in some EEC were maintained and, in some cases, were greater than during APS treatment. This data provides evidence of microbiota influences on regulating EEC networks in different regions of the GIT, with a single microbe, Bt, recapitulating its role in a process that may be dependent upon its fermentation products.
Collapse
Affiliation(s)
- Amisha Modasia
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Aimee Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Regis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arlaine Brion
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Andrew Goldson
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Marianne Defernez
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - L. Ashley Blackshaw
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
22
|
Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. Bioengineering Novel in vitro Co-culture Models That Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function. Front Bioeng Biotechnol 2020; 8:992. [PMID: 32984279 PMCID: PMC7487342 DOI: 10.3389/fbioe.2020.00992] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The Caco-2 monolayer is the most widely used in vitro model of the human intestinal mucosa to study absorption. However, models lack communication from other cells present in the native intestine, such as signals from fibroblasts in the lamina propria. In this study, we have investigated the effects of fibroblasts upon the Caco-2 epithelium through two mechanisms: indirect signaling from fibroblasts and direct contact with fibroblasts. Culture of Caco-2 cells with paracrine signals from fibroblasts, through the use of conditioned media, did not induce a significant change in epithelial cell morphology or function. To examine the effects of direct contact between the epithelium and fibroblasts, we developed novel, humanized three-dimensional (3D) co-culture models whereby Caco-2 cells are grown on the surface of a subepithelial-like tissue construct containing intestinal or dermal fibroblasts. In our models, we observed endogenous extracellular matrix production from the fibroblasts that provides support to the above epithelium. The Caco-2 epithelium displayed morphological changes in 3D co-culture including enhanced polarization and the formation of a basement membrane-like attachment to the underlying stromal compartment. An important structural alteration was the significantly straightened lateral membrane that closely mimics the structure of the in vivo intestinal mucosa. This enhanced lateral membrane phenotype, in correlation with an reduction in TEER to levels more similar to the human intestine, is thought to be responsible for the increased paracellular permeability observed in 3D co-cultures. Our results demonstrate that direct contact between epithelial and mesenchymal cells results in an enhanced epithelial barrier. The in vitro models described herein have the potential to be used for studying intestinal epithelial-fibroblast interactions and could provide more accurate tools for drug permeability studies.
Collapse
Affiliation(s)
- Nicole J Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Claire L Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe Ltd, Sedgefield, United Kingdom
| | | | - Matthew Freer
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe Ltd, Sedgefield, United Kingdom
| |
Collapse
|
23
|
Hosic S, Lake W, Stas E, Koppes R, Breault DT, Murthy SK, Koppes AN. Cholinergic Activation of Primary Human Derived Intestinal Epithelium Does Not Ameliorate TNF-α Induced Injury. Cell Mol Bioeng 2020; 13:487-505. [PMID: 33184579 DOI: 10.1007/s12195-020-00633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction The intestinal epithelium contains specialized cells including enterocytes, goblet, Paneth, enteroendocrine, and stem cells. Impaired barrier integrity in Inflammatory Bowel Disease is characterized by elevated levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α). Prior studies in immortalized lines such as Caco-2, without native epithelial heterogeneity, demonstrate the amelioration of TNF-α compromised barrier integrity via nicotinic (nAChR) or muscarinic (mAChR) acetylcholine receptor activation. Methods A tissue-engineered model of primary human small intestinal epithelium was derived from dissociated organoids cultured on collagen-coated Transwells. Differentiation was accomplished with serum-containing media and compared to Caco-2 and HT-29 regarding alkaline phosphatase expression, transepithelial electrical resistance (TEER), and IL-8 secretion. Inflammation was modeled via basal stimulation with TNF-α (25 ng/mL) with or without nicotine (nAChR agonist) or bethanechol (mAChR agonist). Apoptosis, density (cells/cm2), TEER, lucifer yellow permeability, 70 kDa dextran transport, cell morphology, and IL-8 secretion were characterized. Results Primary intestinal epithelium demonstrates significant functional differences compared to immortalized cells, including increased barrier integrity, IL-8 expression, mucus production, and the presence of absorptive and secretory cells. Exposure to TNF-α impaired barrier integrity, increased apoptosis, altered morphology, and increased secretion of IL-8. Stimulation of nAChR with nicotine did not ameliorate TNF-α induced permeability nor alter 70 kDa dextran transport. However, stimulation of mAChR with bethanechol decreased transport of 70 kDa dextran but did not ameliorate TNF-α induced paracellular permeability. Conclusions A primary model of intestinal inflammation was evaluated, demonstrating nAChR or mAChR activation does not have the same protective effects compared to immortalized epithelium. Inclusion of other native stromal support cells are underway.
Collapse
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Will Lake
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Eric Stas
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA.,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA.,Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| |
Collapse
|
24
|
Reding B, Carter P, Qi Y, Li Z, Wu Y, Wannemuehler M, Bratlie KM, Wang Q. Manipulate intestinal organoids with niobium carbide nanosheets. J Biomed Mater Res A 2020; 109:479-487. [PMID: 32506610 DOI: 10.1002/jbm.a.37032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023]
Abstract
Multifunctional two-dimensional nanosheet materials have attracted attention in biomedical fields due to their unique physiochemical and biological properties. Interactions between intestinal stem cells and Engineered Nanomaterials (ENMs) are an essential area in research with the growing diagnosis of gastrointestinal (GI) diseases. One unique type of two-dimensional metal carbide nanomaterial, niobium carbide (Nb2 C), has shown promising properties for potential applications in this field, such as biocompatibility, stability, and high photothermal conversion efficiency. In this study, Nb2 C nanosheets were prepared by spark plasma sintering and HF etching. Various concentrations of Nb2 C nanosheets were placed inside intestinal organoids, which mimic the real functions of an intestinal system. These organoids were formed from intestinal crypts that were isolated from mice and grew into self-maintained systems. Through growth analysis, surface area calculations, and cell viability tests, it was concluded that an optimal concentration of nanosheets exists that may offer stimulation to intestinal cells while having no toxic effects. A high concentration of nanosheets in the organoids inhibited growth, whereas the control and low concentration of nanosheets showed no reduced growth rate. When placed under infrared exposure, the organoids with nanosheets offered stimulation and showed more viability after time as compared to the control organoids with no nanosheets. These results show overall potential benefits of placing low concentration Nb2 C nanosheets in intestinal systems to protect and stimulate cell survivability when undergoing various treatments.
Collapse
Affiliation(s)
- Brittney Reding
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Prerana Carter
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Zhe Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Yue Wu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Michael Wannemuehler
- Department of Vet Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
25
|
Seyed-Safi AG, Daniels JT. The limbus: Structure and function. Exp Eye Res 2020; 197:108074. [PMID: 32502532 DOI: 10.1016/j.exer.2020.108074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
Limbal function is a key determinant of corneal epithelial integrity. Lineage tracing studies in mice have highlighted that the centripetal movement of epithelial progenitors from the limbus drives both the steady-state maintenance of the corneal epithelium and its regeneration following injury. It is well established that this is facilitated by a population of limbal epithelial stem cells within the limbus. It is becoming increasingly apparent that the behaviour of these stem cells and their ability to respond to the needs of the tissue are closely linked to their immediate microenvironment - the stem cell niche. Increasing understanding of the structural features of this niche and the signalling networks that they coordinate is required to enhance the therapeutic application of these cells in the treatment of limbal stem cell deficiency. Importantly, an improved characterisation of the hierarchy of limbal epithelial progenitors using both new and old putative markers will enable a greater appreciation for the effects of many of these limbal niche factors on stem cell fate.
Collapse
|
26
|
da Silva Ferreira AR, Wardill HR, Tissing WJ, Harmsen HJ. Pitfalls and novel experimental approaches to optimize microbial interventions for chemotherapy-induced gastrointestinal mucositis. Curr Opin Support Palliat Care 2020; 14:127-134. [PMID: 32324645 PMCID: PMC7259380 DOI: 10.1097/spc.0000000000000497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW There is a growing number of studies implicating gut dysbiosis in mucositis development. However, few studies have shed light on the causal relationship limiting translational potential. Here, we detail the key supportive evidence for microbial involvement, candidate mechanisms by which the microbiome may contribute to mucositis and emerging approaches to model host-microbe interactions with clinical relevance and translational potential. RECENT FINDINGS Synthesis of existing clinical data demonstrate that modulating the microbiome drastically alters the development and severity of mucositis, providing a strong rationale for its involvement. Review of the literature revealed potential microbiome-dependent mechanisms of mucosal injury including altered drug metabolism, bile acid synthesis and regulation of the intestinal barrier. Current studies are limited in their mechanistic insight due to cross-sectional and would benefit from longitudinal analyses and baseline phenotyping. SUMMARY The causative role of the microbiome in mucositis development remains unclear. Future studies must adopt comprehensive microbial analyses with functional assessment, and utilize emerging ex-vivo models to interrogate host-microbe interactions in mucositis.
Collapse
Affiliation(s)
| | - Hannah R. Wardill
- Department of Pediatrics Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wim J.E. Tissing
- Department of Pediatrics Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
27
|
Hale AT, Brown RE, Luka Z, Hudson BH, Matta P, Williams CS, York JD. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv Biol Regul 2020; 76:100694. [PMID: 32019729 PMCID: PMC7230019 DOI: 10.1016/j.jbior.2020.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Benjamin H Hudson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Pranathi Matta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
28
|
Zhao Y, Luan H, Gao H, Wu X, Zhang Y, Li R. Gegen Qinlian decoction maintains colonic mucosal homeostasis in acute/chronic ulcerative colitis via bidirectionally modulating dysregulated Notch signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153182. [PMID: 32065953 DOI: 10.1016/j.phymed.2020.153182] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium. PURPOSE This study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models. METHODS Acute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4-/-) acute UC mice were also used in this study. RESULTS GQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4-/- UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells. CONCLUSIONS GQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.
Collapse
Affiliation(s)
- Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haofan Luan
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hui Gao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
29
|
Okkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI. A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biol 2020; 30:101420. [PMID: 31935648 PMCID: PMC6957829 DOI: 10.1016/j.redox.2019.101420] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement - fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O2-PLIM both indicated that at high 'basal' glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Ruslan I Dmitriev
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
30
|
Najjar SA, Davis BM, Albers KM. Epithelial-Neuronal Communication in the Colon: Implications for Visceral Pain. Trends Neurosci 2020; 43:170-181. [PMID: 31983457 DOI: 10.1016/j.tins.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Visceral hypersensitivity and pain result, at least in part, from increased excitability of primary afferents that innervate the colon. In addition to intrinsic changes in these neurons, emerging evidence indicates that changes in lining epithelial cells may also contribute to increased excitability. Here we review recent studies on how colon epithelial cells communicate directly with colon afferents. Specifically, anatomical studies revealed specialized synaptic connections between epithelial cells and nerve fibers and studies using optogenetic activation of the epithelium showed initiation of pain-like responses. We review the possible mechanisms of epithelial-neuronal communication and provide an overview of the possible neurotransmitters and receptors involved. Understanding the biology of this interface and how it changes in pathological conditions may provide new treatments for visceral pain conditions.
Collapse
Affiliation(s)
- Sarah A Najjar
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian M Davis
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Abstract
Recent advances in culturing of intestinal stem cells and pluripotent stem cells have led to the development of intestinal organoids. These are self-organizing 3D structures, which recapitulate the characteristics and physiological features of in vivo intestinal epithelium. Intestinal organoids have allowed the development of novel in vitro models to study various gastrointestinal diseases expanding our understanding of the pathophysiology of diseases and leading to the development of innovative therapies. This article aims to summarize the current usage of intestinal organoids as a model of gastrointestinal diseases and the potential applications of intestinal organoids in infants and children. Intestinal organoids allow the study of intestinal epithelium responses to stress factors. Mimicking intestinal injury such as necrotizing enterocolitis, intestinal organoids increases the expression of pro-inflammatory cytokine genes and shows disruption of tight junctions after they are injured by lipopolysaccharide and hypoxia. In cystic fibrosis, intestinal organoids derived from rectal biopsies have provided benefits in genetic studies and development of novel therapeutic gene modulation. Transplantation of intestinal organoids via enema has been shown to rescue damaged colonic epithelium in mice. In addition, tissue-engineered small intestine derived from intestinal organoids have been successfully established providing a potential novel treatment and a new hope for children with short bowel syndrome.
Collapse
|
32
|
Qi Y, Lohman J, Bratlie KM, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Yoon KJ, Barrett TA, Wang Q. Vitamin C and B 3 as new biomaterials to alter intestinal stem cells. J Biomed Mater Res A 2019; 107:1886-1897. [PMID: 31071241 PMCID: PMC6626554 DOI: 10.1002/jbm.a.36715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Vitamin C (ascorbic acid) and vitamin B3 (niacin) have been extensively studied since the 20th century. In the area of stem cell biology, vitamin C has shown its direct impact toward homeostasis and epigenetic changes (D'Aniello et al., Stem Cells International, 2017, 1-16). Vitamin B3 aids in maintaining healthy intestinal homeostasis and reducing gut inflammation by participating in the rapamycin signaling pathway (Kumar et al., The American Journal of Physiology-Gastrointestinal and Liver Physiology, 2013). In this study, vitamin C and vitamin B3 (600 and 1,200 μg/mL) have been explored as potential new biomaterials to study their effects on four types of intestinal stem cells which are isolated from mice bearing different microbiota. We observed that C3H ASF and 129 ASF IL-10 are more sensitive towardB7 600 μg/mL vitamin B3 and 1,200 μg/mL vitamin C. The lowest growth rate and viability for all types of organoids was with 1,200 μg/mL vitamin C. From quantitative polymerase chain reaction analysis (qPCR analysis), MUC2 was upregulated for 129 ASF and C3H Conv when exposed to 600 μg/mL and 1,200 μg/mL vitamin C. It suggests that large amounts of glycoprotein may be produced after adding high concentrations of vitamin C. Since inflammatory bowel disease has low level of MUC2, this finding may be helpful in restoring mucosal health by upregulating the MUC2 gene while altering patient's microbiota (Sibila et al., Annals of the American Thoracic Society, 2016). These results are expected to have a positive translational impact because this bottom-up strategy would be instrumental in developing Vitamin C and B3 based orally available therapeutic strategies and formula for advancing the fields of gastrointestinal regenerative medicine.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Jo Lohman
- Department of Chemical and Biological Engineering, Iowa State University
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University
- Department of Materials Science and Engineering, Iowa State University
| | | | - Bryan Bellaire
- Department of Vet Microbiology and Preventive Medicine, Iowa State University
| | | | - Kyoung-Jin Yoon
- Department of Vet Diagnostic and Production Animal Medicine, Iowa State University
| | - Terrence A Barrett
- Department of Internal Medicine, Division of Gastroenterology, University of Kentucky
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
33
|
Vattulainen M, Ilmarinen T, Koivusalo L, Viiri K, Hongisto H, Skottman H. Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Res Ther 2019; 10:236. [PMID: 31383008 PMCID: PMC6683518 DOI: 10.1186/s13287-019-1354-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background The differentiation of corneal limbal stem cells (LSCs) from human pluripotent stem cells (hPSCs) has great power as a novel treatment for ocular surface reconstruction and for modeling corneal epithelial renewal. However, the lack of profound understanding of the true LSC population identity and the regulation of LSC homeostasis is hindering the full therapeutic potential of hPSC-derived LSCs as well as primary LSCs. Methods The differentiation trajectory of two distinct hPSC lines towards LSCs was characterized extensively using immunofluorescence labeling against pluripotency, putative LSC, and mature corneal epithelium markers. Cell counting, flow cytometry, and qRT-PCR were used to quantify the differences between distinct populations observed at day 11 and day 24 time points. Initial differentiation conditions were thereafter modified to support the maintenance and expansion of the earlier population expressing ABCG2. Immunofluorescence, qRT-PCR, population doubling analyses, and transplantation into an ex vivo porcine cornea model were used to analyze the phenotype and functionality of the cell populations cultured in different conditions. Results The detailed characterization of the hPSC differentiation towards LSCs revealed only transient expression of a cell population marked by the universal stemness marker and proposed LSC marker ABCG2. Within the ABCG2-positive population, we further identified two distinct subpopulations of quiescent ∆Np63α-negative and proliferative ∆Np63α-positive cells, the latter of which also expressed the acknowledged intestinal stem cell marker and suggested LSC marker LGR5. These populations that appeared early during the differentiation process had stem cell phenotypes distinct from the later arising ABCG2-negative, ∆Np63α-positive third cell population. Importantly, novel culture conditions modulating the Wnt and BMP signaling pathways allowed efficient maintenance and expansion of the ABCG2-positive populations. In comparison to ∆Np63α-positive hPSC-LSCs cultured in the initial culture conditions, ABCG2-positive hPSC-LSCs in the novel maintenance condition contained quiescent stem cells marked by p27, demonstrated notably higher population doubling capabilities and clonal growth in an in vitro colony-forming assay, and increased regenerative potential in the ex vivo transplantation model. Conclusions The distinct cell populations identified during the hPSC-LSC differentiation and ABCG2-positive LSC maintenance may represent functionally different limbal stem/progenitor cells with implications for regenerative efficacy. Electronic supplementary material The online version of this article (10.1186/s13287-019-1354-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meri Vattulainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
34
|
Abstract
The intestinal epithelium is an important receptor that is not only exposed to nutrients but also to pathogens, such as ingested toxins, bacterial flora, and their metabolites. The sensory information is communicated to extensive endocrine, neural, immune systems, and the exosomes acts as carriers of communication from cell-to-cell. Isolation of exosomes from small intestinal epithelium remains more complex to obtain as a source of exosomes, as it contains varying proportions of exosomes derived from many different cells. Current studies on exosomes have been largely performed using supernatants of cultured cells. This is because, in a cell culture, the origin of exosomes can be determined and isolation of exosomes devoid of 'contaminating' proteins, lipids, and sugars involves relatively simple composition of most culture media facilitates. However, this is hard to achieve in intestinal epithelial cells (IECs) due to several technical issues, including recapitulation of in vivo physiology, operational simplicity, culture stability over time, and assay throughput. Meanwhile, separation of exosomes from a specific cell type remains to be a considerable problem, as the isolated supernatant exosomal fraction may represent only a small fraction of the total instead of reflecting the overall situation. Herein, we proposed an efficient protocol for enrichment of exosomes from the interstitial space of small intestinal epithelium. This method maintains the integrity of the vesicles as well as their contents. Also, it may help to better understand the properties of exosomes and explore their role in cell-to-cell communication of small intestinal epithelium.
Collapse
|
35
|
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Sci Rep 2019; 9:10140. [PMID: 31300688 PMCID: PMC6625996 DOI: 10.1038/s41598-019-46497-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies.
Collapse
|
36
|
Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro. Biomaterials 2019; 194:195-214. [DOI: 10.1016/j.biomaterials.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/22/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
|
38
|
Strugari AFG, Stan MS, Gharbia S, Hermenean A, Dinischiotu A. Characterization of Nanoparticle Intestinal Transport Using an In Vitro Co-Culture Model. NANOMATERIALS 2018; 9:nano9010005. [PMID: 30577573 PMCID: PMC6358835 DOI: 10.3390/nano9010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
We aimed to obtain a tunable intestinal model and study the transport of different types of nanoparticles. Caco-2/HT29-MTX co-cultures of different seeding ratios (7:3 and 5:5), cultured on Transwell® systems, were exposed to non-cytotoxic concentration levels (20 μg/mL) of silicon quantum dots and iron oxide (α-Fe₂O₃) nanoparticles. Transepithelial electric resistance was measured before and after exposure, and permeability was assessed via the paracellular marker Lucifer Yellow. At regular intervals during the 3 h transport study, samples were collected from the basolateral compartments for the detection and quantitative testing of nanoparticles. Cell morphology characterization was done using phalloidin-FITC/DAPI labeling, and Alcian Blue/eosin staining was performed on insert cross-sections in order to compare the intestinal models and evaluate the production of mucins. Morphological alterations of the Caco-2/HT29-MTX (7:3 ratio) co-cultures were observed at the end of the transport study compared with the controls. The nanoparticle suspensions tested did not diffuse across the intestinal model and were not detected in the receiving compartments, probably due to their tendency to precipitate at the monolayer surface level and form visible aggregates. These preliminary results indicate the need for further nanoparticle functionalization in order to appropriately assess intestinal absorption in vitro.
Collapse
Affiliation(s)
- Alina F G Strugari
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna S Stan
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
- Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, 1 Feleacului, 310396 Arad, Romania.
| | - Anca Dinischiotu
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
39
|
Awatade NT, Wong SL, Hewson CK, Fawcett LK, Kicic A, Jaffe A, Waters SA. Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine. Front Pharmacol 2018; 9:1429. [PMID: 30581387 PMCID: PMC6293199 DOI: 10.3389/fphar.2018.01429] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder where individual disease etiology and response to therapeutic intervention is impacted by CF transmembrane regulator (CFTR) mutations and other genetic modifiers. CFTR regulates multiple mechanisms in a diverse range of epithelial tissues. In this Review, we consolidate the latest updates in the development of primary epithelial cellular model systems relevant for CF. We discuss conventional two-dimensional (2-D) airway epithelial cell cultures, the backbone of in vitro cellular models to date, as well as improved expansion protocols to overcome finite supply of the cellular source. We highlight a range of strategies for establishment of three dimensional (3-D) airway and intestinal organoid models and evaluate the limitations and potential improvements in each system, focusing on their application in CF. The in vitro CFTR functional assays in patient-derived organoids allow for preclinical pharmacotherapy screening to identify responsive patients. It is likely that organoids will be an invaluable preclinical tool to unravel disease mechanisms, design novel treatments, and enable clinicians to provide personalized management for patients with CF.
Collapse
Affiliation(s)
- Nikhil T. Awatade
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sharon L. Wong
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chris K. Hewson
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura K. Fawcett
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Anthony Kicic
- Centre for Child Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley, WA, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | - Adam Jaffe
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A. Waters
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Liu Y, Chen YG. 2D- and 3D-Based Intestinal Stem Cell Cultures for Personalized Medicine. Cells 2018; 7:E225. [PMID: 30469504 PMCID: PMC6316377 DOI: 10.3390/cells7120225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/05/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers that have high occurrence and death in both males and females. As various factors have been found to contribute to CRC development, personalized therapies are critical for efficient treatment. To achieve this purpose, the establishment of patient-derived tumor models is critical for diagnosis and drug test. The establishment of three-dimensional (3D) organoid cultures and two-dimensional (2D) monolayer cultures of patient-derived epithelial tissues is a breakthrough for expanding living materials for later use. This review provides an overview of the different types of 2D- and 3D-based intestinal stem cell cultures, their potential benefits, and the drawbacks in personalized medicine in treatment of the intestinal disorders.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Nakamura T. Recent progress in organoid culture to model intestinal epithelial barrier functions. Int Immunol 2018; 31:13-21. [DOI: 10.1093/intimm/dxy065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
42
|
Abstract
The intestinal epithelium is a multicellular interface in close proximity to a dense microbial milieu that is completely renewed every 3-5 days. Pluripotent stem cells reside at the crypt, giving rise to transient amplifying cells that go through continuous steps of proliferation, differentiation and finally anoikis (a form of programmed cell death) while migrating upwards to the villus tip. During these cellular transitions, intestinal epithelial cells (IECs) possess distinct metabolic identities reflected by changes in mitochondrial activity. Mitochondrial function emerges as a key player in cell fate decisions and in coordinating cellular metabolism, immunity, stress responses and apoptosis. Mediators of mitochondrial signalling include molecules such as ATP and reactive oxygen species and interrelate with pathways such as the mitochondrial unfolded protein response (MT-UPR) and AMP kinase signalling, in turn affecting cell cycle progression and stemness. Alterations in mitochondrial function and MT-UPR activation are integral aspects of pathologies, including IBD and cancer. Mitochondrial signalling and concomitant changes in metabolism contribute to intestinal homeostasis and regulate IEC dedifferentiation-differentiation programmes in the context of diseases, suggesting that mitochondrial function as a cellular checkpoint critically contributes to disease outcome. This Review highlights mitochondrial function and MT-UPR signalling in epithelial cell stemness, differentiation and lineage commitment and illustrates mitochondrial function in intestinal diseases.
Collapse
|
43
|
Davoudi Z, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Barrett T, Narasimhan B, Wang Q. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A 2018; 106:876-886. [PMID: 29226615 PMCID: PMC5826879 DOI: 10.1002/jbm.a.36305] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) causes inflammation to the gastrointestinal tract. Local administration of anti-inflammatory drugs such as 5-aminosalicylic acid (5-ASA) can alleviate the symptoms of IBD. The application of nanoparticles for IBD treatment in direct rectal administration showed high drug availability and treatment efficacy. However, relying on size-dependent adsorption of smaller particles is not sufficient for making the formulation capable of targeting. Intestinal organoids can improve the functionality of the nanoparticles due to their ability to adsorb small nanoparticle inside the lumen and attach to the damaged area. In this study, intestinal organoids were used as carriers of 5-ASA-loaded poly(lactic-co-glycolic acid) nanoparticles. The nanoparticle sizes, confirmed by scanning electron microscopy, were 200-300 nm and the zeta potential were negative. The nanoparticles did not have any noticeable pernicious effect on organoid growth and viability. After mixing the nanoparticles with Matrigel and organoids, Rhodamine B loaded inside the nanoparticles was highly detected inside the organoid's lumen after 3 days by confocal fluorescent microscopy and no longer detected in the lumen after day 4. It may be attributed to the ability of the lumen to digest particles. Thus, the organoid Trojan horse system is a possible approach for delivering drugs to inflamed areas. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 876-886, 2018.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Nathan Peroutka-Bigus
- Department of Vet Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
| | - Bryan Bellaire
- Department of Vet Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
| | - Michael Wannemuehler
- Department of Vet Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
| | - Terrence Barrett
- Department of Internal Medicine, Division of Gastroenterology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
44
|
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Tissue Engineering Laboratory Models of the Small Intestine. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:98-111. [DOI: 10.1089/ten.teb.2017.0276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rasha Hatem Dosh
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine Lyn Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
45
|
Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI. Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:85-103. [PMID: 29080132 DOI: 10.1007/978-3-319-67358-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- Metabolic Imaging Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Cai T, Qi Y, Jergens A, Wannemuehler M, Barrett TA, Wang Q. Effects of six common dietary nutrients on murine intestinal organoid growth. PLoS One 2018; 13:e0191517. [PMID: 29389993 PMCID: PMC5794098 DOI: 10.1371/journal.pone.0191517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
The intestinal epithelium of the gastrointestinal (GI) tract constantly renews itself to absorb nutrients and provide protection for the body from the outside world. Since the intestinal epithelium is constantly exposed to various chemicals and dietary components, it is critical to determine which constituents promote or inhibit intestinal epithelium health and growth rate. Intestinal organoids, three-dimensional miniature models of the intestines, represent an ex vivo tool to investigate intestinal physiology and growth patterns. In this study, we measured the growth rates of murine intestinal organoids exposed to various concentrations of different dietary constituents. Results indicate that caffeic acid inhibited organoid growth in a concentration-dependent manner, curcumin exhibited variable effectiveness, and vitamin C had no effect on organoid growth.
Collapse
Affiliation(s)
- Tenson Cai
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Michael Wannemuehler
- Department of Vet Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Terrence A. Barrett
- Department of Internal Medicine, Division of Gastroenterology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
47
|
Sebrell TA, Sidar B, Bruns R, Wilkinson RA, Wiedenheft B, Taylor PJ, Perrino BA, Samuelson LC, Wilking JN, Bimczok D. Live imaging analysis of human gastric epithelial spheroids reveals spontaneous rupture, rotation and fusion events. Cell Tissue Res 2018; 371:293-307. [PMID: 29178040 PMCID: PMC5785432 DOI: 10.1007/s00441-017-2726-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/27/2017] [Indexed: 01/16/2023]
Abstract
Three-dimensional cultures of primary epithelial cells including organoids, enteroids and epithelial spheroids have become increasingly popular for studies of gastrointestinal development, mucosal immunology and epithelial infection. However, little is known about the behavior of these complex cultures in their three-dimensional culture matrix. Therefore, we performed extended time-lapse imaging analysis (up to 4 days) of human gastric epithelial spheroids generated from adult tissue samples in order to visualize the dynamics of the spheroids in detail. Human gastric epithelial spheroids cultured in our laboratory grew to an average diameter of 443.9 ± 34.6 μm after 12 days, with the largest spheroids reaching diameters of >1000 μm. Live imaging analysis revealed that spheroid growth was associated with cyclic rupture of the epithelial shell at a frequency of 0.32 ± 0.1/day, which led to the release of luminal contents. Spheroid rupture usually resulted in an initial collapse, followed by spontaneous re-formation of the spheres. Moreover, spheroids frequently rotated around their axes within the Matrigel matrix, possibly propelled by basolateral pseudopodia-like formations of the epithelial cells. Interestingly, adjacent spheroids occasionally underwent luminal fusion, as visualized by injection of individual spheroids with FITC-Dextran (4 kDa). In summary, our analysis revealed unexpected dynamics in human gastric spheroids that challenge our current view of cultured epithelia as static entities and that may need to be considered when performing spheroid infection experiments.
Collapse
Affiliation(s)
- T Andrew Sebrell
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Rachel Bruns
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | | | - Brian A Perrino
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA.
| |
Collapse
|
48
|
Fiore D, Ramesh P, Proto MC, Piscopo C, Franceschelli S, Anzelmo S, Medema JP, Bifulco M, Gazzerro P. Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids. Front Pharmacol 2018; 8:949. [PMID: 29354056 PMCID: PMC5758598 DOI: 10.3389/fphar.2017.00949] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel. Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC. In this work, using established 3D cultures of primary colon CSCs, taking into account the tumor heterogeneity through monitoring of Wnt activity, we demonstrated that Rimonabant was able to reduces both tumor differentiated cells and colon CSCs proliferation and to control their survival in long term cultures. Interestingly, in ex vivo model of wild type human organoids, retaining both architecture and heterogeneity of original tissue, Rimonabant showed no toxicity against cells from healthy colon epithelium, suggesting its potential selectivity toward cancer cells. Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.
Collapse
Affiliation(s)
- Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Prashanthi Ramesh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academisch Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands
| | - Maria C Proto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Serena Anzelmo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Jan P Medema
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academisch Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
49
|
Oatway C, Hirsch CL, Gregorieff A. Use of Organoids to Characterize Signaling Pathways in Cancer Initiation. Methods Mol Biol 2018; 1765:315-331. [PMID: 29589318 DOI: 10.1007/978-1-4939-7765-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of intestinal organoid technology has greatly accelerated research in the field of colorectal cancer. Contrary to traditional cancer cell lines, organoids are composed of multiple cell types arranged in 3D structures highly reminiscent of their native tissues. Thus, organoids provide a near-physiological and readily accessible model to study tissue morphogenesis, adult stem cell behavior and tumorigenesis. Here, we provide protocols for establishing intestinal organoid cultures from genetically modified mouse lines and describe methods to overexpress and knockout genes of interest using lentiviral-based approaches.
Collapse
Affiliation(s)
- Christina Oatway
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Calley L Hirsch
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Alex Gregorieff
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
- Department of Pathology, McGill University, Montreal, Canada.
- Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
50
|
Kanetaka K, Kobayashi S, Eguchi S. Regenerative medicine for the esophagus. Surg Today 2017; 48:739-747. [PMID: 29214351 DOI: 10.1007/s00595-017-1610-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Advances in tissue engineering techniques have made it possible to use human cells as biological material. This has enabled pharmacological studies to be conducted to investigate drug effects and toxicity, to clarify the mechanisms underlying diseases, and to elucidate how they compensate for impaired organ function. Many researchers have tried to construct artificial organs using these techniques, but none has succeeded in growing a whole organ. Unlike other digestive organs with complicated functions, such as the processing and absorption of nutrients, the esophagus has the relatively simple function of transporting content, which can be replicated easily by a substitute. In regenerative medicine, various combinations of materials have been applied, including scaffolding, cell sources, and bioreactors. Exciting results of tissue engineering techniques for the esophagus have been reported. In animal models, replacing full-thickness and full-circumferential defects remains challenging because of stenosis and leakage after implantation. Although many reports have manipulated various scaffolds, most have emphasized the importance of both epithelial and mesenchymal cells for the prevention of stenosis. However, the results of repair of partial full-thickness defects and mucosal defects have been promising. Two successful approaches for the replacement of mucosal defects in a clinical setting have been reported, although in contrast to the many animal models, there are few pilot studies in humans. We review the recent results and evaluate the future of regenerative medicine for the esophagus.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinichiro Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|