1
|
Zhang J, Yang J, Luo J, Wu W, Luo H, Wei W, Lyu H, Wang Y, Yi H, Zhang Y, Fan Z, Lyu H, Kanakaveti VP, Qin B, Yuan P, Yang R, Zhang H, Zuo T, Felsher DW, Lee MH, Li K. Lactobacillus acidophilus potentiates oncolytic virotherapy through modulating gut microbiota homeostasis in hepatocellular carcinoma. Nat Commun 2025; 16:3315. [PMID: 40195307 PMCID: PMC11976979 DOI: 10.1038/s41467-025-58407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Oncolytic viruses (OVs) hold promise for cancer treatment. However, the antitumor efficacy is limited. Microbiota plays a pivotal role in cancer treatment and its impact on oncolytic virotherapy is unknown. Here, we show that VSVΔ51 has higher antitumor efficacy for hepatocellular carcinoma in the absence of microbiota in female mouse models. VSVΔ51 infection causes microbiota dysbiosis, increasing most of the gut bacteria abundance, while decreasing the commensal Lactobacillus. VSVΔ51 reduced intestinal expression of SLC20A1 that binds to Lactobacillus acidophilus (L. acidophilus) CdpA cell wall protein through IL6-JAK-STAT3 signaling, thereby attenuating attachment and colonization of L. acidophilus. L. acidophilus supplementation confers sensitivity to VSVΔ51 through restoring gut barrier integrity and microbiota homeostasis destroyed by VSVΔ51. In this work, we show that targeting microbiota homostasis holds substantial potential in improving therapeutic outcomes of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinneng Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinyan Luo
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Weili Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haidan Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wei
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuzhi Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hairong Yi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijing Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongmin Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiwen Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Baifu Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, 519, Kunzhou Road, Kunming, 650118, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tao Zuo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mong-Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Huang S, Wu D, Liao G, Liang M, Zhang Y, Wu H, Tang D, Wen D, Jiang B, Yu S, Tai S. Identified a novel prognostic model of HCC basing on virus signature for guiding immunotherapy. Discov Oncol 2024; 15:551. [PMID: 39397204 PMCID: PMC11471745 DOI: 10.1007/s12672-024-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viral immunotherapy is a cancer treatment that uses native or genetically modified viruses that selectively replicate and destroy tumor cells. In this study, we aimed to construct a virus-based prognostic model for risk assessment and prognosis prediction in patients with hepatocellular carcinoma (HCC) and determine the most appropriate virus as a candidate vector for oncolytic virus immunotherapy. Microbiome and RNA sequencing data and clinical information were obtained from The Cancer Genome Atlas, and viruses with prognostic value were identified (Deltabaculovirus, Sicinivirus, and Cytomegalovirus) to construct the prognostic model. Correlation analyses were performed to evaluate the predictive function of the viral signature. Bioinformatics analyses were conducted to explore the functional enrichment of viral expression in HCC. The risk score generated by this model could distinguish patients with different survival outcomes, have excellent reliability and accuracy, and could be used as an independent prognostic indicator. The high-risk score group showed significantly lower overall survival, and this trend was also observed in subgroups with different clinicopathological features. Furthermore, Deltabaculovirus positively correlated with amino acid metabolism, energy metabolism signaling pathways, peroxisomes, and complement coagulation cascades. In addition, Deltabaculovirus was significantly related to immune cell infiltration; therefore, patients with high Delta-baculovirus expression might respond better to HCC immunotherapy. Our study identified a promising predictive viral signature for assessing clinical prognosis and guiding immunotherapy in HCC. Deltabaculovirus might be a suitable viral vector for oncolytic virus immunotherapy.
Collapse
Affiliation(s)
- Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Guanqun Liao
- Department of Hepatobiliary Surgery, Foshan Hospital Affiliated to Southern Medical University, Foshan, China
| | - Ming Liang
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yaohui Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Haotian Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dixiang Wen
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Jiang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
3
|
Han H, Zhao Z, He M, Guan G, Cao J, Li T, Han B, Zhang B. Global research trends in the tumor microenvironment of hepatocellular carcinoma: insights based on bibliometric analysis. Front Immunol 2024; 15:1474869. [PMID: 39411719 PMCID: PMC11473330 DOI: 10.3389/fimmu.2024.1474869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Objective This study aimed to use visual mapping and bibliometric analysis to summarize valuable information on the tumor microenvironment (TME)-related research on hepatocellular carcinoma (HCC) in the past 20 years and to identify the research hotspots and trends in this field. Methods We screened all of the relevant literature on the TME of HCC in the Web of Science database from 2003 to 2023 and analysed the research hotspots and trends in this field via VOSviewer and CiteSpace. Results A total of 2,157 English studies were collected. According to the prediction, the number of papers that were published in the past three years will be approximately 1,394, accounting for 64.63%. China published the most papers (n=1,525) and had the highest total number of citations (n=32,253). Frontiers In Immunology published the most articles on the TME of HCC (n=75), whereas, Hepatology was the journal with the highest total number of citations (n=4,104) and average number of citations (n=91). The four clusters containing keywords such as "cancer-associated fibroblasts", "hepatic stellate cells", "immune cells", "immunotherapy", "combination therapy", "landscape", "immune infiltration", and "heterogeneity" are currently hot research topics in this field. The keywords "cell death", "ferroptosis", "biomarkers", and "prognostic features" have emerged relatively recently, and these research directions are becoming increasingly popular. Conclusions We identified four key areas of focus in the study of the TME in HCC: the main components and roles in the TME, immunotherapy, combination therapy, and the microenvironmental landscape. Moreover, the result of our study indicate that effect of ferroptosis on the TME in HCC may become a future research trend.
Collapse
Affiliation(s)
- Hongmin Han
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang He
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Li
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
5
|
Xiao R, Jin H, Huang F, Huang B, Wang H, Wang YG. Oncolytic virotherapy for hepatocellular carcinoma: A potent immunotherapeutic landscape. World J Gastrointest Oncol 2024; 16:2867-2876. [PMID: 39072175 PMCID: PMC11271782 DOI: 10.4251/wjgo.v16.i7.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a systemic disease with augmented malignant degree, high mortality and poor prognosis. Since the establishment of the immune mechanism of tumor therapy, people have realized that immunotherapy is an effective means for improvement of HCC patient prognosis. Oncolytic virus is a novel immunotherapy drug, which kills tumor cells and exempts normal cells by directly lysing tumor and inducing anti-tumor immune response, and it has been extensively examined as an HCC therapy. This editorial discusses oncolytic viruses for the treatment of HCC, emphasizing viral immunotherapy strategies and clinical applications related to HCC.
Collapse
Affiliation(s)
- Rong Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
6
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Yu H, Sun F, Xu Y, Yang H, Tian C, Li C, Kang Y, Hao L, Yang P. Combination Immunotherapy of Oncolytic Flu-Vectored Virus and Programmed Cell Death 1 Blockade Enhances Antitumor Activity in Hepatocellular Carcinoma. Hum Gene Ther 2024; 35:177-191. [PMID: 38386514 DOI: 10.1089/hum.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Oncolytic viruses (OVs) are appealing anti-tumor agents. But it is limited in its effectiveness. In this study, we used combination therapy with immune checkpoint inhibitor to enhance the antitumor efficacy of OVs. Using reverse genetics technology, we rescued an oncolytic influenza virus with the name delNS1-GM-CSF from the virus. After identifying the hemagglutination and 50% tissue culture infectivedose (TCID50) of delNS1-GM-CSF, it was purified, and the viral morphology was observed under electron microscopy. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was used to identify the level of GM-CSF expression in delNS1-GM-CSF, and the GM-CSF expression level was determined after infection with delNS1-GM-CSF by enzyme linked immunosorbent assay (ELISA). To study the tumor-killing effect of delNS1-GM-CSF, we utilized the hepatocellular carcinoma (HCC) tumor-bearing mouse model. To examine signaling pathways, we performed transcriptome sequencing on mouse tumor tissue and applied western blotting to confirm the results. Changes in T-cell infiltration in HCC tumors following treatment were analyzed using flow cytometry and immunohistochemistry. DelNS1-GM-CSF can target and kill HCCs without damaging normal hepatocytes. DelNS1-GM-CSF combined with programmed cell death 1 blockade therapy enhanced anti-tumor effects and significantly improved mouse survival. Further, we found that combination therapy had an antitumor impact via the janus kinase-signal transducer and activator of transcription (JAK2-STAT3) pathway as well as activated CD4+ and CD8+T cells. Interestingly, combined therapy also showed promising efficacy in distant tumors. DelNS1-GM-CSF is well targeted. Mechanistic investigation revealed that it functions through the JAK2-STAT3 pathway. Combination immunotherapies expected to be a novel strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Hongyu Yu
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Fang Sun
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Yan Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Hao Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Chongyu Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Cong Li
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Yimin Kang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Lei Hao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| |
Collapse
|
8
|
Sugimura N, Kubota E, Mori Y, Aoyama M, Tanaka M, Shimura T, Tanida S, Johnston RN, Kataoka H. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol Immunother 2023; 72:3593-3608. [PMID: 37526659 PMCID: PMC10992117 DOI: 10.1007/s00262-023-03509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.
Collapse
Affiliation(s)
- Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Kita-Ku, Nagoya, 462-8508, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Satoshi Tanida
- Department of Gastroenterology, Gamagori Municipal Hospital, Hirata-Cho, Gamagori, 443-8501, Japan
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
9
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
11
|
The differential expression of toll like receptors and RIG-1 correlates to the severity of infectious diseases. Ann Diagn Pathol 2023; 63:152102. [PMID: 36634551 DOI: 10.1016/j.anndiagpath.2022.152102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The toll like receptors (TLRs) and RIG-1 are proteins involved in the initial reaction of the innate immune system to infectious diseases and, thus, can provide much information to the surgical pathologist in terms of the molecular dynamics of the infection. The TLRs (TLR1, 2, 3, 4, 7, 8) and RIG-1 distribution as determined by immunohistochemistry was examined in the following diseases: human papillomavirus (n = 30 including 15 squamous intraepithelial lesions (SIL), 5 cancers, and 10 controls); molluscum contagiosum (n = 8 including 4 controls), SARS-CoV2 (n = 52 including 20 mild, 5 fatal, and 27 controls) and reovirus infection as oncolytic therapy. Mild, regressing infection (molluscum contagiosum, mild SARS-CoV2 and low grade SIL) each showed the same pattern: marked up regulation of at least three of the TLRs/RIG-1 with decreased expression of none compared to the controls. Severe infection (fatal SARS-CoV2, and cervical cancer) each showed marked decrease expression in at least three of the TLRs/RIG-1. We recently documented an equivalent marked decrease expression of the TLRs/RIG-1 in the placenta in fatal in utero infections. The reoviral infected tissues showed an overall pattern of marked increase expression of TLRs/RIG-1, consistent with a strong anti-viral response. Thus, the in situ testing of infectious diseases by a panel of these early infectious disease recognition proteins may allow the surgical pathologist to predict the outcome of the disease which, in turn, may assist in the understanding of the role of the TLRs/RIG-1 in determining the fate of a given infectious process.
Collapse
|
12
|
A Water-Soluble Hydrogen Sulfide Donor Suppresses the Growth of Hepatocellular Carcinoma via Inhibiting the AKT/GSK-3 β/ β-Catenin and TGF- β/Smad2/3 Signaling Pathways. JOURNAL OF ONCOLOGY 2023; 2023:8456852. [PMID: 36925651 PMCID: PMC10014162 DOI: 10.1155/2023/8456852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is a disease with high morbidity, high mortality, and low cure rate. Hyaluronic acid (HA) is widely adopted in tissue engineering and drug delivery. 5-(4-Hydroxyphenyl)-3H-1, 2-dithiol-3-thione (ADT-OH) is one of commonly used H2S donors. In our previous study, HA-ADT was designed and synthesized via coupling of HA and ADT-OH. In this study, compared with sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor), HA-ADT showed stronger inhibitory effect on the proliferation, migration, invasion, and cell cycle of human HCC cells. HA-ADT promoted apoptosis by suppressing the expressions of phospho (p)-protein kinase B (PKB/AKT), p-glycogen synthase kinase-3β (GSK-3β), p-β-catenin, and also inhibited autophagy via the downregulation of the protein levels of p-Smad2, p-Smad3, and transforming growth factor-β (TGF-β) in human HCC cells. Moreover, HA-ADT inhibited HCC xenograft tumor growth more effectively than both NaHS and GYY4137. Therefore, HA-ADT can suppress the growth of HCC cells by blocking the AKT/GSK-3β/β-catenin and TGF-β/Smad2/3 signaling pathways. HA-ADT and its derivatives may be developed as promising antitumor drugs.
Collapse
|
13
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
14
|
Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022; 12:896662. [PMID: 36176401 PMCID: PMC9513472 DOI: 10.3389/fonc.2022.896662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of liver cancer is extremely high worldwide and poses a serious threat to human life and health. But at present, apart from radiotherapy, chemotherapy, liver transplantation, and early resection, sorafenib was the main systemic therapy proven to have clinical efficacy for unresectable liver cancer (HCC) until 2017. Despite the emerging immunotherapy in the past decade with immune inhibitors such as PD - 1 being approved and applied to clinical treatment, there are still some patients with no response. This review aims to elucidate the mechanisms underlying the tumor microenvironment of hepatocellular carcinoma and thus analyze the effectiveness of targeting the tumor microenvironment to improve the therapeutic efficacy of hepatocellular carcinoma, including the effectiveness and feasibility of immunotherapy, tumor oncolytic viruses and anti-vascular proliferation therapy.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
15
|
Wantoch M, Wilson EB, Droop AP, Phillips SL, Coffey M, El‐Sherbiny YM, Holmes TD, Melcher AA, Wetherill LF, Cook GP. Oncolytic virus treatment differentially affects the CD56 dim and CD56 bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology 2022; 166:104-120. [PMID: 35156714 PMCID: PMC10357483 DOI: 10.1111/imm.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.
Collapse
Affiliation(s)
- Michelle Wantoch
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Erica B. Wilson
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Alastair P. Droop
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome Trust Sanger InstituteCambridgeUK
| | - Sarah L. Phillips
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | | | - Yasser M. El‐Sherbiny
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Present address:
Clinical Pathology DepartmentFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Tim D. Holmes
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Alan A. Melcher
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Institute of Cancer ResearchLondonUK
| | - Laura F. Wetherill
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Graham P. Cook
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| |
Collapse
|
16
|
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants (Basel) 2022; 11:antiox11050853. [PMID: 35624717 PMCID: PMC9137834 DOI: 10.3390/antiox11050853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is an effective treatment option that revolutionizes the management of various cancers. Nevertheless, only a subset of patients receiving immunotherapy exhibit durable responses. Recently, numerous studies have shown that oxidative stress induced by reactive oxygen species (ROS) plays essential regulatory roles in the tumor immune response, thus regulating immunotherapeutic effects. Specifically, studies have revealed key roles of ROS in promoting the release of tumor-associated antigens, manipulating antigen presentation and recognition, regulating immune cell phenotypic differentiation, increasing immune cell tumor infiltration, preventing immune escape and diminishing immune suppression. In the present study, we briefly summarize the main classes of cancer immunotherapeutic strategies and discuss the interplay between oxidative stress and anticancer immunity, with an emphasis on the molecular mechanisms underlying the oxidative stress-regulated treatment response to cancer immunotherapy. Moreover, we highlight the therapeutic opportunities of manipulating oxidative stress to improve the antitumor immune response, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
- Correspondence: (C.Z.); (C.H.)
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
- Correspondence: (C.Z.); (C.H.)
| |
Collapse
|
17
|
Schuelke MR, Gundelach JH, Coffey M, West E, Scott K, Johnson DR, Samson A, Melcher A, Vile RG, Bram RJ. Phase I trial of sargramostim/pelareorep therapy in pediatric patients with recurrent or refractory high-grade brain tumors. Neurooncol Adv 2022; 4:vdac085. [PMID: 35821679 PMCID: PMC9268737 DOI: 10.1093/noajnl/vdac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Brain tumors are the leading cause of cancer death for pediatric patients. Pelareorep, an immunomodulatory oncolytic reovirus, has intravenous efficacy in preclinical glioma models when preconditioned with GM-CSF (sargramostim). We report a phase I trial with the primary goal of evaluating the safety of sargramostim/pelareorep in pediatric patients with recurrent or refractory high-grade brain tumors and a secondary goal of characterizing immunologic responses. Methods The trial was open to pediatric patients with recurrent or refractory high-grade brain tumors (3 + 3 cohort design). Each cycle included 3 days of subcutaneous sargramostim followed by 2 days of intravenous pelareorep. Laboratory studies and imaging were acquired upon recruitment and periodically thereafter. Results Six patients participated, including three glioblastoma, two diffuse intrinsic pontine glioma, and one medulloblastoma. Two pelareorep dose levels of 3 × 108 and 5 × 108 tissue culture infectious dose 50 (TCID50) were assessed. One patient experienced a dose limiting toxicity of persistent hyponatremia. Common low-grade (1 or 2) adverse events included transient fatigue, hypocalcemia, fever, flu-like symptoms, thrombocytopenia, and leukopenia. High-grade (3 or 4) adverse events included neutropenia, lymphopenia, leukopenia, hypophosphatemia, depressed level of consciousness, and confusion. All patients progressed on therapy after a median of 32.5 days and died a median of 108 days after recruitment. Imaging at progression did not show evidence of pseudoprogression or inflammation. Correlative assays revealed transient but consistent changes in immune cells across patients. Conclusions Sargramostim/pelareorep was administered to pediatric patients with recurrent or refractory high-grade brain tumors. Hyponatremia was the only dose limiting toxicity (DLT), though maximum tolerated dose (MTD) was not determined.
Collapse
Affiliation(s)
- Matthew R Schuelke
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matt Coffey
- Oncolytics Biotech, Calgary, Alberta, Canada
| | - Emma West
- Faculty of Medicine and Health, Leeds Institute of Medical Research, University of Leeds, St James' University Hospital, Leeds, UK
| | - Karen Scott
- Faculty of Medicine and Health, Leeds Institute of Medical Research, University of Leeds, St James' University Hospital, Leeds, UK
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adel Samson
- Faculty of Medicine and Health, Leeds Institute of Medical Research, University of Leeds, St James' University Hospital, Leeds, UK
| | - Alan Melcher
- The Institute of Cancer Research/Royal Marsden, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Richard G Vile
- Faculty of Medicine and Health, Leeds Institute of Medical Research, University of Leeds, St James' University Hospital, Leeds, UK
| | - Richard J Bram
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
An Y, Zhang W, Liu T, Wang B, Cao H. The intratumoural microbiota in cancer: new insights from inside. Biochim Biophys Acta Rev Cancer 2021; 1876:188626. [PMID: 34520804 DOI: 10.1016/j.bbcan.2021.188626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The human body harbors a vast array of microbiota that modulates host pathophysiological processes and modifies the risk of diseases including cancer. With the advent of metagenomic sequencing studies, the intratumoural microbiota has been found as a component of the tumor microenvironment, imperceptibly affecting the tumor progression and response to current antitumor treatments. The underlying carcinogenic mechanisms of intratumoural microbiota, mainly including inducing DNA damages, activating oncogenic signaling pathways and suppressing the immune response, differ significantly in varied organs and are not fully understood. Some native or genetically engineered microbial species can specifically accumulate and replicate within tumors to initiate antitumor immunity, which will be conducive to pursue precise cancer therapies. In this review, we summarized the community characteristics and therapeutic potential of intratumoural microbiota across diverse tumor types. It may provide new insights for a better understanding of tumor biology and hint at the significance of manipulating intratumoural microbiota.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
19
|
Warricker F, Khakoo SI, Blunt MD. The role of NK cells in oncolytic viral therapy: a focus on hepatocellular carcinoma. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:304-322. [PMID: 34888493 PMCID: PMC7612080 DOI: 10.20517/jtgg.2021.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural killer (NK) cells have a key role in host anti-tumour immune responses via direct killing of tumour cells and promotion of adaptive immune responses. They are therefore attractive targets to promote the anti-tumour efficacy of oncolytic viral therapies. However, NK cells are also potent components of the host anti-viral immune response, and therefore have the potential for detrimental anti-viral responses, limiting the spread and persistence of oncolytic viruses. Oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma (HCC), a leading cause of cancer-related death with a high unmet clinical need. In this review, we highlight the role of NK cells in oncolytic virus therapy, their potential for improving treatment options for patients with HCC, and discuss current and potential strategies targeting NK cells in combination with oncolytic viral therapies.
Collapse
Affiliation(s)
- Frazer Warricker
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew D Blunt
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
20
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
21
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
22
|
Senekal NS, Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 2021; 83:75. [PMID: 34008149 DOI: 10.1007/s11538-021-00903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.
Collapse
Affiliation(s)
- Noma Susan Senekal
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho
| | | | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
de Almeida NAA, Ribeiro CRDA, Raposo JV, de Paula VS. Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review. Viruses 2021; 13:822. [PMID: 34063186 PMCID: PMC8147456 DOI: 10.3390/v13050822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been shown to be highly effective in some types of cancer caused by viruses. Gene therapy involves insertion or modification of a therapeutic gene, to correct for inappropriate gene products that cause/may cause diseases. Both these types of therapy have been used as alternative ways to avoid cancers caused by oncoviruses. In this review, we summarize recent studies on immunotherapy and gene therapy including the topics of oncolytic immunotherapy, immune checkpoint inhibitors, gene replacement, antisense oligonucleotides, RNA interference, clustered regularly interspaced short palindromic repeats Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing, transcription activator-like effector nucleases (TALENs) and custom treatment for Epstein-Barr virus, human T-lymphotropic virus 1, hepatitis B virus, human papillomavirus, hepatitis C virus, herpesvirus associated with Kaposi's sarcoma, Merkel cell polyomavirus, and cytomegalovirus.
Collapse
Affiliation(s)
| | | | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, Brazil; (N.A.A.d.A.); (C.R.d.A.R.); (J.V.R.)
| |
Collapse
|
24
|
Long S, Gu Y, An Y, Lin X, Chen X, Wang X, Liao C, Ouyang W, Wang N, He Z, Zhao X. Reovirus enhances cytotoxicity of natural killer cells against colorectal cancer via TLR3 pathway. J Transl Med 2021; 19:185. [PMID: 33933132 PMCID: PMC8088708 DOI: 10.1186/s12967-021-02853-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cetuximab has been approved for use for first-line treatment of patients with wild-type KRAS metastatic colorectal cancer (CRC). However, treatment with cetuximab has shown limited efficacy as a CRC monotherapy. In addition, natural killer (NK) cell function is known to be severely attenuated in cancer patients. The goal of this study was to develop a new strategy to enhance antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by NK cells, in combination with cetuximab against CRC cells. Methods Ex vivo expanded NK cells were stimulated with reovirus, and reovirus-activated NK cells mediated ADCC assay were performed on CRC cells in combination with cetuximab. The synergistic antitumor effects of reovirus-activated NK cells and cetuximab were tested on DLD-1 tumor-bearing mice. Finally, Toll-like receptor 3 (TLR3) knockdown in NK cells, along with chemical blockade of TLR3/dsRNA complex, and inhibition of the TLR3 downstream signaling pathway, were performed to explore the mechanisms by which reovirus enhances NK cell cytotoxicity. Results We first confirmed that exposure of NK cells to reovirus enhanced their cytotoxicity in a dose-dependent manner.We then investigated whether reovirus-activated NK cells exposed to cetuximab-bound CRC cells exhibited greater anti-tumor efficacy than either monotherapy. Co-culture of CRC cell lines with reovirus-activated NK cells indicated that NK cytotoxicity was significantly higher in combination with cetuximab, regardless of KRAS mutation status or EGFR expression level. We also found that reovirus activation of NK cells, in conjunction with cetuximab, resulted in significantly stronger anti-tumor efficacy.Finally, TLR3 knockdown, inhibition of TLR3/dsRNA complex or TBK1/IKKε demonstrated that activation of NK cells by reovirus was dependent on TLR3 and its downstream signaling pathway. Conclusions This study demonstrated that combination treatment of reovirus-activated NK cells with cetuximab synergistically enhances their anti-tumor cytotoxicity, suggesting a strong candidate strategy for clinical treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02853-y.
Collapse
Affiliation(s)
- Shiqi Long
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuanyuan An
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Xiaojin Lin
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Xiaoqing Chen
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Xianyao Wang
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Chunxiang Liao
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Weiwei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University and Guizhou Cancer Hospital, Guiyang, 550004, China
| | - Nianxue Wang
- Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China
| | - Zhixu He
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xing Zhao
- Center for Stem Cell and Tissue Engineering Research/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Key Laboratory of Adult Stem Cell Transformation Research, Guiyang, 550004, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
25
|
Wang K, Shang F, Chen D, Cao T, Wang X, Jiao J, He S, Liang X. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy. J Nanobiotechnology 2021; 19:31. [PMID: 33482834 PMCID: PMC7821407 DOI: 10.1186/s12951-021-00777-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Effective methods to deliver therapeutic genes to solid tumors and improve their bioavailability are the main challenges of current medical research on gene therapy. The development of efficient non-viral gene vector with tumor-targeting has very important application value in the field of cancer therapy. Proteolipid integrated with tumor-targeting potential of functional protein and excellent gene delivery performance has shown potential for targeted gene therapy. RESULTS Herein, we prepared transferrin-modified liposomes (Tf-PL) for the targeted delivery of acetylcholinesterase (AChE) therapeutic gene to liver cancer. We found that the derived Tf-PL/AChE liposomes exhibited much higher transfection efficiency than the commercial product Lipo 2000 and shown premium targeting efficacy to liver cancer SMMC-7721 cells in vitro. In vivo, the Tf-PL/AChE could effectively target liver cancer, and significantly inhibit the growth of liver cancer xenografts grafted in nude mice by subcutaneous administration. CONCLUSIONS This study proposed a transferrin-modified proteolipid-mediated gene delivery strategy for targeted liver cancer treatment, which has a promising potential for precise personalized cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Tieliu Cao
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China
| | - Xiaowei Wang
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Jianpeng Jiao
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China.
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
26
|
Kloeckner R, Galle PR, Bruix J. Local and Regional Therapies for Hepatocellular Carcinoma. Hepatology 2021; 73 Suppl 1:137-149. [PMID: 32557715 DOI: 10.1002/hep.31424] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Robert Galle
- Department of Internal Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, CIBEREHD Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020; 21:E8627. [PMID: 33207653 PMCID: PMC7697902 DOI: 10.3390/ijms21228627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in 'cold' or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn 'cold' tumors 'hot,' increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.
Collapse
Affiliation(s)
- June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Institute of Nano Science and Technology, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
28
|
Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais F. Past, Present and Future of Oncolytic Reovirus. Cancers (Basel) 2020; 12:E3219. [PMID: 33142841 PMCID: PMC7693452 DOI: 10.3390/cancers12113219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy (OVT) has received significant attention in recent years, especially since the approval of talimogene Laherparepvec (T-VEC) in 2015 by the Food and Drug administration (FDA). Mechanistic studies of oncolytic viruses (OVs) have revealed that most, if not all, OVs induce direct oncolysis and stimulate innate and adaptive anti-tumour immunity. With the advancement of tumour modelling, allowing characterisation of the effects of tumour microenvironment (TME) components and identification of the cellular mechanisms required for cell death (both direct oncolysis and anti-tumour immune responses), it is clear that a "one size fits all" approach is not applicable to all OVs, or indeed the same OV across different tumour types and disease locations. This article will provide an unbiased review of oncolytic reovirus (clinically formulated as pelareorep), including the molecular and cellular requirements for reovirus oncolysis and anti-tumour immunity, reports of pre-clinical efficacy and its overall clinical trajectory. Moreover, as it is now abundantly clear that the true potential of all OVs, including reovirus, will only be reached upon the development of synergistic combination strategies, reovirus combination therapeutics will be discussed, including the limitations and challenges that remain to harness the full potential of this promising therapeutic agent.
Collapse
|
29
|
Zhang Q, Zhou K, Liang W, Xiong W. Prognostic and clinicopathological significance of PD-1 expression in hepatocellular carcinoma: a meta-analysis. J Int Med Res 2020; 48:300060520962675. [PMID: 33100077 PMCID: PMC7607794 DOI: 10.1177/0300060520962675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE We performed a meta-analysis to evaluate the prognostic and clinicopathological significance of programmed cell death-1 (PD-1) expression in patients with hepatocellular carcinoma (HCC). METHODS We searched the Wanfang, Chinese Biomedical Literature, CNKI, PubMed, Embase, and Web of Science databases for relevant articles from inception to 1 July 2020. Statistical analysis was performed using RevMan 5.3 (Cochrane, London, UK) and Stata 14.0 software (StataCorp LP, College Station, TX, USA). RESULTS Eight studies involving 732 patients with HCC were included. Higher expression of PD-1 predicted longer disease-free survival [hazard ratio (HR) 0.53, 95% confidence interval (CI): 0.38-0.72]. No significant correlation was observed between PD-1 expression and overall survival (HR 0.89, 95% CI: 0.58-1.35). PD-1 expression was correlated with age [odds ratio (OR) 0.66, 95% CI: 0.46-0.94] and alpha-fetoprotein level (OR 2.27, 95% CI: 1.45-3.55); no correlation was observed with sex, tumor size, tumor metastasis, hepatitis B virus history, tumor stage, or tumor multiplicity. Sensitivity analysis demonstrated no excessive effect on stability of the pooled results. No significant publication bias was found among the identified studies. CONCLUSION PD-1 overexpression predicted better disease-free survival in patients with HCC. Moreover, PD-1 expression was associated with age and alpha-fetoprotein level.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of CQMU, ChongQing, China
| | - Kexiang Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of CQMU, ChongQing, China
| | - Wei Liang
- Department of Oncology, The Third Affiliated Hospital of CQMU, ChongQing, China
| | - Wei Xiong
- Department of Gastroenterology, The Third Affiliated Hospital of CQMU, ChongQing, China
| |
Collapse
|
30
|
Zhang W, Chen CC, Ning J. Combining oncolytic virus with FDA approved pharmacological agents for cancer therapy. Expert Opin Biol Ther 2020; 21:183-189. [PMID: 32799567 DOI: 10.1080/14712598.2020.1811848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) have been engineered to selectively replicate in cancer cells. While initially thought to exert its anti-cancer effects through direct cytolysis, it is increasingly appreciated that OVs interact with a multitude of cellular processes during its life cycle; FDA approved pharmacologic agents that modulate these cellular processes have been shown to augment the anti-neoplastic effects of OVs. Moreover, because of the release of tumor antigens as well as the innate immuno-stimulatory nature of viruses, OVs induce potent immune responses that augment the anti-tumor effects of FDA approved immunotherapies. There is mounting interest in OV as a platform for combinational anti-cancer therapy in this context. AREAS COVERED We will review pre-clinical and clinical data that demonstrate proof-of-principle and potential efficacy for OV-based combination therapies with FDA approved anti-cancer agents. EXPERT OPINION While the cytolytic activity of OV remains a key driver for its anti-neoplastic effects, understanding the virus-host interactions may afford opportunities for potential synergism with FDA approved therapeutics that target these interactions. Most intriguingly, the immune stimulatory effects of OVs renders combination with FDA approved immunotherapies more potent. While there are growing clinical trials employing such combination therapy, meaningful advances in this paradigm will require improved understanding of virus-host interactions.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| | - Jianfang Ning
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| |
Collapse
|
31
|
Crespo-Rodriguez E, Bergerhoff K, Bozhanova G, Foo S, Patin EC, Whittock H, Buus R, Haider S, Muirhead G, Thway K, Newbold K, Coffin RS, Vile RG, Kim D, McLaughlin M, Melcher AA, Harrington KJ, Pedersen M. Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer. J Immunother Cancer 2020; 8:e000698. [PMID: 32759235 PMCID: PMC7445339 DOI: 10.1136/jitc-2020-000698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aggressive clinical behavior of poorly differentiated and anaplastic thyroid cancers (PDTC and ATC) has proven challenging to treat, and survival beyond a few months from diagnosis is rare. Although 30%-60% of these tumors contain mutations in the BRAF gene, inhibitors designed specifically to target oncogenic BRAF have shown limited and only short-lasting therapeutic benefits as single agents, thus highlighting the need for improved treatment strategies, including novel combinations. METHODS Using a BRAFV600E-driven mouse model of ATC, we investigated the therapeutic efficacy of the combination of BRAF inhibition and oncolytic herpes simplex virus (oHSV). Analyses of samples from tumor-bearing mice were performed to immunologically characterize the effects of different treatments. These immune data were used to inform the incorporation of immune checkpoint inhibitors into triple combination therapies. RESULTS We characterized the immune landscape in vivo following BRAF inhibitor treatment and detected only modest immune changes. We, therefore, hypothesized that the addition of oncolytic virotherapy to BRAF inhibition in thyroid cancer would create a more favorable tumor immune microenvironment, boost the inflammatory status of tumors and improve BRAF inhibitor therapy. First, we showed that thyroid cancer cells were susceptible to infection with oHSV and that this process was associated with activation of the immune tumor microenvironment in vivo. Next, we showed improved therapeutic responses when combining oHSV and BRAF inhibition in vivo, although no synergistic effects were seen in vitro, further confirming that the dominant effect of oHSV in this context was likely immune-mediated. Importantly, both gene and protein expression data revealed an increase in activation of T cells and natural killer (NK) cells in the tumor in combination-treated samples. The benefit of combination oHSV and BRAF inhibitor therapy was abrogated when T cells or NK cells were depleted in vivo. In addition, we showed upregulation of PD-L1 and CTLA-4 following combined treatment and demonstrated that blockade of the PD-1/PD-L1 axis or CTLA-4 further improved combination therapy. CONCLUSIONS The combination of oHSV and BRAF inhibition significantly improved survival in a mouse model of ATC by enhancing immune-mediated antitumor effects, and triple combination therapies, including either PD-1 or CTLA-4 blockade, further improved therapy.
Collapse
Affiliation(s)
| | | | - Galabina Bozhanova
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Shane Foo
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Harriet Whittock
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Richard Buus
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Gareth Muirhead
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Khin Thway
- Sarcoma Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Kate Newbold
- Head and Neck/Thyroid Oncology Department, The Royal Marsden Hospital, London, United Kingdom
| | | | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Dae Kim
- Head and Neck Department, St George's University Hospital, London, United Kingdom
| | - Martin McLaughlin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
32
|
Marotel M, Hasim MS, Hagerman A, Ardolino M. The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev 2020; 56:59-68. [PMID: 32586674 DOI: 10.1016/j.cytogfr.2020.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses (OVs) are immunotherapeutics capable of directly killing cancer cells and with potent immunostimulatory properties. OVs exert their antitumor effect, at least partially, by activating the antitumor immune response, of which NK cells are an important component. However, if on the one hand increasing evidence revealed that NK cells are important mediators of oncolytic virotherapy, on the other hand, NK cells have evolved to fight viral infections, and therefore they can have a detrimental effect for the efficacy of OVs. In this review, we will discuss the dichotomy between the antitumor and antiviral functions of NK cells related to oncolytic virotherapy. We will also review NK cell-based and OV-based therapies, engineered OVs aimed at enhancing immune stimulation, and combination therapies involving OVs and NK cells currently used in cancer immunotherapy.
Collapse
Affiliation(s)
- M Marotel
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - M S Hasim
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - A Hagerman
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada
| | - M Ardolino
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada.
| |
Collapse
|
33
|
Oncolytic immunotherapy and bortezomib synergy improves survival of refractory multiple myeloma in a preclinical model. Blood Adv 2020; 3:797-812. [PMID: 30850386 DOI: 10.1182/bloodadvances.2018025593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
The oncolytic reovirus (RV) has demonstrated clinical efficacy and minimal toxicity in a variety of cancers, including multiple myeloma (MM). MM is a malignancy of plasma cells that is considered treatable but incurable because of the 90% relapse rate that is primarily from drug resistance. The systemic nature of MM and the antitumor immunosuppression by its tumor microenvironment presents an ongoing therapeutic challenge. In the present study, we demonstrate that RV synergizes with the standard-of-care MM drug bortezomib (BTZ) and, importantly, enhances its therapeutic potential in therapy-resistant human MM cell lines in vitro. Using the syngeneic Vk*MYC BTZ-resistant immunocompetent transplantable MM murine model, we also demonstrate that mice harboring BTZ-insensitive MM tumors respond to the RV/BTZ combination treatment in terms of decreased tumor burden and improved overall survival (P < .00001). We demonstrate that BTZ augments RV replication in tumor-associated endothelial cells and myeloma cells, leading to enhanced viral delivery and thereby stimulating cytokine release, immune activity, apoptosis, and reduction of the MM-associated immune suppression. We conclude that combined RV/BTZ is an attractive therapeutic strategy with no safety signals for the treatment of MM.
Collapse
|
34
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
35
|
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother 2020; 16:2389-2402. [PMID: 32078405 DOI: 10.1080/21645515.2020.1723363] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.
Collapse
Affiliation(s)
- Moumita Mondal
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China.,Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Ping He
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
36
|
Koehler M, Aravamudhan P, Guzman-Cardozo C, Dumitru AC, Yang J, Gargiulo S, Soumillion P, Dermody TS, Alsteens D. Glycan-mediated enhancement of reovirus receptor binding. Nat Commun 2019; 10:4460. [PMID: 31575869 PMCID: PMC6773860 DOI: 10.1038/s41467-019-12411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Abstract
Viral infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and their cell surface receptors. Despite recent progress, the molecular mechanisms underlying the multistep reovirus entry process are poorly understood. Using atomic force microscopy, we investigated how the reovirus σ1 attachment protein binds to both α-linked sialic acid (α-SA) and JAM-A cell-surface receptors. We discovered that initial σ1 binding to α-SA favors a strong multivalent anchorage to JAM-A. The enhanced JAM-A binding by virions following α-SA engagement is comparable to JAM-A binding by infectious subvirion particles (ISVPs) in the absence of α-SA. Since ISVPs have an extended σ1 conformer, this finding suggests that α-SA binding triggers a conformational change in σ1. These results provide new insights into the function of viral attachment proteins in the initiation of infection and open new avenues for the use of reoviruses as oncolytic agents.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Camila Guzman-Cardozo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
37
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
38
|
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, Reilly K, Donnelly O, Peach H, Dewar D, Harrington KJ, Pandha H, Samson A, Vile RG, Melcher AA, Errington-Mais F. Potentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition. Mol Ther 2019; 27:1139-1152. [PMID: 31053413 PMCID: PMC6554638 DOI: 10.1016/j.ymthe.2019.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023] Open
Abstract
A clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.
Collapse
Affiliation(s)
- Victoria A Jennings
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK; Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gina B Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Ailsa M S Rose
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Karen J Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gemma Migneco
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Brian Keller
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katrina Reilly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Oliver Donnelly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Howard Peach
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Donald Dewar
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Kevin J Harrington
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK
| | - Adel Samson
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | | | - Alan A Melcher
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK.
| | - Fiona Errington-Mais
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
39
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
40
|
Wetherill LF, Wasson CW, Swinscoe G, Kealy D, Foster R, Griffin S, Macdonald A. Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus (HPV) E5. Antiviral Res 2018; 158:113-121. [PMID: 30096339 PMCID: PMC6156294 DOI: 10.1016/j.antiviral.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Despite the availability of prophylactic vaccines the burden of human papillomavirus (HPV) associated malignancy remains high and there is a need to develop additional therapeutic strategies to complement vaccination. We have previously shown that the poorly characterised E5 oncoprotein forms a virus-coded ion channel or viroporin that was sensitive to the amantadine derivative rimantadine. We now demonstrate that alkylated imino sugars, which have antiviral activity against a number of viruses, inhibit E5 channel activity in vitro. Using molecular modelling we predict that imino sugars intercalate between E5 protomers to prevent channel oligomerisation. We explored the ability of these viroporin inhibitors to block E5-mediated activation of mitogenic signalling in keratinocytes. Treatment with either rimantadine or imino sugars prevented ERK-MAPK phosphorylation and reduced cyclin B1 expression in cells expressing E5 from a number of high-risk HPV types. Moreover, viroporin inhibitors also reduced ERK-MAPK activation and cyclin B1 expression in differentiating primary human keratinocytes containing high-risk HPV18. These observations provide evidence of a key role for E5 viroporin function during the HPV life cycle. Viroporin inhibitors could be utilised for stratified treatment of HPV associated tumours prior to virus integration, or as true antiviral therapies to eliminate virus prior to malignant transformation. Imino sugars inhibit the viroporin activity of the E5 oncoprotein. Imino sugars likely interact at E5 protomer interfaces within a channel to prevent oligomerisation. Imino sugars and adamantanes block mitogenic signalling mediated by E5 from a range of high-risk HPV types. Viroporin inhibitors reduce mitogenic signalling in differentiating primary keratinocytes containing high-risk HPV18.
Collapse
Affiliation(s)
- Laura F Wetherill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Gemma Swinscoe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Foster
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Griffin
- School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
41
|
Phillips MB, Stuart JD, Rodríguez Stewart RM, Berry JT, Mainou BA, Boehme KW. Current understanding of reovirus oncolysis mechanisms. Oncolytic Virother 2018; 7:53-63. [PMID: 29942799 PMCID: PMC6005300 DOI: 10.2147/ov.s143808] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) is under development as a cancer virotherapy. Clinical trials demonstrate that reovirus-based therapies are safe and tolerated in patients with a wide variety of cancers. Although reovirus monotherapy has proven largely ineffective, reovirus sensitizes cancer cells to existing chemotherapeutic agents and radiation. Clinical trials are underway to test the efficacy of reovirus in combination with chemotherapeutic and radiation regimens and to evaluate the effectiveness of reovirus in conjunction with immunotherapies. Central to the use of reovirus to treat cancer is its capacity to directly kill cancer cells and alter the cellular environment to augment other therapies. Apoptotic cell death is a prominent mechanism of reovirus cancer cell killing. However, reoviruses can also kill cancer cells through nonapoptotic mechanisms. Here, we describe mechanisms of reovirus cancer cell killing, highlight how reovirus is used in combination with existing cancer treatments, and discuss what is known as to how reovirus modulates cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew B Phillips
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| | - Johnasha D Stuart
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| | | | | | | | - Karl W Boehme
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| |
Collapse
|
42
|
Martin NT, Bell JC. Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Mol Ther 2018; 26:1414-1422. [PMID: 29703699 PMCID: PMC5986726 DOI: 10.1016/j.ymthe.2018.04.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023] Open
Abstract
Over the last 60 years an eclectic collection of microbes has been tested in a variety of pre-clinical models as anti-cancer agents. At the forefront of this research are a number of virus-based platforms that have shown exciting activity in a variety of pre-clinical models and are collectively referred to as oncolytic viruses. Our true understanding of the potential and limitations of this therapeutic modality has been substantially advanced through clinical studies carried out over the last 25 years. Perhaps not surprising, as with all other cancer therapeutics, it has become clear that current oncolytic virus therapeutics on their own are unlikely to be effective in the majority of patients. The greatest therapeutic gains will therefore be made through thoughtful combination strategies built upon an understanding of cancer biology.
Collapse
Affiliation(s)
- Nikolas Tim Martin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - John Cameron Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
43
|
NKp46 Recognizes the Sigma1 Protein of Reovirus: Implications for Reovirus-Based Cancer Therapy. J Virol 2017; 91:JVI.01045-17. [PMID: 28724773 DOI: 10.1128/jvi.01045-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
The recent approval of oncolytic virus for therapy of melanoma patients has increased the need for precise evaluation of the mechanisms by which oncolytic viruses affect tumor growth. Here we show that the human NK cell-activating receptor NKp46 and the orthologous mouse protein NCR1 recognize the reovirus sigma1 protein in a sialic-acid-dependent manner. We identify sites of NKp46/NCR1 binding to sigma1 and show that sigma1 binding by NKp46/NCR1 leads to NK cell activation in vitro Finally, we demonstrate that NCR1 activation is essential for reovirus-based therapy in vivo Collectively, we have identified sigma1 as a novel ligand for NKp46/NCR1 and demonstrated that NKp46/NCR1 is needed both for clearance of reovirus infection and for reovirus-based tumor therapy.IMPORTANCE Reovirus infects much of the population during childhood, causing mild disease, and hence is considered to be efficiently controlled by the immune system. Reovirus also specifically infects tumor cells, leading to tumor death, and is currently being tested in human clinical trials for cancer therapy. The mechanisms by which our immune system controls reovirus infection and tumor killing are not well understood. We report here that natural killer (NK) cells recognize a viral protein named sigma1 through the NK cell-activating receptor NKp46. Using several mouse tumor models, we demonstrate the importance of NK cells in protection from reovirus infection and in reovirus killing of tumors in vivo Collectively, we identify a new ligand for the NKp46 receptor and provide evidence for the importance of NKp46 in the control of reovirus infections and in reovirus-based cancer therapy.
Collapse
|
44
|
Replication and Oncolytic Activity of an Avian Orthoreovirus in Human Hepatocellular Carcinoma Cells. Viruses 2017; 9:v9040090. [PMID: 28441762 PMCID: PMC5408696 DOI: 10.3390/v9040090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses are cancer therapeutics with promising outcomes in pre-clinical and clinical settings. Animal viruses have the possibility to avoid pre-existing immunity in humans, while being safe and immunostimulatory. We isolated an avian orthoreovirus (ARV-PB1), and tested it against a panel of hepatocellular carcinoma cells. We found that ARV-PB1 replicated well and induced strong cytopathic effects. It was determined that one mechanism of cell death was through syncytia formation, resulting in apoptosis and induction of interferon stimulated genes (ISGs). As hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma worldwide, we investigated the effect of ARV-PB1 against cells already infected with this virus. Both HCV replicon-containing and infected cells supported ARV-PB1 replication and underwent cytolysis. Finally, we generated in silico models to compare the structures of human reovirus- and ARV-PB1-derived S1 proteins, which are the primary targets of neutralizing antibodies. Tertiary alignments confirmed that ARV-PB1 differs from its human homolog, suggesting that immunity to human reoviruses would not be a barrier to its use. Therefore, ARV-PB1 can potentially expand the repertoire of oncolytic viruses for treatment of human hepatocellular carcinoma and other malignancies.
Collapse
|
45
|
Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic Virus-Based Immunotherapies for Hepatocellular Carcinoma. Mediators Inflamm 2017; 2017:5198798. [PMID: 28512387 PMCID: PMC5415860 DOI: 10.1155/2017/5198798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is highly refractory cancer which is resistant to conventional chemotherapy and radiotherapy, carrying a dismal prognosis. Although many anticancer drugs have been developed for treating HCC, sorafenib is the only effective treatment, but it only prolongs survival duration for about 3 months. Recently, oncolytic virotherapy has shown promising results in treating HCCs and the effects can be more enhanced by adopting immune modulatory molecules. This review discusses the current status of treating HCC and the effective strategy of oncolytic virus-based immunotherapy for the treatment of HCCs.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Narayanasamy Badrinath
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|