1
|
Zhou C, Geng J, Wu Z, Dan L, Huang H, Ruan X, Chen J, Zhang Y, Zou D. Mediterranean diet adherence and incident acute pancreatitis: a prospective cohort study. Therap Adv Gastroenterol 2025; 18:17562848251346291. [PMID: 40520452 PMCID: PMC12166277 DOI: 10.1177/17562848251346291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/14/2025] [Indexed: 06/18/2025] Open
Abstract
Background The relationship between Mediterranean diet (MedDiet) adherence and acute pancreatitis (AP) risk is largely unknown. Objectives To investigate the associations between MedDiet adherence and AP risk and joint associations of genetic risk and MedDiet adherence with AP risk. Design A prospective cohort study using data from UK Biobank, a large population-based prospective study that recruited over 500,000 participants aged 40-69 between 2006 and 2010 across the United Kingdom. Methods We included 103,449 participants free of AP with typical dietary intake from 24-h dietary recalls. MedDiet adherence was measured via the Mediterranean Diet Adherence Screener (MEDAS) continuous score. Genetic predisposition to AP was estimated by polygenic risk score (PRS). Incident AP cases were identified via electronic medical records. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated by Cox proportional hazards models. Mediation analyses were further applied to explore the mediating effects of the low-grade inflammation (INFLA) score and metabolic status. Results Over a mean follow-up period of 10.4 years, 371 AP cases were documented. Higher MedDiet adherence defined by MEDAS continuous score was inversely associated with lower AP risk (highest vs lowest tertiles: HR 0.60, 95% CI 0.46-0.79, p < 0.001), with the INFLA score and metabolic status mediating 10% and 7.1% of the association, respectively. Although no interaction was observed between PRS and MedDiet adherence, participants with combined low genetic risk and the highest MedDiet adherence had the lowest risk of AP (HR 0.54, 95% CI 0.36-0.80, p = 0.002). Conclusion The study suggests that higher adherence to the MedDiet is associated with a decreased risk of AP, which is partially mediated by inflammation and metabolic status, and may attenuate the deleterious impact of genetics on AP risk.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Geng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhipeng Wu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lintao Dan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanyi Huang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 866, Yuhangtang Road, Changsha 410013, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China
| |
Collapse
|
2
|
Bodas C, Felipe I, Chanez B, Lafarga M, Lopez de Maturana E, Martinez de Villarreal J, Del Pozo N, Malumbres M, Vargiu P, Cayuela A, Peset I, Connelly K, Hoskins J, Méndez R, Amundadottir L, Malats N, Ortega S, Real FX. A Common CTRB misfolding variant associated with pancreatic cancer risk causes ER stress and inflammation in mice. Gut 2025:gutjnl-2024-333406. [PMID: 40254337 DOI: 10.1136/gutjnl-2024-333406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Genome-wide association studies have identified an exon 6 CTRB2 deletion variant proposed to increase pancreatic cancer risk. OBJECTIVE To acquire evidence on its causal role, we developed and analysed a new mouse strain carrying an equivalent variant in Ctrb1, the mouse CTRB2 orthologue. DESIGN We used CRISPR/Cas9 to introduce a 707 bp deletion encompassing Ctrb1 exon 6 (Ctrb1Δexon6 ). This mutation closely mimics the human variant. Mice carrying the mutant allele were profiled at 3 months to assess their phenotype. RESULTS Ctrb1Δexon6 mutant mice express a truncated CTRB1 that accumulates in the endoplasmic reticulum (ER). The pancreas of homozygous mutant mice displays reduced chymotrypsin activity, total protein synthesis and amylase secretion. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic studies of the mutant pancreas reveal downregulation of the acinar programme and increased activity of ER stress-related and inflammatory pathways. Agr2 is one of the most upregulated genes in mutant pancreata. Heterozygous mice have an intermediate phenotype. Ctrb1Δexon6 mutant mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of tauroursodeoxycholic acid or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. CONCLUSIONS This mouse strain provides evidence that the exon 6 deletion causes ER stress and inflammation and is an excellent model to understand its contribution to pancreatic cancer and identify preventive strategies.
Collapse
Affiliation(s)
- Cristina Bodas
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
| | - Brice Chanez
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | | | - Evangelina Lopez de Maturana
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jaime Martinez de Villarreal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Marina Malumbres
- Mechanisms of Disease Group, Institut de Recerca Biomèdica, Barcelona, Spain
| | - Pierfrancesco Vargiu
- Genome Editing Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Ana Cayuela
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Isabel Peset
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Katelyn Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Jason Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Raúl Méndez
- Mechanisms of Disease Group, Institut de Recerca Biomèdica, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laufey Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Núria Malats
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Sagrario Ortega
- Genome Editing Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Paquette M, Guay SP, Baass A. Genetic determinants of pancreatitis risk in hypertriglyceridemia. Curr Opin Lipidol 2025; 36:55-60. [PMID: 39513935 DOI: 10.1097/mol.0000000000000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW In recent years, studies have shed light on the concept of risk heterogeneity among patients with severe hypertriglyceridemia (HTG). Several clinical risk factors for acute pancreatitis have been identified in this population, but the importance of different genetic factors above and beyond triglyceride concentration remains unclear. This review endeavours to summarize recent developments in this field. RECENT FINDINGS Recent studies suggest that the molecular basis of severe HTG (polygenic susceptibility vs. rare pathogenic variants) can modulate the risk of acute pancreatitis independently of triglyceride level. Furthermore, a pancreatitis polygenic risk score has been developed and validated using data from the largest GWAS meta-analysis of acute pancreatitis published to date. In patients with severe HTG, a high polygenic susceptibility for pancreatitis was associated with a three-fold increased risk of acute pancreatitis compared with those with a lower polygenic risk score. SUMMARY In the past months, there have been substantial advances in understanding the prediction of acute pancreatitis in patients with severe HTG. However, further efforts at developing risk-stratification strategies and predictive models may help identifying the patients who would benefit most from early and effective interventions to reduce the risk of pancreatitis, including treatment with APOC3 inhibitors.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal
| | - Simon-Pierre Guay
- Division of Medical Genetics, Department of Pediatric, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal
- Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Morales Granda NC, Szabó A, Köller Z, Pál G, Sahin-Tóth M. Engineering mouse chymotrypsin B1 for improved trypsinogen degradation. Sci Rep 2025; 15:10201. [PMID: 40133496 PMCID: PMC11937528 DOI: 10.1038/s41598-025-94299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The digestive protease chymotrypsin (CTR) protects the pancreas against harmful trypsin activity by promoting degradation of trypsinogen. Recently, we demonstrated that Arg236 is responsible for the higher proteolytic activity and better trypsinogen degrading capability of human CTRB2 compared to CTRB1. Introduction of Arg236 into CTRB1, which normally carries Asp236, dramatically increased degradation of human anionic trypsinogen. Here, we explored whether we could improve the activity of mouse CTRB1 by changing Gly236 to Arg (G236R mutant) and/or by widening the substrate binding pocket (A244G mutant). We found that mutant G236R cleaved mouse anionic (T8) trypsinogen at Phe150 with 32-fold improved efficiency. In contrast, mutant G236R digested mouse cationic (T7) trypsinogen and bovine beta-casein at the same rate as wild-type mouse CTRB1. Mutation A244G reduced the activity of mouse CTRB1 against the two trypsinogen isoforms and casein. Double-mutant G236R-A244G cleaved mouse anionic (T8) trypsinogen 9.8-fold better than wild-type CTRB1 but 3.3-fold slower than single mutant G236R. Mutant G236R-A244G digested mouse cationic (T7) trypsinogen at the same rate as single-mutant A244G but degraded casein 2.3-fold slower. Taken together, the observations indicate that in the context of mouse CTRB1 the Arg236 residue increases protease activity in a substrate-specific manner, while Gly244 has an overall negative impact. The results will inform the design of preclinical mouse models with higher trypsinogen degradation ability and enhanced resilience against pancreatitis.
Collapse
Affiliation(s)
- Nataly C Morales Granda
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Egyetem Tér 1, 4032, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, 4032, Debrecen, Hungary
| | - Zsombor Köller
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- MacDonald Research Laboratories, 675 Charles E Young Drive South, Rm 2220, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Szentesi A, Hegyi P, on behalf of the Hungarian Pancreatic Study Group. The 12-Year Experience of the Hungarian Pancreatic Study Group. J Clin Med 2025; 14:1362. [PMID: 40004893 PMCID: PMC11855942 DOI: 10.3390/jcm14041362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The Hungarian Pancreatic Study Group (HPSG) was established with the aim of advancing pancreatology. Our summary outlines the methodologies, key results, and future directions of the HPSG. Methodological elements included, the formation of strategic national and international collaborations, the establishment of patient registries and biobanks, and a strong focus on education and guideline development. Key results encompassed, pioneering research on pancreatic ductal function and the role of cystic fibrosis transmembrane conductance regulator (CFTR) in inflammation, significant advancements in understanding acute and chronic pancreatitis, and the execution of numerous clinical trials to explore new therapeutic approaches. Despite challenges, such as securing funding and translating research into clinical practice, the HPSG's commitment to patient care and scientific innovation has been unwavering. The group aims to deepen research into pancreatic cancer and chronic pancreatitis, conduct more randomized controlled trials (RCTs), and expand its efforts internationally by involving global staff and patients. The authors hope that this summary inspires others to undertake similar initiatives and contribute to the global advancement of medical research and patient care in pancreatology.
Collapse
Affiliation(s)
- Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary;
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | | |
Collapse
|
6
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Karamya ZA, Stefanovics R, Sándor M, Madarász R, Nagy A, Szentesi A, Hegyi P, Czakó L, Németh BC. Sequence analysis of the 5' region of the chymotrypsin C (CTRC) gene in chronic pancreatitis. Pancreatology 2025; 25:65-69. [PMID: 39765393 DOI: 10.1016/j.pan.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND/OBJECTIVES Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap. METHODS We analyzed ∼1.4 kb of the 5' region of the CTRC gene in 293 patients with chronic pancreatitis of alcoholic and non-alcoholic etiology and 402 controls from the Hungarian National Pancreas Registry by direct Sanger sequencing. RESULTS We identified 14 gene variants, which included 11 novel variants and 3 previously reported variants. When allele frequencies were considered, none of the variants were significantly overrepresented in CP cases or controls. Genotype distribution of the frequently occurring variant c.-913A>G showed a statistically significant enrichment of the homozygous GG genotype (versus the AA genotype) in CP cases versus controls (OR 1.67, 95 % CI 1.2-2.4, P 0.0053). However, the disease association was driven by the linkage disequilibrium with the known CTRC risk variant c.180C>T. CONCLUSIONS We found no significant association between variants in the 5' region of the CTRC gene and CP risk.
Collapse
Affiliation(s)
- Zain A Karamya
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary
| | - Regina Stefanovics
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary
| | - Máté Sándor
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Réka Madarász
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Adrienn Nagy
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| | - László Czakó
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Csaba Németh
- Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary.
| |
Collapse
|
8
|
Guay SP, Gagnon E, Paquette M, Thériault S, Arsenault BJ, Baass A. Pancreatitis polygenic risk score is independently associated with all-cause acute pancreatitis risk in the UK Biobank. J Gastroenterol Hepatol 2024; 39:2639-2644. [PMID: 39385584 DOI: 10.1111/jgh.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM Acute pancreatitis (AP) is a complex disease most commonly caused by gallstones, alcohol intake, or hypertriglyceridemia. Even in subjects with hypertriglyceridemia, the risk of AP is heterogeneous. Identifying individuals with a high genetic susceptibility to AP could contribute to a better risk stratification in the clinic. This study aimed to determine if a weighted polygenic risk score (PRS) of common variants in pancreatitis susceptibility genes can independently predict all-cause AP incidence in the general population. METHODS A weighted PRS was calculated for 484 932 individuals from the UK Biobank, including 3346 individuals who developed AP during follow-up. The PRS included eight single nucleotide polymorphisms in known pancreatitis susceptibility genes. RESULTS Individuals with a pancreatitis PRS above the 90th percentile had a 1.21-fold (1.03-1.43; P = 0.02) increased risk of AP compared with those with a pancreatitis PRS below the 90th percentile. When comparing individuals in the third tertile versus the first tertile, the risk of AP was 1.13-fold (1.00-1.28; P = 0.06) higher. Individuals with both a high triglyceride (TG) level and a high pancreatitis PRS (third tertile) had a 2.31-fold (1.83-2.93; P = 3.4 × 10-12) increased risk of AP compared with those with a low pancreatitis PRS and a low TG level (first tertile). Overall, the association between pancreatitis PRS and incident AP was independent of baseline TG level. CONCLUSIONS Results of this study suggest that the accumulation of common variants in pancreatitis susceptibility genes is associated with all-cause AP incidence. Pancreatitis PRS could help clinicians identify patients who may be at higher risk of AP and who may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
| | - Martine Paquette
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Alexis Baass
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Division of Experimental Medicine and Medical Biochemistry, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Głuszek S, Adamus-Białek W, Chrapek M, Dziuba A, Dulębska J, Kozieł D, Matykiewicz J, Wawszczak-Kasza M. Genetic Variability in the CPA1 Gene and Its Impact on Acute Pancreatitis Risk: New Insights from a Large-Scale Study. Int J Mol Sci 2024; 25:11301. [PMID: 39457082 PMCID: PMC11508624 DOI: 10.3390/ijms252011301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Acute pancreatitis (AP) is a common and potentially lethal disease. Over the last 10 years, AP has become one of the most important healthcare problems. On a global scale, the incidence has increased by 63% over the last 20 years. AP is usually caused by gallstones and excessive alcohol consumption and genetic factors play an important role in the development of inflammation. Recent studies involving the CPA1 mutations are ambiguous and dependent on the population studied. In this study, the variability of the CPA1 gene in patients with AP was analyzed. Genetic material was isolated from the blood of 301 patients with AP and 184 healthy individuals. Identification of the variants in exons 5, 6, 8, and 9 with introns was performed using molecular biology methods. Mutations were identified by comparison to the reference sequence (NM_001868.4). Statistical analysis included the identification of mutations correlating with the risk of AP, the etiology of inflammation, and family history. Several novel mutations in the CPA1 gene have been identified, along with a high degree of variability within the coding region of the carboxypeptidase gene. A correlation between mutations CPA1:c.1072 + 84del; c.987 + 57G>A and increased risk of developing AP was found. Two protective mutations, CPA1:c.625A>T, c.1072 + 94del, were identified. The CPA1 gene is characterized by high sequence variability and regions in which mutations lead to an increased risk of developing AP. Single or co-occurring mutations of the CPA1 gene can significantly affect the risk of developing AP.
Collapse
Affiliation(s)
- Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Wioletta Adamus-Białek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Magdalena Chrapek
- Department of Mathematics, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Anna Dziuba
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Julia Dulębska
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Dorota Kozieł
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Jarosław Matykiewicz
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Monika Wawszczak-Kasza
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| |
Collapse
|
10
|
Wang M, Wang Y, Masson E, Wang Y, Yu D, Qian Y, Tang X, Deng S, Hu L, Wang L, Wang L, Rebours V, Cooper DN, Férec C, Li Z, Chen J, Zou W, Liao Z. SEC16A Variants Predispose to Chronic Pancreatitis by Impairing ER-to-Golgi Transport and Inducing ER Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402550. [PMID: 39119875 PMCID: PMC11481239 DOI: 10.1002/advs.202402550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.
Collapse
Affiliation(s)
- Min‐Jun Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Department of Cell BiologyCenter for Stem Cell and MedicineNaval Medical UniversityShanghai200433China
| | - Yuan‐Chen Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Emmanuelle Masson
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
- Service de Génétique Médicale et de Biologie de la ReproductionCHRU BrestBrestF‐29200France
| | - Ya‐Hui Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Dong Yu
- Center for Translational MedicineNaval Medical UniversityShanghai200433China
| | - Yang‐Yang Qian
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Xin‐Ying Tang
- Department of Prevention and Health CareEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Shun‐Jiang Deng
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Liang‐Hao Hu
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Lei Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Li‐Juan Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology DepartmentBeaujon HospitalAPHP – ClichyUniversité Paris CitéParis92110France
| | - David N. Cooper
- Institute of Medical GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUnited Kingdom
| | - Claude Férec
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
| | - Zhao‐Shen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | | | - Wen‐Bin Zou
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhuan Liao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| |
Collapse
|
11
|
Demcsák A, Shariatzadeh S, Sahin-Tóth M. Secretagogue-induced pancreatitis in mice devoid of chymotrypsin. Am J Physiol Gastrointest Liver Physiol 2024; 327:G333-G344. [PMID: 38981616 PMCID: PMC11427105 DOI: 10.1152/ajpgi.00310.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
The serine protease chymotrypsin protects the pancreas against pancreatitis by degrading trypsinogen, the precursor to the digestive protease trypsin. Taking advantage of previously generated mouse models with either the Ctrb1 gene (encoding chymotrypsin B1) or the Ctrl gene (encoding chymotrypsin-like protease) disrupted, here we generated the novel Ctrb1-del × Ctrl-KO strain in the C57BL/6N genetic background, which harbors a naturally inactivated Ctrc gene (encoding chymotrypsin C). The newly created mice are devoid of chymotrypsin, yet the animals develop normally, breed well, and show no spontaneous phenotype, indicating that chymotrypsin is dispensable under laboratory conditions. When given cerulein, the Ctrb1-del × Ctrl-KO strain exhibited markedly increased intrapancreatic trypsin activation and more severe acute pancreatitis, relative to wild-type C57BL/6N mice. After the acute episode, Ctrb1-del × Ctrl-KO mice spontaneously progressed to chronic pancreatitis, whereas C57BL/6N mice recovered rapidly. The cerulein-induced pancreas pathology in Ctrb1-del × Ctrl-KO mice was highly similar to that previously observed in Ctrb1-del mice; however, trypsin activation was more robust and pancreatitis severity was increased. Taken together, the results confirm and extend prior observations demonstrating that chymotrypsin safeguards the pancreas against pancreatitis by limiting pathologic trypsin activity. In mice, the CTRB1 isoform, which constitutes about 90% of the total chymotrypsin content, is responsible primarily for the anti-trypsin defenses and protection against pancreatitis; however, the minor isoform CTRL also contributes to an appreciable extent.NEW & NOTEWORTHY Chymotrypsins defend the pancreas against the inflammatory disorder pancreatitis by degrading harmful trypsinogen. This study demonstrates that mice devoid of pancreatic chymotrypsins are phenotypically normal but become sensitized to secretagogue hyperstimulation and exhibit increased intrapancreatic trypsin activation, more severe acute pancreatitis, and rapid progression to chronic pancreatitis. The observations confirm and extend the essential role of chymotrypsins in pancreas health.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
12
|
Bodas C, Felipe I, Chanez B, Lafarga M, López de Maturana E, Martínez-de-Villarreal J, Del Pozo N, Malumbres M, Vargiu P, Cayuela A, Peset I, Connelly KE, Hoskins JW, Méndez R, Amundadottir LT, Malats N, Ortega S, Real FX. A common CTRB misfolding variant associated with pancreatic cancer risk causes ER stress and inflammation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604778. [PMID: 39211105 PMCID: PMC11361044 DOI: 10.1101/2024.07.23.604778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Genome wide association studies have identified an exon 6 CTRB2 deletion variant that associates with increased risk of pancreatic cancer. To acquire evidence on its causal role, we developed a new mouse strain carrying an equivalent variant in Ctrb1 , the mouse orthologue of CTRB2 . Design We used CRISPR/Cas9 to introduce a 707bp deletion in Ctrb1 encompassing exon 6 ( Ctrb1 Δexon6 ). This mutation closely mimics the human deletion variant. Mice carrying the mutant allele were extensively profiled at 3 months to assess their phenotype. Results Ctrb1 Δexon6 mutant mice express a truncated CTRB1 that accumulates in the ER. The pancreas of homozygous mutant mice displays reduced chymotrypsin activity and total protein synthesis. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic analyses of the pancreas of mutant mice reveals acinar program down-regulation and increased activity of ER stress-related and inflammatory pathways. Heterozygous mice have an intermediate phenotype. Agr2 is one of the most up-regulated genes in mutant pancreata. Ctrb1 Δexon6 mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of TUDCA or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. Conclusions This mouse strain provides formal evidence that the Ctrb1 Δexon6 variant causes ER stress and inflammation in vivo , providing an excellent model to understand its contribution to pancreatic ductal adenocarcinoma development and to identify preventive strategies. SUMMARY BOX What is already known about this subject?: - CTRB2 is one of the most abundant proteins produced by human pancreatic acinar cells. - A common exon 6 deletion variant in CTRB2 has been associated with an increased risk of pancreatic ductal adenocarcinoma. - Misfolding of digestive enzymes is associated with pancreatic pathology.What are the new findings?: - We developed a novel genetic model that recapitulates the human CTRB2 deletion variant in the mouse orthologue, Ctrb1 . - Truncated CTRB1 misfolds and accumulates in the ER; yet, mutant mice display a histologically normal pancreas at 3 months age.- CTRB1 and associated chaperones colocalize in the ER, the cytoplasm, and the nucleus of acinar cells.- Transcriptomics analysis reveals reduced activity of the acinar program and increased activity of pathways involved in ER stress, unfolded protein response, and inflammation.- Mutant mice are sensitized to pancreatic damage and do not recover properly from a mild caerulein-induced pancreatitis.- TUDCA administration partially relieves the ER stress in mutant mice.How might it impact on clinical practice in the foreseeable future?: - The new mouse model provides a tool to identify the mechanisms leading to increased pancreatic cancer risk in CTRB2 exon 6 carriers. - The findings suggest that drugs that cause ER stress relief and/or reduce inflammation might provide preventive opportunities.
Collapse
|
13
|
Zou M, Yang J. Novel Protein Biomarkers and Therapeutic Targets for Type 1 Diabetes and Its Complications: Insights from Summary-Data-Based Mendelian Randomization and Colocalization Analysis. Pharmaceuticals (Basel) 2024; 17:766. [PMID: 38931433 PMCID: PMC11206317 DOI: 10.3390/ph17060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Millions of patients suffer from type 1 diabetes (T1D) and its associated complications. Nevertheless, the pursuit of a cure for T1D has encountered significant challenges, with a crucial impediment being the lack of biomarkers that can accurately predict the progression of T1D and reliable therapeutic targets for T1D. Hence, there is an urgent need to discover novel protein biomarkers and therapeutic targets, which holds promise for targeted therapy for T1D. In this study, we extracted summary-level data on 4907 plasma proteins from 35,559 Icelanders and 2923 plasma proteins from 54,219 UK participants as exposures. The genome-wide association study (GWAS) summary statistics on T1D and T1D with complications were obtained from the R9 release results from the FinnGen consortium. Summary-data-based Mendelian randomization (SMR) analysis was employed to evaluate the causal associations between the genetically predicted levels of plasma proteins and T1D-associated outcomes. Colocalization analysis was utilized to investigate the shared genetic variants between the exposure and outcome. Moreover, transcriptome analysis and a protein-protein interaction (PPI) network further illustrated the expression patterns of the identified protein targets and their interactions with the established targets of T1D. Finally, a Mendelian randomization phenome-wide association study evaluated the potential side effects of the identified core protein targets. In the primary SMR analysis, we identified 72 potential protein targets for T1D and its complications, and nine of them were considered crucial protein targets. Within the group were five risk targets and four protective targets. Backed by evidence from the colocalization analysis, the protein targets were classified into four tiers, with MANSC4, CTRB1, SIGLEC5 and MST1 being categorized as tier 1 targets. Delving into the DrugBank database, we retrieved 11 existing medications for T1D along with their therapeutic targets. The PPI network clarified the interactions among the identified potential protein targets and established ones. Finally, the Mendelian randomization phenome-wide association study corroborated MANSC4 as a reliable target capable of mitigating the risk of various forms of diabetes, and it revealed the absence of adverse effects linked to CTRB1, SIGLEC5 and MST1. This study unveiled many protein biomarkers and therapeutic targets for T1D and its complications. Such advancements hold great promise for the progression of drug development and targeted therapy for T1D.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
- Peking University First School of Clinical Medicine, Peking University First Hospital, Beijing 100034, China;
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
14
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Cassidy BM, Jiang F, Lin J, Chen JM, Curry GE, Ma GX, Wilhelm SJ, Deng SJ, Zhu G, Liao Z, Lowe ME, Xiao XK, Zou WB. Exploring the enigmatic association between PNLIP variants and risk of chronic pancreatitis in a large Chinese cohort. Pancreatology 2024; 24:511-521. [PMID: 38485544 PMCID: PMC11164637 DOI: 10.1016/j.pan.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Protease-sensitive PNLIP variants were recently associated with chronic pancreatitis (CP) in European populations. The pathological mechanism yet remains elusive. Herein, we performed a comprehensive genetic and functional analysis of PNLIP variants found in a large Chinese cohort, aiming to further unravel the enigmatic association of PNLIP variants with CP. METHODS All coding and flanking intronic regions of the PNLIP gene were analyzed for rare variants by targeted next-generation sequencing in 1082 Chinese CP patients and 1196 controls. All novel missense variants were subject to analysis of secretion, lipase activity, and proteolytic degradation. One variant was further analyzed for its potential to misfold and induce endoplasmic reticulum (ER) stress. p.F300L, the most common PNLIP variant associated with CP, was used as a control. RESULTS We identified 12 rare heterozygous PNLIP variants, with 10 being novel. The variant carrier frequency did not differ between the groups. Of them, only the variant p.A433T found in a single patient was considered pathologically relevant. p.A433T exhibited increased susceptibility to proteolytic degradation, which was much milder than p.F300L. Interestingly, both variants exhibited an increased tendency to misfold, leading to intracellular retention as insoluble aggregates, reduced secretion, and elevated ER stress. CONCLUSIONS Our genetic and functional analysis of PNLIP variants identified in a Chinese CP cohort suggests that the p.A433T variant and the previously identified p.F300L variant are not only protease-sensitive but also may be potentially proteotoxic. Mouse studies of the PNLIP p.F300L and p.A433T variants are needed to clarify their role in CP.
Collapse
Affiliation(s)
- Brett M Cassidy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fei Jiang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jianguo Lin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Grace E Curry
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guo-Xiu Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Steven J Wilhelm
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Guoying Zhu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xunjun K Xiao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
16
|
Furukawa R, Kuwatani M, Jiang JJ, Tanaka Y, Hasebe R, Murakami K, Tanaka K, Hirata N, Ohki I, Takahashi I, Yamasaki T, Shinohara Y, Nozawa S, Hojyo S, Kubota SI, Hashimoto S, Hirano S, Sakamoto N, Murakami M. GGT1 is a SNP eQTL gene involved in STAT3 activation and associated with the development of Post-ERCP pancreatitis. Sci Rep 2024; 14:12224. [PMID: 38806529 PMCID: PMC11133343 DOI: 10.1038/s41598-024-60312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Yuki Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Kumiko Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Noriyuki Hirata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Izuru Ohki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Shunichiro Nozawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
17
|
Guay SP, Paquette M, Taschereau A, Desgagné V, Bouchard L, Bernard S, Baass A. Pancreatitis polygenic risk score is associated with acute pancreatitis in multifactorial chylomicronemia syndrome. J Clin Lipidol 2024; 18:e413-e422. [PMID: 38443284 DOI: 10.1016/j.jacl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multifactorial chylomicronemia syndrome (MCS) is a severe form of hypertriglyceridemia associated with an increased risk of acute pancreatitis (AP). The risk of AP is heterogenous and is associated with increased level of triglycerides (TG) and presence of rare variants in TG metabolism-related genes. OBJECTIVE To determine if the accumulation of common variants in pancreatitis susceptibility genes, measured with a weighted polygenic risk score (PRS), is associated with AP in MCS patients. METHODS A total of 114 patients with MCS underwent genetic testing for eight single nucleotide polymorphisms (SNPs) in known pancreatitis susceptibility genes (ABCG8, CLDN2, CTRB1/2, CTRC, PRSS1, PRSS2, SPINK1 and TWIST2). A weighted PRS was calculated to account for the phenotypic effect of each SNP locus. RESULTS A high pancreatitis-PRS score (≥ 0.44) was associated with a 2.94-fold increase risk of AP (p = 0.02) among patients with MCS. MCS patients with a high pancreatitis-PRS and a rare variant in TG metabolism-related gene have a 9.50-fold increase risk of AP (p = 0.001), compared to those with a low-PRS and no rare variant. A multivariate analysis including the presence of rare variants, the maximal TG values and a high pancreatitis-PRS explained 26% of the variability in AP in MCS patients. CONCLUSION This study shows for the first time that the accumulation of common variants in pancreatitis susceptibility genes is associated with AP in MCS patients. Pancreatitis-PRS could help clinicians to identify MCS patients who may be at higher risk of AP and who may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada (Drs Guay, Paquette, Bernard, Baass); Department of Medicine, Division of Endocrinology, Université de Montréal, Montréal, Québec, Canada (Dr Guay)
| | - Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada (Drs Guay, Paquette, Bernard, Baass)
| | - Amélie Taschereau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada (Drs Taschereau, Desgagné, Bouchard)
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada (Drs Taschereau, Desgagné, Bouchard)
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada (Drs Taschereau, Desgagné, Bouchard); Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada (Dr Bouchard); Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, Québec, Canada (Dr Bouchard)
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada (Drs Guay, Paquette, Bernard, Baass)
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada (Drs Guay, Paquette, Bernard, Baass); Department of Medecine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montréal, Québec, Canada (Dr Baass).
| |
Collapse
|
18
|
Smith-Byrne K, Hedman Å, Dimitriou M, Desai T, Sokolov AV, Schioth HB, Koprulu M, Pietzner M, Langenberg C, Atkins J, Penha RC, McKay J, Brennan P, Zhou S, Richards BJ, Yarmolinsky J, Martin RM, Borlido J, Mu XJ, Butterworth A, Shen X, Wilson J, Assimes TL, Hung RJ, Amos C, Purdue M, Rothman N, Chanock S, Travis RC, Johansson M, Mälarstig A. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat Commun 2024; 15:3621. [PMID: 38684708 PMCID: PMC11059161 DOI: 10.1038/s41467-024-46834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Åsa Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Trishna Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Alexandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Joshua Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Ricardo Cortez Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Brent J Richards
- Departments of Medicine (Endocrinology), Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Joana Borlido
- Cancer Immunology Discovery, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xia Shen
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jim Wilson
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Stanford, USA
| | - Rayjean J Hung
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Christopher Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Eiseler K, Neppl L, Schmidt AW, Rauscher B, Ewers M, Masson E, Chen JM, Férec C, Rebours V, Grammatikopoulos T, Foskett P, Greenhalf W, Halloran C, Neoptolemos J, Haack TB, Ossowski S, Sturm M, Rosendahl J, Laumen H, Witt H. Genetic and functional analysis of chymotrypsin-like protease (CTRL) in chronic pancreatitis. Pancreatology 2023; 23:957-963. [PMID: 37949771 DOI: 10.1016/j.pan.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.
Collapse
Affiliation(s)
- Katharina Eiseler
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany
| | - Lea Neppl
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany
| | - Andreas W Schmidt
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany; Department of Internal Medicine I, Martin Luther University (MLU), Halle (Saale), Germany; Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Beate Rauscher
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany
| | - Maren Ewers
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King's College Hospital NHS Foundation Trust, London, UK; Institute of Liver Studies, King's College London, London, UK
| | - Pierre Foskett
- Institute of Liver Studies, King's College London, London, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - John Neoptolemos
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University (MLU), Halle (Saale), Germany
| | - Helmut Laumen
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany; Department of Internal Medicine I, Martin Luther University (MLU), Halle (Saale), Germany
| | - Heiko Witt
- Paediatric Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
20
|
Németh BZ, Nagy ZA, Kiss B, Gellén G, Schlosser G, Demcsák A, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Substrate specificity of human chymotrypsin-like protease (CTRL) characterized by phage display-selected small-protein inhibitors. Pancreatology 2023; 23:742-749. [PMID: 37604733 PMCID: PMC10528761 DOI: 10.1016/j.pan.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Gabriella Gellén
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea Geisz
- Department of Surgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, H-7624, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
21
|
Berke G, Beer S, Gede N, Takáts A, Szentesi A, Hegyi P, Rosendahl J, Sahin-Tóth M, Németh BC, Hegyi E. Risk of chronic pancreatitis in carriers of the c.180C>T (p.Gly60=) CTRC variant: case-control studies and meta-analysis. Pancreatology 2023; 23:481-490. [PMID: 37321941 PMCID: PMC10586708 DOI: 10.1016/j.pan.2023.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/06/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Chymotrypsin C (CTRC) is a digestive serine protease produced by the pancreas that regulates intrapancreatic trypsin activity and provides a defensive mechanism against chronic pancreatitis (CP). CTRC exerts its protective effect by promoting degradation of trypsinogen, the precursor to trypsin. Loss-of-function missense and microdeletion variants of CTRC are found in around 4% of CP cases and increase disease risk by approximately 3-7-fold. In addition, a commonly occurring synonymous CTRC variant c.180C>T (p.Gly60=) was reported to increase CP risk in various cohorts but a global analysis of its impact has been lacking. Here, we analyzed the frequency and effect size of variant c.180C>T in Hungarian and pan-European cohorts, and performed meta-analysis of the new and published genetic association data. When allele frequency was considered, meta-analysis revealed an overall frequency of 14.2% in patients and 8.7% in controls (allelic odds ratio (OR) 2.18, 95% confidence interval (CI) 1.72-2.75). When genotypes were examined, c.180TT homozygosity was observed in 3.9% of CP patients and in 1.2% of controls, and c.180CT heterozygosity was present in 22.9% of CP patients and in 15.5% of controls. Relative to the c.180CC genotype, the genotypic OR values were 5.29 (95% CI 2.63-10.64), and 1.94 (95% CI 1.57-2.38), respectively, indicating stronger CP risk in homozygous carriers. Finally, we obtained preliminary evidence that the variant is associated with reduced CTRC mRNA levels in the pancreas. Taken together, the results indicate that CTRC variant c.180C>T is a clinically relevant risk factor, and should be considered when genetic etiology of CP is investigated.
Collapse
Affiliation(s)
- Gergő Berke
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sebastian Beer
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Center, Leipzig, Germany
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Amanda Takáts
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle (Saale), Germany
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Balázs Csaba Németh
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary
| | - Eszter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
22
|
Rosario SR, Dong B, Zhang Y, Hsiao HH, Isenhart E, Wang J, Siegel EM, Monjazeb AM, Owen DH, Dey P, Tabung FK, Spakowicz DJ, Murphy WJ, Edge S, Yendamuri S, Ibrahimi S, Kolesar JM, McDonald PH, Vadehra D, Churchman M, Liu S, Kalinski P, Mukherjee S. Metabolic Dysregulation Explains the Diverse Impacts of Obesity in Males and Females with Gastrointestinal Cancers. Int J Mol Sci 2023; 24:10847. [PMID: 37446025 PMCID: PMC10342094 DOI: 10.3390/ijms241310847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The prevalence of obesity, defined as the body mass index (BMI) ≥ 30 kg/m2, has reached epidemic levels. Obesity is associated with an increased risk of various cancers, including gastrointestinal ones. Recent evidence has suggested that obesity disproportionately impacts males and females with cancer, resulting in varied transcriptional and metabolic dysregulation. This study aimed to elucidate the differences in the metabolic milieu of adenocarcinomas of the gastrointestinal (GI) tract both related and unrelated to sex in obesity. To demonstrate these obesity and sex-related effects, we utilized three primary data sources: serum metabolomics from obese and non-obese patients assessed via the Biocrates MxP Quant 500 mass spectrometry-based kit, the ORIEN tumor RNA-sequencing data for all adenocarcinoma cases to assess the impacts of obesity, and publicly available TCGA transcriptional analysis to assess GI cancers and sex-related differences in GI cancers specifically. We applied and integrated our unique transcriptional metabolic pipeline in combination with our metabolomics data to reveal how obesity and sex can dictate differential metabolism in patients. Differentially expressed genes (DEG) analysis of ORIEN obese adenocarcinoma as compared to normal-weight adenocarcinoma patients resulted in large-scale transcriptional reprogramming (4029 DEGs, adj. p < 0.05 and |logFC| > 0.58). Gene Set Enrichment and metabolic pipeline analysis showed genes enriched for pathways relating to immunity (inflammation, and CD40 signaling, among others) and metabolism. Specifically, we found alterations to steroid metabolism and tryptophan/kynurenine metabolism in obese patients, both of which are highly associated with disease severity and immune cell dysfunction. These findings were further confirmed using the TCGA colorectal adenocarcinoma (CRC) and esophageal adenocarcinoma (ESCA) data, which showed similar patterns of increased tryptophan catabolism for kynurenine production in obese patients. These patients further showed disparate alterations between males and females when comparing obese to non-obese patient populations. Alterations to immune and metabolic pathways were validated in six patients (two obese and four normal weight) via CD8+/CD4+ peripheral blood mononuclear cell RNA-sequencing and paired serum metabolomics, which showed differential kynurenine and lipid metabolism, which corresponded with altered T-cell transcriptome in obese populations. Overall, obesity is associated with differential transcriptional and metabolic programs in various disease sites. Further, these alterations, such as kynurenine and tryptophan metabolism, which impact both metabolism and immune phenotype, vary with sex and obesity together. This study warrants further in-depth investigation into obesity and sex-related alterations in cancers that may better define biomarkers of response to immunotherapy.
Collapse
Affiliation(s)
- Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Bowen Dong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (B.D.); (P.D.); (P.K.)
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
| | - Hua-Hsin Hsiao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
| | - Emily Isenhart
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
| | - Erin M. Siegel
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA;
| | - Dwight H. Owen
- Department of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.H.O.); (D.J.S.)
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (B.D.); (P.D.); (P.K.)
| | - Fred K. Tabung
- Department of Epidemiology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Daniel J. Spakowicz
- Department of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.H.O.); (D.J.S.)
| | - William J. Murphy
- Department of Immunology, University of California Davis, Sacramento, CA 95616, USA;
| | - Stephen Edge
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Sami Ibrahimi
- Department of Medicine, Oklahoma University Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| | - Jill M. Kolesar
- Department of Pharmacy, University of Kentucky College of Pharmacy, Lexington, KY 40506, USA;
| | - Patsy H. McDonald
- Department of Cancer Biology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Deepak Vadehra
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Michelle Churchman
- Precision Therapy and Diagnostics, Aster Insights, Hudson, FL 34667, USA;
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.R.R.); (Y.Z.); (H.-H.H.); (E.I.); (J.W.); (S.L.)
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (B.D.); (P.D.); (P.K.)
| | - Sarbajit Mukherjee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (B.D.); (P.D.); (P.K.)
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| |
Collapse
|
23
|
Hirai S, Suzuki M, Sakurai Y, Nakano S, Minowa K, Eguchi H, Okazaki Y, Shimizu T. The Coexistence of TRPV6 Variants With Other Pancreatitis-Associated Genes Affects Pediatric-Onset Pancreatitis. J Pediatr Gastroenterol Nutr 2023; 76:483-488. [PMID: 36599151 DOI: 10.1097/mpg.0000000000003700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Recently, a genetic risk for chronic pancreatitis (CP) was found to be conferred by pathogenic variants in the transient receptor potential cation channel, subfamily V, member 6 ( TRPV6 ). Interestingly, 20%-57% of patients with functionally defective TRPV6 variants have other susceptibility genes such as cationic trypsinogen, serine protease inhibitor Kazal type 1, chymotrypsin C, cystic fibrosis transmembrane conductance regulator, and carboxypeptidase A1. In this study, we focused on pediatric patients with acute recurrent pancreatitis or CP with at least 1 variant in these 5 genes and investigated the presence of coexisting TRPV6 mutations. METHODS Ninety Japanese pediatric patients (median age at first onset, 8.0 years) who had at least 1 variant of these 5 genes were enrolled in this study. DNA samples were extracted for analysis from peripheral blood leukocytes. Coding regions of TRPV6 were screened by Sanger sequencing. RESULTS Regardless of functional defects or non-defects in TRPV6 variants, 14 of the 90 patients (15.6%) were trans-heterozygous for TRPV6 variants [p.A18S (n = 3), p.C197R (n = 3), p.I223T (n = 3), p.D324N (n = 4), p.M418V (n = 3), p.V540F (n = 1), p.A606T (n = 1), and p.M721T (n = 3)] and the 5 susceptibility genes noted above. Of these variants, p.D324N, p.V540F, and p.A606T are associated with pancreatitis. Three patients had the ancestral haplotype [p.C197R + p.M418V + p.M721T]. CONCLUSIONS Overall, 4 of 90 patients (4.4%) had the coexistence of clearly pathogenic TRPV6 variants with pancreatitis-associated variants. The cumulative accumulation of these genetic factors may contribute to the development of pancreatitis at a young age.
Collapse
Affiliation(s)
- Saeko Hirai
- From the Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- the Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yumiko Sakurai
- the Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Nakano
- the Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kei Minowa
- the Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hidetake Eguchi
- the Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- the Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Shimizu
- From the Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Not all patients with severe hypertriglyceridemia develop acute pancreatitis. We surveyed recent literature on inter-individual genetic variation in susceptibility to pancreatitis. RECENT FINDINGS Genetic determinants of pancreatitis include: rare Mendelian disorders caused by highly penetrant pathogenic variants in genes involved in trypsinogen activation; uncommon susceptibility variants in genes involved in trypsinogen activation, protein misfolding as well as calcium metabolism and cystic fibrosis, that have variable penetrance and show a range of odds ratios for pancreatitis; and common polymorphisms in many of the same genes that have only a small effect on risk. The role of these genetic variants in modulating pancreatitis risk in hypertriglyceridemia is unclear. However, among genetic determinants of plasma triglycerides, those predisposing to more severe hypertriglyceridemia associated with chylomicronemia appear to have higher pancreatitis risk. SUMMARY Currently, among patients with severe hypertriglyceridemia, the most consistent predictor of pancreatitis risk is the triglyceride level. Furthermore, pancreatitis risk appears to be modulated by a higher genetic burden of factors associated with greater magnitude of triglyceride elevation. The role of common and rare genetic determinants of pancreatitis itself in this metabolic context is unclear.
Collapse
Affiliation(s)
- Shyann M T Hang
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
25
|
Bourgault J, Abner E, Manikpurage HD, Pujol-Gualdo N, Laisk T, Gobeil É, Gagnon E, Girard A, Mitchell PL, Thériault S, Esko T, Mathieu P, Arsenault BJ. Proteome-Wide Mendelian Randomization Identifies Causal Links Between Blood Proteins and Acute Pancreatitis. Gastroenterology 2023; 164:953-965.e3. [PMID: 36736436 DOI: 10.1053/j.gastro.2023.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (n = 35,559) and 4979 blood proteins from the Fenland study (n = 10,708). RESULTS The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.
Collapse
Affiliation(s)
- Jérôme Bourgault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hasanga D Manikpurage
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Natàlia Pujol-Gualdo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Émilie Gobeil
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
26
|
Masson E, Ewers M, Paliwal S, Kume K, Scotet V, Cooper DN, Rebours V, Buscail L, Rouault K, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Carpentier-Pourquier M, Chamouard P, Chaput U, Chen JM, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Cosconea S, Creveaux I, Culetto A, Daboussi O, De Mestier L, Degand T, D'engremont C, Denis B, Dermine S, Desgrippes, Drouet D'Aubigny A, Enaud R, Fabre A, Férec C, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Le Guillou X, Le Rhun M, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Masson E, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, et alMasson E, Ewers M, Paliwal S, Kume K, Scotet V, Cooper DN, Rebours V, Buscail L, Rouault K, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Carpentier-Pourquier M, Chamouard P, Chaput U, Chen JM, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Cosconea S, Creveaux I, Culetto A, Daboussi O, De Mestier L, Degand T, D'engremont C, Denis B, Dermine S, Desgrippes, Drouet D'Aubigny A, Enaud R, Fabre A, Férec C, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Le Guillou X, Le Rhun M, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Masson E, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Rosa Hezode I, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Tanneche J, Texier C, Thomassin L, Tougeron D, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F, Bhaskar S, Kikuta K, Rao GV, Hamada S, Reddy DN, Masamune A, Chandak GR, Witt H, Férec C, Chen JM. The PRSS3P2 and TRY7 deletion copy number variant modifies risk for chronic pancreatitis. Pancreatology 2023; 23:48-56. [PMID: 36517351 DOI: 10.1016/j.pan.2022.11.013] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND PRSS1 and PRSS2 constitute the only functional copies of a tandemly-arranged five-trypsinogen-gene cluster (i.e., PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) on chromosome 7q35. Variants in PRSS1 and PRSS2, including missense and copy number variants (CNVs), have been reported to predispose to or protect against chronic pancreatitis (CP). We wondered whether a common trypsinogen pseudogene deletion CNV (that removes two of the three trypsinogen pseudogenes, PRSS3P2 and TRY7) might be associated with CP causation/predisposition. METHODS We analyzed the common PRSS3P2 and TRY7 deletion CNV in a total of 1536 CP patients and 3506 controls from France, Germany, India and Japan by means of quantitative fluorescent multiplex polymerase chain reaction. RESULTS We demonstrated that the deletion CNV variant was associated with a protective effect against CP in the French, German and Japanese cohorts whilst a trend toward the same association was noted in the Indian cohort. Meta-analysis under a dominant model yielded a pooled odds ratio (OR) of 0.68 (95% confidence interval (CI) 0.52-0.89; p = 0.005) whereas an allele-based meta-analysis yielded a pooled OR of 0.84 (95% CI 0.77-0.92; p = 0.0001). This protective effect is explicable by reference to the recent finding that the still functional PRSS3P2/TRY7 pseudogene enhancers upregulate pancreatic PRSS2 expression. CONCLUSIONS The common PRSS3P2 and TRY7 deletion CNV was associated with a reduced risk for CP. This finding provides additional support for the emerging view that dysregulated PRSS2 expression represents a discrete mechanism underlying CP predisposition or protection.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Maren Ewers
- Paediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Sumit Paliwal
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Virginie Scotet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Rangueil and University of Toulouse, Toulouse, France
| | - Karen Rouault
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des Armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Seema Bhaskar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Giriraj Ratan Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Heiko Witt
- Paediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.
| |
Collapse
|
27
|
Eiseler K, Dropmann LM, Bugert P, Ewers M, Witt H. Genetic analysis of the aquaporin water channels AQP12A and AQP12B in patients with chronic pancreatitis. Pancreatology 2022; 22:1079-1083. [PMID: 36167651 DOI: 10.1016/j.pan.2022.09.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alterations in genes specifically expressed in the pancreas have been associated with chronic pancreatitis (CP). A significant percentage of patients with non-alcoholic CP, however, do not have mutations in known risk genes, suggesting the existence of further susceptibility genes. Four aquaporins are expressed in the exocrine pancreas: AQP1, AQP5, AQP8 and AQP12, the latter being found exclusively in this organ. Therefore, we investigated the two AQP12 genes, AQP12A and AQP12B, in CP patients. METHODS We analyzed all exons and adjacent intronic regions of AQP12A and AQP12B in 292 German patients with non-alcoholic CP and 143 control subjects by direct DNA sequencing. RESULTS In total, we discovered 41 non-synonymous changes, three of which were nonsense variants. Genotype and allele frequencies of these variants did not differ significantly between patients and controls (all p-values >0.05). Remarkably, we found a common nonsense variant in AQP12B, p.S152Tfs∗24, with an allele frequency of 15.7% in controls, including 2.8% homozygous subjects. This finding suggests that AQP12B is physiologically dispensable for normal pancreatic function. CONCLUSIONS Our results suggest that genetic alterations in AQP12A and AQP12B do not predispose to the development of non-alcoholic CP.
Collapse
Affiliation(s)
- Katharina Eiseler
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Lea Maria Dropmann
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Maren Ewers
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Heiko Witt
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany.
| |
Collapse
|
28
|
Kawamoto M, Yoshida T, Tamura K, Dbouk M, Canto MI, Burkhart R, He J, Roberts NJ, Klein AP, Goggins M. Endoplasmic stress-inducing variants in carboxyl ester lipase and pancreatic cancer risk. Pancreatology 2022; 22:959-964. [PMID: 35995657 PMCID: PMC9669157 DOI: 10.1016/j.pan.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-inducing variants in several pancreatic secretory enzymes have been associated with pancreatic disease. Multiple variants in CEL, encoding carboxyl ester lipase, are known to cause maturity-onset diabetes of the young (MODY8) but have not been implicated in pancreatic cancer risk. METHODS The prevalence of ER stress-inducing variants in the CEL gene was compared among pancreatic cancer cases vs. controls. Variants were identified by next-generation sequencing and confirmed by Sanger sequencing. Variants of uncertain significance (VUS) were assessed for their effect on the secretion of CEL protein and variants with reduced protein secretion were evaluated to determine if they induced endoplasmic reticulum stress. RESULTS ER stress-inducing CEL variants were found in 34 of 986 cases with sporadic pancreatic ductal adenocarcinoma, and 21 of 1045 controls (P = 0.055). Most of the variants were either the CEL-HYB1 variant, the I488T variant, or the combined CEL-HYB1/I488T variant; one case had a MODY8 variant. CONCLUSION This case/control analysis finds ER stress-inducing CEL variants are not associated with an increased likelihood of having pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Takeichi Yoshida
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Koji Tamura
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Jin He
- Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; The Sol Goldman Pancreatic Cancer Research Center, And the Bloomberg School of Public Health, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
29
|
The Pancreas and Known Factors of Acute Pancreatitis. J Clin Med 2022; 11:jcm11195565. [PMID: 36233433 PMCID: PMC9571992 DOI: 10.3390/jcm11195565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis is regarded by clinicians as one of the most complicated and clinically challenging of all disorders affecting the abdomen. It is classified on the basis of clinical, morphological, and histological criteria. Causes of acute pancreatitis can easily be identified in 75–85% of patients. The main causes of acute, recurrent acute, and chronic pancreatitis are gallstone migration and alcohol abuse. Other causes are uncommon, controversial, or unexplained. For instance, cofactors of all forms of pancreatitis are pancreas divisum and hypertriglyceridemia. Another factor that should be considered is a complication of endoscopic retrograde cholangiopancreatography: post-endoscopic retrograde cholangiopancreatography acute pancreatitis. The aim of this study is to present the known risk factors for acute pancreatitis, beginning with an account of the morphology, physiology, and development of the pancreas.
Collapse
|
30
|
Németh BZ, Demcsák A, Micsonai A, Kiss B, Schlosser G, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Arg236 in human chymotrypsin B2 (CTRB2) is a key determinant of high enzyme activity, trypsinogen degradation capacity, and protection against pancreatitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140831. [PMID: 35934298 PMCID: PMC9426946 DOI: 10.1016/j.bbapap.2022.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic chymotrypsins (CTRs) are digestive proteases that in humans include CTRB1, CTRB2, CTRC, and CTRL. The highly similar CTRB1 and CTRB2 are the products of gene duplication. A common inversion at the CTRB1-CTRB2 locus reverses the expression ratio of these isoforms in favor of CTRB2. Carriers of the inversion allele are protected against the inflammatory disorder pancreatitis presumably via their increased capacity for CTRB2-mediated degradation of harmful trypsinogen. To reveal the protective molecular determinants of CTRB2, we compared enzymatic properties of CTRB1, CTRB2, and bovine CTRA (bCTRA). By evolving substrate-like Schistocerca gregaria proteinase inhibitor 2 (SGPI-2) inhibitory loop variants against the chymotrypsins, we found that the substrate binding groove of the three enzymes had overlapping specificities. Based on the selected sequences, we produced eight SGPI-2 variants. Remarkably, CTRB2 and bCTRA bound these inhibitors with significantly higher affinity than CTRB1. Moreover, digestion of peptide substrates, beta casein, and human anionic trypsinogen unequivocally confirmed that CTRB2 is a generally better enzyme than CTRB1 while the potency of bCTRA lies between those of the human isoforms. Unexpectedly, mutation D236R alone converted CTRB1 to a CTRB2-like high activity protease. Modeling indicated that in CTRB1 Met210 partially obstructed the substrate binding groove, which was relieved by the D236R mutation. Taken together, we identify CTRB2 Arg236 as a key positive determinant, while CTRB1 Asp236 as a negative determinant for chymotrypsin activity. These findings strongly support the concept that in carriers of the CTRB1-CTRB2 inversion allele, the superior trypsinogen degradation capacity of CTRB2 protects against pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
31
|
Hanlon VCT, Lansdorp PM, Guryev V. A survey of current methods to detect and genotype inversions. Hum Mutat 2022; 43:1576-1589. [PMID: 36047337 DOI: 10.1002/humu.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Polymorphic inversions are ubiquitous in humans, and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
32
|
Tóth A, Demcsák A, Zankl F, Oracz G, Unger LS, Bugert P, Laumen H, Párniczky A, Hegyi P, Rosendahl J, Gambin T, Płoski R, Koziel D, Gluszek S, Lindgren F, Löhr JM, Sahin-Tóth M, Witt H, Rygiel AM, Ewers M, Hegyi E. Loss-of-function variant in chymotrypsin like elastase 3B (CELA3B) is associated with non-alcoholic chronic pancreatitis. Pancreatology 2022; 22:713-718. [PMID: 35773178 PMCID: PMC9474678 DOI: 10.1016/j.pan.2022.06.258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genetic alterations in digestive enzymes have been associated with chronic pancreatitis (CP). Recently, chymotrypsin like elastase 3B (CELA3B) emerged as a novel risk gene. Thus, we evaluated CELA3B in two European cohorts with CP. METHODS We analyzed all 8 CELA3B exons in 550 German non-alcoholic CP (NACP) patients and in 241 German controls by targeted DNA sequencing. In addition, we analyzed exons 6 and 7 by Sanger sequencing and the c.129+1G>A variant by melting curve analysis in 1078 further German controls. As replication cohort, we investigated up to 243 non-German European NACP patients and up to 1665 controls originating from Poland, Hungary, and Sweden. We assessed the cellular secretion and the elastase activity of recombinant CELA3B variants. RESULTS In the German discovery cohort, we detected a splice-site variant in intron 2, c.129+1G>A, in 9/550 (1.64%) CP patients and in 5/1319 (0.38%) controls (P=0.007, OR=4.4, 95% CI=1.5-13.0). In the European replication cohort, this variant was also enriched in patients (9/178 [5.06%]) versus controls (13/1247 [1.04%]) (P=0.001, OR=5.1, 95% CI=2.1-12.0). We did not find the two previously reported codon 90 variants, p.R90C and p.R90L. CONCLUSIONS Our data indicate that CELA3B is a susceptibility gene for CP. In contrast to previous reports suggesting that increased CELA3B activity is associated with CP risk, the splice-site variant identified here is predicted to cause diminished CELA3B expression. How reduced CELA3B function predisposes to pancreatitis remains to be elucidated.
Collapse
Affiliation(s)
- Andrea Tóth
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Alexandra Demcsák
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, 02118, United States; Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, United States
| | - Florence Zankl
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Grzegorz Oracz
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lara Sophie Unger
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Helmut Laumen
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany; Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Párniczky
- Heim Pál National Pediatric Institute, Budapest, Hungary; Institute for Translational Medicine, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Koziel
- Collegium Medicum, Jan Kochanowski University of Kielce, Poland
| | | | - Fredrik Lindgren
- Department of Pediatric, Karolinska University Hospital, Stockholm, Sweden
| | - J Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, 02118, United States; Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, United States
| | - Heiko Witt
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | | | - Maren Ewers
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany.
| | - Eszter Hegyi
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, 02118, United States; Institute for Translational Medicine, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
33
|
Takáts A, Berke G, Gede N, Németh BC, Witt H, Głuszek S, Rygiel AM, Hegyi P, Sahin-Tóth M, Hegyi E. Risk of chronic pancreatitis in carriers of loss-of-function CTRC variants: A meta-analysis. PLoS One 2022; 17:e0268859. [PMID: 35594281 PMCID: PMC9122191 DOI: 10.1371/journal.pone.0268859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The digestive protease chymotrypsin C (CTRC) protects the pancreas against pancreatitis by degrading potentially harmful trypsinogen. Loss-of-function genetic variants in CTRC increase risk for chronic pancreatitis (CP) with variable effect size, as judged by the reported odds ratio (OR) values. Here, we performed a meta-analysis of published studies on four variants that alter the CTRC amino-acid sequence, are clinically relatively common (global carrier frequency in CP >1%), reproducibly showed association with CP and their loss of function phenotype was verified experimentally. We found strong enrichment of CTRC variants p.A73T, p.V235I, p.K247_R254del, and p.R245W in CP cases versus controls, yielding OR values of 6.5 (95% confidence interval (CI) 2.4-17.8), 4.5 (CI 2.2-9.1), 5.4 (CI 2.6-11.0), and 2.6 (CI 1.6-4.2), respectively. Subgroup analysis demonstrated disease association of variants p.K247_R254del and p.R245W in alcoholic CP with similar effect sizes as seen in the overall CP group. Homozygosity or compound heterozygosity were rare and seemed to be associated with higher risk. We also identified a so far unreported linkage disequilibrium between variant p.K247_R254del and the common c.180C>T (p.G60 =) haplotype. Taken together, the results indicate that heterozygous loss-of-function CTRC variants increase the risk for CP approximately 3-7-fold. This meta-analysis confirms the clinical significance of CTRC variants and provides further justification for the genetic screening of CP patients.
Collapse
Affiliation(s)
- Amanda Takáts
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gergő Berke
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Csaba Németh
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Heiko Witt
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Munich, Germany
| | | | | | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eszter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
34
|
Colocalization analysis of pancreas eQTLs with risk loci from alcoholic and novel non-alcoholic chronic pancreatitis GWAS suggests potential disease causing mechanisms. Pancreatology 2022; 22:449-456. [PMID: 35331647 DOI: 10.1016/j.pan.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.
Collapse
|
35
|
Mao XT, Zou WB, Cao Y, Wang YC, Deng SJ, Cooper DN, Férec C, Li ZS, Chen JM, Liao Z. The CEL-HYB1 Hybrid Allele Promotes Digestive Enzyme Misfolding and Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2022; 14:55-74. [PMID: 35398595 PMCID: PMC9117557 DOI: 10.1016/j.jcmgh.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A hybrid allele that originated from homologous recombination between CEL and its pseudogene (CELP), CEL-HYB1 increases the risk of chronic pancreatitis (CP). Although suggested to cause digestive enzyme misfolding, definitive in vivo evidence for this postulate has been lacking. METHODS CRISPR-Cas9 was used to generate humanized mice harboring the CEL-HYB1 allele on a C57BL/6J background. Humanized CEL mice and C57BL/6J mice were used as controls. Pancreata were collected and analyzed by histology, immunohistochemistry, immunoblotting, and transcriptomics. Isolated pancreatic acini were cultured in vitro to measure the secretion and aggregation of CEL-HYB1 protein. Mice were given caerulein injections to induce acute pancreatitis (AP) and CP. RESULTS Pancreata from mice expressing CEL-HYB1 developed pathological features characteristic of focal pancreatitis that included acinar atrophy and vacuolization, inflammatory infiltrates, and fibrosis in a time-dependent manner. CEL-HYB1 expression in pancreatic acini led to decreased secretion and increased intracellular aggregation and triggered endoplasmic reticulum stress compared with CEL. The autophagy levels of pancreata from mice expressing CEL-HYB1 changed at different developmental stages; some aged CEL-HYB1 mice exhibited an accumulation of large autophagic vesicles and impaired autophagy in acinar cells. Administration of caerulein increased the severity of AP/CP in mice expressing CEL-HYB1 compared with control mice, accompanied by higher levels of endoplasmic reticulum stress. CONCLUSIONS Expression of a humanized form of CEL-HYB1 in mice promotes endoplasmic reticulum stress and pancreatitis through a misfolding-dependent pathway. Impaired autophagy appears to be involved in the pancreatic injury in aged CEL-HYB1 mice. These mice have the potential to be used as a model to identify therapeutic targets for CP.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,Wen-Bin Zou, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China. tel: 0086-21-31161353; fax: 0086-21-55621735.
| | - Yu Cao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,Correspondence Address correspondence to: Zhuan Liao, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China. tel: 0086-21-31161004; fax: 0086-21-55621735.
| |
Collapse
|
36
|
Sahin-Tóth M. Hereditary Pancreatitis-25 Years of an Evolving Paradigm: Frank Brooks Memorial Lecture 2021. Pancreas 2022; 51:297-301. [PMID: 35775637 PMCID: PMC9348779 DOI: 10.1097/mpa.0000000000002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT The identification of the genetic basis of hereditary pancreatitis in 1996 confirmed the critical role of trypsinogen in this disease and opened a new avenue of research on pancreatitis-associated genetic risk factors and their mechanism of action. Through the following 25 years, the ensuing discoveries fundamentally changed our understanding of pancreatitis pathogenesis, clarified the role of trypsinogen autoactivation in disease onset and progression, and set the stage for future therapeutic interventions. This Frank Brooks Memorial Lecture was delivered on November 4, 2021, at the 52nd Annual Meeting of the American Pancreatic Association, held in Miami Beach, Florida.
Collapse
Affiliation(s)
- Miklós Sahin-Tóth
- From the Department of Surgery, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Nielsen RL, Wolthers BO, Helenius M, Albertsen BK, Clemmensen L, Nielsen K, Kanerva J, Niinimäki R, Frandsen TL, Attarbaschi A, Barzilai S, Colombini A, Escherich G, Aytan-Aktug D, Liu HC, Möricke A, Samarasinghe S, van der Sluis IM, Stanulla M, Tulstrup M, Yadav R, Zapotocka E, Schmiegelow K, Gupta R. Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2022; 44:e628-e636. [PMID: 35226426 PMCID: PMC8946594 DOI: 10.1097/mph.0000000000002292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.
Collapse
Affiliation(s)
- Rikke L. Nielsen
- Departments of Health Technology
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Huairou, China
| | - Benjamin O. Wolthers
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
| | | | - Birgitte K. Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Line Clemmensen
- Department of Applied Mathematics and Computer Science, Kgs. Lyngby
| | - Kasper Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark
| | - Jukka Kanerva
- Children’s Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki
| | - Riitta Niinimäki
- Oulu University Hospital, Department of Children and Adolescents, and University of Oulu, PEDEGO Research Unit, Oulu, Finland
| | - Thomas L. Frandsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children’s Hospital and Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Wien, Austria
| | - Shlomit Barzilai
- Pediatric Hematology and Oncology, Schneider Children’s Medical Center of Israel, Petah-Tikva, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Antonella Colombini
- Department of Pediatrics, Ospedale San Gerardo, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg
| | | | - Hsi-Che Liu
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Anja Möricke
- Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel
| | | | - Inge M. van der Sluis
- Dutch Childhood Oncology Group, The Hague and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Morten Tulstrup
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
| | - Rachita Yadav
- Center for Biological Sequence Analysis, Technical University of Denmark
| | - Ester Zapotocka
- Department of Pediatric Hematology/Oncology, University Hospital Motol, Prague, Czech Republic
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | | |
Collapse
|
38
|
Beyer G, Hoffmeister A, Michl P, Gress TM, Huber W, Algül H, Neesse A, Meining A, Seufferlein TW, Rosendahl J, Kahl S, Keller J, Werner J, Friess H, Bufler P, Löhr MJ, Schneider A, Lynen Jansen P, Esposito I, Grenacher L, Mössner J, Lerch MM, Mayerle J. S3-Leitlinie Pankreatitis – Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – September 2021 – AWMF Registernummer 021-003. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:419-521. [PMID: 35263785 DOI: 10.1055/a-1735-3864] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Georg Beyer
- Medizinische Klinik und Poliklinik II, LMU Klinikum, Ludwig-Maximilians-Universität München, Deutschland
| | - Albrecht Hoffmeister
- Bereich Gastroenterologie, Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Deutschland
| | - Patrick Michl
- Universitätsklinik u. Poliklinik Innere Medizin I mit Schwerpunkt Gastroenterologie, Universitätsklinikum Halle, Deutschland
| | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Deutschland
| | - Wolfgang Huber
- Comprehensive Cancer Center München TUM, II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Hana Algül
- Comprehensive Cancer Center München TUM, II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Albrecht Neesse
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Deutschland
| | - Alexander Meining
- Medizinische Klinik und Poliklinik II Gastroenterologie und Hepatologie, Universitätsklinikum Würzburg, Deutschland
| | | | - Jonas Rosendahl
- Universitätsklinik u. Poliklinik Innere Medizin I mit Schwerpunkt Gastroenterologie, Universitätsklinikum Halle, Deutschland
| | - Stefan Kahl
- Klinik für Innere Medizin m. Schwerpkt. Gastro./Hämat./Onko./Nephro., DRK Kliniken Berlin Köpenick, Deutschland
| | - Jutta Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - Jens Werner
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, Deutschland
| | - Helmut Friess
- Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, München, Deutschland
| | - Philip Bufler
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Deutschland
| | - Matthias J Löhr
- Department of Gastroenterology, Karolinska, Universitetssjukhuset, Stockholm, Schweden
| | - Alexander Schneider
- Klinik für Gastroenterologie und Hepatologie, Klinikum Bad Hersfeld, Deutschland
| | - Petra Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - Irene Esposito
- Pathologisches Institut, Heinrich-Heine-Universität und Universitätsklinikum Duesseldorf, Duesseldorf, Deutschland
| | - Lars Grenacher
- Conradia Radiologie München Schwabing, München, Deutschland
| | - Joachim Mössner
- Bereich Gastroenterologie, Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Deutschland
| | - Markus M Lerch
- Klinik für Innere Medizin A, Universitätsmedizin Greifswald, Deutschland.,Klinikum der Ludwig-Maximilians-Universität (LMU) München, Deutschland
| | - Julia Mayerle
- Medizinische Klinik und Poliklinik II, LMU Klinikum, Ludwig-Maximilians-Universität München, Deutschland
| | | |
Collapse
|
39
|
Jancsó Z, Sahin-Tóth M. Chronic progression of cerulein-induced acute pancreatitis in trypsinogen mutant mice. Pancreatology 2022; 22:248-257. [PMID: 35063369 PMCID: PMC8941852 DOI: 10.1016/j.pan.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
T7K24R mice carry mutation p.K24R in mouse cationic trypsinogen (isoform T7), which is analogous to the human hereditary pancreatitis-associated mutation p.K23R. The mutation renders trypsinogen more prone to autoactivation. We recently reported that T7K24R mice exhibit increased severity of acute pancreatitis induced by repeated cerulein injections. The objective of the present study was to test whether trypsinogen mutant mice are prone to develop chronic pancreatitis, as observed in patients. We characterized the natural course of cerulein-induced pancreatitis in T7K24R mice and the C57BL/6N parent strain from the acute episode to 3 months post-attack. As expected, an acute episode of pancreatitis in C57BL/6N mice was followed by rapid recovery and histological restitution. In stark contrast, T7K24R mice developed progressive chronic pancreatitis with acinar cell atrophy, persistent macrophage infiltration, and diffuse fibrosis. The nadir of pancreas damage occurred on days 5-6 after the acute episode and was accompanied by digestive dysfunction. Remarkably, histological recovery was markedly delayed and permanent, chronic changes were still detectable 1-3 months after the acute pancreatitis episode. We conclude that during cerulein-induced acute pancreatitis in T7K24R mice, trypsin triggers an autonomous inflammatory program resulting in chronic disease progression, even after the cessation of cerulein-mediated injury. We propose that this uniquely trypsin-dependent mechanism explains the development of hereditary chronic pancreatitis in humans. Trypsin inhibition during acute attacks should prevent or delay progression to chronic disease.
Collapse
Affiliation(s)
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
41
|
Abstract
Hereditary pancreatitis (HP) is a rare inherited chronic pancreatitis (CP) with strong genetic associations, with estimated prevalence ranging from 0.3 to 0.57 per 100,000 across Europe, North America, and East Asia. Apart from the most well-described genetic variants are PRSS1, SPINK1, and CFTR, many other genes, such as CTRC, CPA1, and CLDN2 and CEL have been found to associate with HP, typically in one of the 3 main mechanisms such as altered trypsin activity, pancreatic ductal cell secretion, and calcium channel regulation. The current mainstay of management for patients with HP comprises genetic testing for eligible individuals and families, alcohol and tobacco cessation avoidance, pain control, and judicious screening for complications, including exocrine and endocrine insufficiency and pancreatic cancer.
Collapse
Affiliation(s)
- Yichun Fu
- Henry D. Janowitz Division of Gastroenterology, One Gustave L. Levy Place, Box 1069, New York, NY 10029, USA; Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aimee L Lucas
- Henry D. Janowitz Division of Gastroenterology, One Gustave L. Levy Place, Box 1069, New York, NY 10029, USA; Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
42
|
Yazdanpanah N, Yazdanpanah M, Wang Y, Forgetta V, Pollak M, Polychronakos C, Richards JB, Manousaki D. Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study. Diabetes Care 2022; 45:169-177. [PMID: 34758976 DOI: 10.2337/dc21-1049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. RESULTS We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). CONCLUSIONS We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.
Collapse
Affiliation(s)
- Nahid Yazdanpanah
- 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Ye Wang
- 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Vincenzo Forgetta
- 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Pollak
- 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,3Department of Medicine, McGill University, Montreal, Quebec, Canada.,4Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Constantin Polychronakos
- 5Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,6Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,7Centre of Excellence in Translational Immunology, Montreal, Quebec, Canada
| | - J Brent Richards
- 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,3Department of Medicine, McGill University, Montreal, Quebec, Canada.,6Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,8Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada.,9Department of Twin Research, King's College London, London, U.K
| | - Despoina Manousaki
- 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.,10Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|
44
|
Hamada S, Masson E, Chen JM, Sakaguchi R, Rebours V, Buscail L, Matsumoto R, Tanaka Y, Kikuta K, Kataoka F, Sasaki A, Le Rhun M, Audin H, Lachaux A, Caumont B, Lorenzo D, Billiemaz K, Besnard R, Koch S, Lamireau T, De Koninck X, Génin E, Cooper DN, Mori Y, Masamune A, Férec C. Functionally deficient TRPV6 variants contribute to hereditary and familial chronic pancreatitis. Hum Mutat 2021; 43:228-239. [PMID: 34923708 DOI: 10.1002/humu.24315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The recent discovery of TRPV6 as a pancreatitis susceptibility gene served to identify a novel mechanism of chronic pancreatitis (CP) due to Ca2+ dysregulation. Herein, we analyzed TRPV6 in 81 probands with hereditary CP (HCP), 204 probands with familial CP (FCP), and 462 patients with idiopathic CP (ICP) by targeted next-generation sequencing. We identified 25 rare nonsynonymous TRPV6 variants, 18 of which had not been previously reported. All 18 variants were characterized by a Ca2+ imaging assay, with 8 being identified as functionally deficient. Evaluation of functionally deficient variants in the three CP cohorts revealed two novel findings: (i) functionally deficient TRPV6 variants appear to occur more frequently in HCP/FCP patients than in ICP patients (3.2% vs. 1.5%) and (ii) functionally deficient TRPV6 variants found in HCP and FCP probands appear to be more frequently coinherited with known risk variants in SPINK1, CTRC, and/or CFTR than those found in ICP patients (66.7% vs 28.6%). Additionally, genetic analysis of available HCP and FCP family members revealed complex patterns of inheritance in some families. Our findings confirm that functionally deficient TRPV6 variants represent an important contributor to CP. Importantly, functionally deficient TRPV6 variants account for a significant proportion of cases of HCP/FCP.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Vinciane Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Université de Paris, Paris, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Rangueil and University of Toulouse, Toulouse, France
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiya Kataoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Sasaki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marc Le Rhun
- Service d'Hépato-Gastroentérologie et Assistance Nutritionnelle, Institut des Maladies de l'Appareil Digestif (IMAD), Centre Hospitalo-Universitaire (CHU), Nantes, France
| | - Hela Audin
- Médecine 'Chauvet' à Orientation Gastro-Entérologique, CH Gabriel Martin, Saint Paul, France
| | - Alain Lachaux
- Hospices Civils de Lyon, Department of Pediatric Hepato-Gastroenterology Hôpital Femme Mere Enfant and Lyon 1 University, Faculty of Medicine Lyon East, France
| | - Bernard Caumont
- Service de Médecine à Orientation Hépato-Gastro-Entérologique, CH Sud Gironde, Langon, France
| | - Diane Lorenzo
- Department of Digestive Endoscopy, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - Kareen Billiemaz
- Service de Réanimation Pédiatrique, CHU-Hôpital Nord, Saint-Étienne, France
| | - Raphael Besnard
- Service d'Hépato-Gastro-Entérologie et Oncologie Digestive, CHR Orléans, Orléans, France
| | - Stéphane Koch
- Department of Gastroenterology, University Hospital of Besançon, Besançon, France
| | - Thierry Lamireau
- Pediatric Hepatology and Gastroenterology Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France
| | - Xavier De Koninck
- Division of Gastroenterology, Clinique Saint-Pierre, Ottignies, Belgium
| | | | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| |
Collapse
|
45
|
Kawamoto M, Kohi S, Abe T, Dbouk M, Macgregor-Das A, Koi C, Song KB, Borges M, Sugimine R, Laheru D, Hruban RH, Roberts N, Klein AP, Goggins M. Endoplasmic stress-inducing variants in CPB1 and CPA1 and risk of pancreatic cancer: A case-control study and meta-analysis. Int J Cancer 2021; 150:1123-1133. [PMID: 34817877 DOI: 10.1002/ijc.33883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Gene variants that encode pancreatic enzymes with impaired secretion can induce pancreatic acinar endoplasmic reticulum (ER) stress, cellular injury and pancreatitis. The role of such variants in pancreatic cancer risk has received little attention. We compared the prevalence of ER stress-inducing variants in CPA1 and CPB1 in patients with pancreatic ductal adenocarcinoma (PDAC cases), enrolled in the National Familial Pancreas Tumor Registry, to their prevalence in noncancer controls in the Genome Aggregation Database (gnomAD). Variants of unknown significance were expressed and variants with reduced secretion assessed for ER stress induction. In vitro assessments were compared with software predictions of variant function. Protein variant software was used to assess variants found in only one gnomAD control ("n-of-one" variants). A meta-analysis of prior PDAC case/control studies was also performed. Of the 1385 patients with PDAC, 0.65% were found to harbor an ER stress-inducing variant in CPA1 or CPB1, compared to 0.17% of the 64 026 controls (odds ratio [OR]: 3.80 [1.92-7.51], P = .0001). ER stress-inducing variants in the CPA1 gene were identified in 4 of 1385 PDAC cases vs 77 of 64 026 gnomAD controls (OR: 2.4 [0.88-6.58], P = .087), and variants in CPB1 were detected in 5 of 1385 cases vs 33 of 64 026 controls (OR: 7.02 [2.74-18.01], P = .0001). Meta-analysis demonstrated strong associations for pancreatic cancer and ER-stress inducing variants for both CPA1 (OR: 3.65 [1.58-8.39], P < .023) and CPB1 (OR: 9.51 [3.46-26.15], P < .001). Rare variants in CPB1 and CPA1 that induce ER stress are associated with increased odds of developing pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shiro Kohi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Toshiya Abe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chiho Koi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ki-Byung Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Borges
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ryo Sugimine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nicholas Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Ammer-Herrmenau C, Ellenrieder V, Neesse A. [Chronic pancreatitis: update diagnostic and therapeutic concepts]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 60:1131-1138. [PMID: 34798674 DOI: 10.1055/a-1659-4636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a frequent cause for hospitalization and is associated with impaired quality of life and reduced overall survival. The German Society for Gastroenterology (DGVS) has recently completed the S3-Guideline "Pancreatitis" that summarizes key findings on epidemiology, diagnostic and therapeutic concepts for acute and chronic pancreatitis. Here, we recapitulate the most relevant findings for clinicians regarding CP. RESULTS The most common cause of CP is chronic alcohol abuse, other causes are hereditary pancreatitis, autoimmune pancreatitis, hyperparathyroidism and idiopathic forms. Apart from the classical hereditary pancreatitis (PRSS1 mutation), a number of genetic associations have been discovered over the last years that are associated with an increased risk to develop idiopathic CP. The conservative management of CP is focused on the appropriate management of exocrine and endocrine insufficiency, and the prevention and treatment of secondary complications such as osteoporosis, vitamin deficiencies and malnutrition. Local complications (bile duct stenosis, duodenal stenosis, pseudocysts and chronic pain) should be managed in multidisciplinary teams in specialized pancreas centres with expert surgeons, radiologists and gastroenterologists. Infected or symptomatic pseudocysts should be primarily addressed by endoscopic drainage. In contrast, patients with chronic pain, dilated pancreas duct and opioid use should be considered for early surgical intervention. CONCLUSION Chronic pancreatitis is associated with increased morbidity and mortality and often leads to hospital admissions. The clinical management of complex patients with local complications requires an interdisciplinary approach to tailor available therapeutic modalities depending on the stage of the disease and pre-existing comorbidities.
Collapse
Affiliation(s)
- Christoph Ammer-Herrmenau
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
47
|
Jermusyk A, Zhong J, Connelly KE, Gordon N, Perera S, Abdolalizadeh E, Zhang T, O'Brien A, Hoskins JW, Collins I, Eiser D, Yuan C, Risch HA, Jacobs EJ, Li D, Du M, Stolzenberg-Solomon RZ, Klein AP, Smith JP, Wolpin BM, Chanock SJ, Shi J, Petersen GM, Westlake CJ, Amundadottir LT. A 584 bp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. Am J Hum Genet 2021; 108:1852-1865. [PMID: 34559995 PMCID: PMC8546220 DOI: 10.1016/j.ajhg.2021.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, βGTEx = 1.99; pLTG = 1.02 × 10-30, βLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.
Collapse
Affiliation(s)
- Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Katelyn E Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naomi Gordon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sumeth Perera
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Ehssan Abdolalizadeh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Aidan O'Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA 30303, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA
| | | | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gloria M Petersen
- Department of Quantitative Health Sciences, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Abstract
Long-term alcohol consumption and gene mutations are the most important causes of chronic pancreatitis. In addition to mutations in acinar genes, such as digestive enzymes and their inhibitors, defects in genes that primarily or exclusively affect the duct cells have also been described in recent years. Genetic changes are found not only in patients with a positive family history (hereditary pancreatitis) but also in so-called idiopathic and, to a lesser extent, in alcoholic chronic pancreatitis. The coming years will likely show that there are very complex interactions between environmental influences and numerous genetic factors.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Klinik für Innere Medizin I, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland.
| | - Heiko Witt
- Pädiatrische Ernährungsmedizin, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.
| |
Collapse
|
49
|
Pistoni L, Gentiluomo M, Lu Y, López de Maturana E, Hlavac V, Vanella G, Darvasi E, Milanetto AC, Oliverius M, Vashist Y, Di Leo M, Mohelnikova-Duchonova B, Talar-Wojnarowska R, Gheorghe C, Petrone MC, Strobel O, Arcidiacono PG, Vodickova L, Szentesi A, Capurso G, Gajdán L, Malleo G, Theodoropoulos GE, Basso D, Soucek P, Brenner H, Lawlor RT, Morelli L, Ivanauskas A, PanGenEU Study Investigators, Kauffmann EF, Macauda A, Gazouli M, Archibugi L, Nentwich M, Loveček M, Cavestro GM, Vodicka P, Landi S, Tavano F, Sperti C, Hackert T, Kupcinskas J, Pezzilli R, Andriulli A, Pollina L, Kreivenaite E, Gioffreda D, Jamroziak K, Hegyi P, Izbicki JR, Testoni SGG, Zuppardo RA, Bozzato D, Neoptolemos JP, Malats N, Canzian F, Campa D. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis 2021; 42:1037-1045. [PMID: 34216462 DOI: 10.1093/carcin/bgab057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers. Its poor prognosis is predominantly due to the fact that most patients remain asymptomatic until the disease reaches an advanced stage, alongside the lack of early markers and screening strategies. A better understanding of PDAC risk factors is essential for the identification of groups at high risk in the population. Genome-wide association studies (GWAS) have been a powerful tool for detecting genetic variants associated with complex traits, including pancreatic cancer. By exploiting functional and GWAS data, we investigated the associations between polymorphisms affecting gene function in the pancreas (expression quantitative trait loci, eQTLs) and PDAC risk. In a two-phase approach, we analysed 13 713 PDAC cases and 43 784 controls and identified a genome-wide significant association between the A allele of the rs2035875 polymorphism and increased PDAC risk (P = 7.14 × 10−10). This allele is known to be associated with increased expression in the pancreas of the keratin genes KRT8 and KRT18, whose increased levels have been reported to correlate with various tumour cell characteristics. Additionally, the A allele of the rs789744 variant was associated with decreased risk of developing PDAC (P = 3.56 × 10–6). This single nucleotide polymorphism is situated in the SRGAP1 gene and the A allele is associated with higher expression of the gene, which in turn inactivates the cyclin-dependent protein 42 (CDC42) gene expression, thus decreasing the risk of PDAC. In conclusion, we present here a functional-based novel PDAC risk locus and an additional strong candidate supported by significant associations and plausible biological mechanisms.
Collapse
Affiliation(s)
- Laura Pistoni
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evangelina López de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Erika Darvasi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Anna Caterina Milanetto
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Martin Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milena Di Leo
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Milan, Italy
| | - Beatrice Mohelnikova-Duchonova
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | | | | | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oliver Strobel
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, First Medical Faculty, Prague, Czech Republic
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Szentesi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - László Gajdán
- Szent György University Teaching Hospital of Fejér County, Székesfehérvár, Hungary
| | - Giuseppe Malleo
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - George E Theodoropoulos
- Colorectal Unit, First Department of Propaedeutic Surgery, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniela Basso
- Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Audrius Ivanauskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | - Angelica Macauda
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michael Nentwich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Loveček
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Giulia Martina Cavestro
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Medical Faculty, Prague, Czech Republic
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
| | - Luca Pollina
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Edita Kreivenaite
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Alessia Zuppardo
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Dania Bozzato
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Chronic pancreatitis for the clinician. Part 1: Etiology and diagnosis. Interdisciplinary position paper of the Societat Catalana de Digestologia and the Societat Catalana de Pàncrees. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:231-248. [PMID: 34157366 DOI: 10.1016/j.gastrohep.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
|