1
|
Galema HA, Neijenhuis LKA, Lauwerends LJ, Dekker-Ensink NG, Verhoef C, Vahrmeijer AL, Bhairosingh SS, Kuppen PJK, Rogalla S, Burggraaf J, Lagarde SM, Wijnhoven BPL, Hutteman M, Doukas M, Keereweer S, Hilling DE. Effects of Neoadjuvant Therapy on Tumour Target Expression of Oesophageal Cancer Tissue for NIR Fluorescence Imaging. Mol Imaging Biol 2024; 26:955-964. [PMID: 39562416 DOI: 10.1007/s11307-024-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Oesophaegal cancer patients with a clinical complete response (CR) after neoadjuvant chemoradiotherapy (nCRT) are candidates for an active surveillance strategy. Regrowth rates of 40% after initial clinical CR indicate that identification of a true complete response to nCRT remains challenging. Near-infrared tumour-specific fluorescence endoscopic imaging might help to discriminate patients with a true complete response from patients with residual disease. This study aims to find potential markers to enable molecular imaging in oesophageal cancer and to assess the effect of nCRT on marker expression. PROCEDURES Oesophageal cancer tissue slides of diagnostic biopsies (n = 41) (pre-treatment) and paired surgical specimens (n = 31) (post-treatment) were collected. Tissue slides of patients with adenocarcinoma (n = 29) and squamous cell carcinoma (n = 12)) were included. Immunohistochemistry was performed to assess expression of the tumour markers CEA, EpCAM, VEGF-α, EGFR, and c-MET in the tumour and compared to the expression of these markers in surrounding healthy tissue. A total immunostaining score (TIS, range 0-12), which combines the percentage and intensity of stained cells, was calculated. The TIS of pre-treated biopsies were compared with the TIS of the post-treatment surgical specimens to assess the effect of neoadjuvant therapy on the marker expression. RESULTS The median TIS of EpCAM in adenocarcinomas was 10, vs. 0 in healthy mucosa (p < 0.001). The median TIS of EGFR in squamous cell carcinoma was 12, vs. 4 in healthy mucosa (p < 0.001). Neoadjuvant therapy did not affect the expression of the markers. CONCLUSION EpCAM and EGFR appear to be the most suitable targets for tumour-specific NIR fluorescence imaging of oesophageal adenocarcinoma and squamous cell carcinoma, respectively. Unaffected expression of all suitable markers by neoadjuvant therapy implies that the diagnostic biopsy can be used to select a patient-specific target for response evaluation by molecular imaging.
Collapse
Affiliation(s)
- Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Lisanne K A Neijenhuis
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lorraine J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - N Geeske Dekker-Ensink
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shadhvi S Bhairosingh
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stephan Rogalla
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Sjoerd M Lagarde
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bas P L Wijnhoven
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
2
|
Tenditnaya A, Gabriels RY, Hooghiemstra WTR, Klemm U, Nagengast WB, Ntziachristos V, Gorpas D. Performance Assessment and Quality Control of Fluorescence Molecular Endoscopy With a Multi-Parametric Rigid Standard. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3710-3718. [PMID: 38717879 DOI: 10.1109/tmi.2024.3398816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Fluorescence molecular endoscopy (FME) is emerging as a "red-flag" technique with potential to deliver earlier, faster, and more personalized detection of disease in the gastrointestinal tract, including cancer, and to gain insights into novel drug distribution, dose finding, and response prediction. However, to date, the performance of FME systems is assessed mainly by endoscopists during a procedure, leading to arbitrary, potentially biased, and heavily subjective assessment. This approach significantly affects the repeatability of the procedures and the interpretation or comparison of the acquired data, representing a major bottleneck towards the clinical translation of the technology. Herein, we propose a robust methodology for FME performance assessment and quality control that is based on a novel multi-parametric rigid standard. This standard enables the characterization of an FME system's sensitivity through a single acquisition, performance comparison of multiple systems, and, for the first time, quality control of a system as a function of time and number of usages. We show the photostability of the standard experimentally and demonstrate how it can be used to characterize the performance of an FME system. Moreover, we showcase how the standard can be employed for quality control of a system. In this study, we find that the use of composite fluorescence standards before endoscopic procedures can ensure that an FME system meets the performance criteria and that components prone to performance degradation are replaced in time, avoiding disruption of clinical endoscopy logistics. This will help overcome a major barrier for the translation of FME into the clinics.
Collapse
|
3
|
Schmidt I, Vergeer RA, Postma MR, van den Berg G, Sterkenburg AJ, Korsten-Meijer AGW, Feijen RA, Kruijff S, van Beek AP, den Dunnen WFA, Robinson DJ, van Dijk JMC, Nagengast WB, Kuijlen JMA. Fluorescence detection of pituitary neuroendocrine tumour during endoscopic transsphenoidal surgery using bevacizumab-800CW: a non-randomised, non-blinded, single centre feasibility and dose finding trial [DEPARTURE trial]. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06947-9. [PMID: 39390132 DOI: 10.1007/s00259-024-06947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Achieving endocrine remission by gross total resection is challenging in pituitary neuroendocrine tumours (PitNETs) with cavernous sinus invasion. This study aims to assess the safety, feasibility, and optimal dose for intraoperative fluorescence imaging as an added instrument to discriminate PitNET from surrounding tissue using bevacizumab-800CW, targeting vascular endothelial growth factor A (VEGF-A). METHODS In part I, dose-escalation (0-4∙5-10-25 mg) was performed in 4 groups of 3 patients with PitNETs Knosp grade 3-4. In part II, after interim analysis, the 10 mg and 25 mg groups were expanded to a total of 6 patients. Quantitative fluoroscence molecular endoscopy consisted of wide field fluorescence molecular endoscopy and multi-diameter single fiber reflectance / single fiber fluorescence spectroscopy. Mean fluorescence intensity (MFI) of the fresh surgical specimen was calculated and VEGF-staining was performed. RESULTS Eighteen patients were included. All doses were well tolerated. Three serious adverse events were registered, but none were tracer-related. Part I showed an adequate in-vivo tumour-to-background ratio for both 10 mg (TBR 2∙00 [1∙86, 2∙19]) and 25 mg (TBR 2∙10, [1∙86, 2∙58]). Part II revealed a substantially higher MFI in the 25 mg group. With both 10 mg and 25 mg a statistically significant difference between tumour and surrounding tissue was detected (p < 0∙0001). All surgical specimens had VEGF-A expression. CONCLUSION This study demonstrates the safety and feasibility of quantitative fluorescence molecular endoscopy during PitNET surgery. Both 10 mg and 25 mg bevacizumab-800CW result in clear differentiation in-vivo, with improved contrast ex-vivo (MFI) in the 25 mg group. TRIAL REGISTRATION NCT04212793 / Study Details| Detection of PitNET Tissue During TSS Using Bevacizumab800CW| ClinicalTrials.gov.
Collapse
Affiliation(s)
- I Schmidt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R A Vergeer
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, P.O. Box 30.001 (AB-71), Groningen, 9700 RB, The Netherlands.
| | - M R Postma
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G van den Berg
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A J Sterkenburg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A G W Korsten-Meijer
- Department of Otorhinolaryngology- Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R A Feijen
- Department of Otorhinolaryngology- Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W F A den Dunnen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology- Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J M C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, P.O. Box 30.001 (AB-71), Groningen, 9700 RB, The Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J M A Kuijlen
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, P.O. Box 30.001 (AB-71), Groningen, 9700 RB, The Netherlands
| |
Collapse
|
4
|
Vonk J, Dierckx RAJO, Keereweer S, Vahrmeijer AL, Verburg FA, Kruijff S. Why and how optical molecular imaging should further be catalyzed by nuclear medicine and molecular imaging: report from the EANM piloting group. Eur J Nucl Med Mol Imaging 2024; 51:3501-3504. [PMID: 38787394 DOI: 10.1007/s00259-024-06729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- J Vonk
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands.
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - F A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - S Kruijff
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Vaselli M, Gabriels RY, Schmidt I, Sterkenburg AJ, Kats-Ugurlu G, Nagengast WB, de Boer JF. Ex vivo optical coherence tomography combined with near infrared targeted fluorescence: towards in-vivo esophageal cancer detection. BIOMEDICAL OPTICS EXPRESS 2024; 15:5706-5722. [PMID: 39421768 PMCID: PMC11482167 DOI: 10.1364/boe.537828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Early detection of (pre)malignant esophageal lesions is critical to improve esophageal cancer morbidity and mortality rates. In patients with advanced esophageal adenocarcinoma (EAC) who undergo neoadjuvant chemoradiation therapy, the efficacy of therapy could be optimized and unnecessary surgery prevented by the reliable assessment of residual tumors after therapy. Optical coherence tomography (OCT) provides structural images at a (sub)-cellular level and has the potential to visualize morphological changes in tissue. However, OCT lacks molecular imaging contrast, a feature that enables the study of biological processes at a cellular level and can enhance esophageal cancer diagnostic accuracy. We combined OCT with near-infrared fluorescence molecular imaging using fluorescently labelled antibodies (immuno-OCT). The main goal of this proof of principle study is to investigate the feasibility of immuno-OCT for esophageal cancer imaging. We aim to assess whether the sensitivity of our immuno-OCT device is sufficient to detect the tracer uptake using an imaging dose (∼100 times smaller than a dose with therapeutic effects) of a targeted fluorescent agent. The feasibility of immuno-OCT was demonstrated ex-vivo on dysplastic lesions resected from Barrett's patients and on esophageal specimens resected from patients with advanced EAC, who were respectively topically and intravenously administrated with the tracer bevacizumab-800CW. The detection sensitivity of our system (0.3 nM) is sufficient to detect increased tracer uptake with micrometer resolution using an imaging dose of labelled antibodies. Moreover, the absence of layered structures that are typical of normal esophageal tissue observed in OCT images of dysplastic/malignant esophageal lesions may further aid their detection. Based on our preliminary results, immuno-OCT could improve the detection of dysplastic esophageal lesions.
Collapse
Affiliation(s)
- Margherita Vaselli
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan 1081,, Amsterdam, The Netherlands
| | - Ruben Y. Gabriels
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea J. Sterkenburg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes F. de Boer
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan 1081,, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gabriëls RY, van der Waaij AM, Linssen MD, Dobosz M, Volkmer P, Jalal S, Robinson D, Hermoso MA, Lub-de Hooge MN, Festen EAM, Kats-Ugurlu G, Dijkstra G, Nagengast WB. Fluorescently labelled vedolizumab to visualise drug distribution and mucosal target cells in inflammatory bowel disease. Gut 2024; 73:1454-1463. [PMID: 38580386 PMCID: PMC11347245 DOI: 10.1136/gutjnl-2023-331696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE Improving patient selection and development of biological therapies such as vedolizumab in IBD requires a thorough understanding of the mechanism of action and target binding, thereby providing individualised treatment strategies. We aimed to visualise the macroscopic and microscopic distribution of intravenous injected fluorescently labelled vedolizumab, vedo-800CW, and identify its target cells using fluorescence molecular imaging (FMI). DESIGN Forty three FMI procedures were performed, which consisted of macroscopic in vivo assessment during endoscopy, followed by macroscopic and microscopic ex vivo imaging. In phase A, patients received an intravenous dose of 4.5 mg, 15 mg vedo-800CW or no tracer prior to endoscopy. In phase B, patients received 15 mg vedo-800CW preceded by an unlabelled (sub)therapeutic dose of vedolizumab. RESULTS FMI quantification showed a dose-dependent increase in vedo-800CW fluorescence intensity in inflamed tissues, with 15 mg (153.7 au (132.3-163.7)) as the most suitable tracer dose compared with 4.5 mg (55.3 au (33.6-78.2)) (p=0.0002). Moreover, the fluorescence signal decreased by 61% when vedo-800CW was administered after a therapeutic dose of unlabelled vedolizumab, suggesting target saturation in the inflamed tissue. Fluorescence microscopy and immunostaining showed that vedolizumab penetrated the inflamed mucosa and was associated with several immune cell types, most prominently with plasma cells. CONCLUSION These results indicate the potential of FMI to determine the local distribution of drugs in the inflamed target tissue and identify drug target cells, providing new insights into targeted agents for their use in IBD. TRIAL REGISTRATION NUMBER NCT04112212.
Collapse
Affiliation(s)
- Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Matthijs D Linssen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Dobosz
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals inc, Tarrytown, New York, USA
| | - Pia Volkmer
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sumreen Jalal
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals inc, Tarrytown, New York, USA
| | - Dominic Robinson
- Centre for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marcela A Hermoso
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Schmidt I, Zhao X, van der Waaij AM, Meersma GJ, Dijkstra FA, Haveman JW, van Etten B, Robinson DJ, Kats-Ugurlu G, Nagengast WB. Ultrasound-Guided Quantitative Fluorescence Molecular Endoscopy for Monitoring Response in Patients with Esophageal Cancer Following Neoadjuvant Chemoradiotherapy. Clin Cancer Res 2024; 30:3211-3219. [PMID: 38814263 DOI: 10.1158/1078-0432.ccr-24-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The ability to identify residual tumor tissues in patients with locally advanced esophageal cancer following neoadjuvant chemoradiotherapy (nCRT) is essential for monitoring the treatment response. Using the fluorescent tracer bevacizumab-800CW, we evaluated whether ultrasound-guided quantitative fluorescent molecular endoscopy (US-qFME), which combines quantitative fluorescence molecular endoscopy (qFME) with ultrasound-guided needle biopsy/single-fiber fluorescence (USNB/SFF), can be used to identify residual tumor tissues in patients following nCRT. EXPERIMENTAL DESIGN Twenty patients received an additional endoscopy procedure the day before surgery. qFME was performed at the primary tumor site (PTS) and in healthy tissue to first establish the optimal tracer dose. USNB/SFF was then used to measure intrinsic fluorescence in the deeper PTS layers and lymph nodes (LN) suspected for metastasis. Finally, the intrinsic fluorescence and the tissue optical properties-specifically, the absorption and reduced scattering coefficients-were combined into a new parameter called omega. RESULTS First, a 25-mg bevacizumab-800CW dose allowed for clear differentiation between the PTS and healthy tissue, with a target-to-background ratio (TBR) of 2.98 (IQR, 1.86-3.03). Moreover, we found a clear difference between the deeper esophageal PTS layers and suspected LN compared to healthy tissues, with TBR values of 2.18 and 2.17, respectively. Finally, our new parameter, omega, further improved the ability to differentiate between the PTS and healthy tissue. CONCLUSIONS Combining bevacizumab-800CW with US-qFME may serve as a viable strategy for monitoring the response to nCRT in esophageal cancer and may help stratify patients regarding active surveillance versus surgery.
Collapse
Affiliation(s)
- Iris Schmidt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gert Jan Meersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frederieke A Dijkstra
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Willem Haveman
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn van Etten
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Parasido E, Ribeiro P, Chingle RM, Rohwetter T, Gupta N, Avetian G, Bladelli E, Pierobon M, Chen Y, Tang Q, Schnermann M, Rodriguez O, Robbins D, Burke TR, Albanese C, Ihemelandu C. Enhancing precision in colorectal cancer surgery: development of an LGR5-targeting RSPO1 peptide mimetic as a contrast agent for intraoperative fluorescence molecular imaging. Cell Cycle 2024:1-12. [PMID: 38984667 DOI: 10.1080/15384101.2024.2364578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. In the United States alone, CRC was responsible for approximately 52,550 deaths in 2023, with an estimated 153,020 new cases. CRC presents with synchronous peritoneal spread in 5-10% of patients, and up to 20-50% of patients with recurrent disease will develop metachronous colorectal cancer peritoneal metastatic (CRC-PM) disease. Eradication of the tumor, tumor margins and microscopic residual disease is paramount, as microscopic residual disease is associated with local recurrences, with 5-year survival rates of less than 35%. The success of resection and reduction of residual disease depends on the accuracy with which cancer cells and normal tissue can be intra-operatively distinguished. Fluorescence Molecular Imaging (IFMI) and tumor-targeted contrast agents represent a promising approach for intraoperative detection and surgical intervention. Proper target selection, the development of scalable imaging agents and enhanced real-time tumor and tumor microenvironment imaging are critical to enabling enhanced surgical resection. LGR5 (leucine-rich repeat-containing G-protein-coupled receptor 5), a colonic crypt stem cell marker and the receptor for the R-spondins (RSPO) in the Wnt signaling pathway, is also expressed on colorectal cancer stem cells (CSC) and on CRC tumors and metastases, suggesting it could be a useful target for imaging of CRC. However, there are numerous diverging reports on the role of LGR5 in CRC therapy and outcomes. Herein, we report on the synthesis and validation of a 37 amino acid RSPO1-mimetic peptide, termed RC18, that was specifically designed to access the R-spondin binding site of LGR5 to potentially be used for interoperative imaging of CRC-PM. The receptor-binding capabilities of the RC18 indicate that direct interactions with LGR5 neither significantly increased LGR5 signaling nor blocked RSPO1 binding and signal transduction, suggesting that the RSPO1-mimetic is functionally inert, making it an attractive contrast agent for intraoperative CRC-PM imaging.
Collapse
Affiliation(s)
- Erika Parasido
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Patricia Ribeiro
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ramesh M Chingle
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thomas Rohwetter
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Nikita Gupta
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - George Avetian
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elisa Bladelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Yu Chen
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, P. R. China
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Martin Schnermann
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Olga Rodriguez
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Center for Translational Research, Georgetown University Medical Center, Washington, DC, USA
| | - David Robbins
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Terrence R Burke
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chris Albanese
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Center for Translational Research, Georgetown University Medical Center, Washington, DC, USA
- Department of Radiology, Georgetown University Medical Center, Washington, DC, USA
| | - Chukwuemeka Ihemelandu
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
van Schaik JE, van der Vegt B, Slagter-Menkema L, Hanemaaijer SH, Halmos GB, Witjes MJH, van der Laan BFAM, Fehrmann RSN, Oosting SF, Plaat BEC. Potential imaging targets in primary head and neck squamous cell carcinoma and lymph node metastases. Am J Otolaryngol 2024; 45:104298. [PMID: 38640809 DOI: 10.1016/j.amjoto.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE To investigate glycoprotein nonmetastatic melanoma protein B (GPNMB) and vascular endothelial growth factor (VEGF) as potential fluorescent imaging markers by comparing their protein expression to epidermal growth factor receptor (EGFR). MATERIALS AND METHODS Thirty-eight paired samples of untreated head and neck squamous cell carcinoma (HNSCC) primary tumours (PT) and corresponding synchronous lymph node metastases (LNM) were selected. After immunohistochemical staining, expression was assessed and compared by the percentage of positive tumour cells. Data were analysed using the Mann-Whitney test, effect sizes (ESr) and Spearman's correlation coefficient (r). RESULTS GPNMB expression was observed in 100 % of PT, and median 80 % (range 5-100 %) of tumour cells, VEGF in 92 % and 60 % (0-100 %), EGFR in 87 % and 60 % (0-100 %) respectively. In corresponding LNM, GPNMB expression was observed in 100 % of LNM and median 90 % (20-100 %) of tumour cells, VEGF in 87 % and 65 % (0-100 %), and EGFR in 84 % and 35 % (0-100 %). A positive correlation was found between expression in PT and LNM for GPNMB (r = 0.548) and EGFR (r = 0.618) (p < 0.001), but not for VEGF (r = -0.020; p = 0.905). GPNMB expression was present in a higher percentage of tumour cells compared to EGFR in PT (p = 0.015, ESr = -0.320) and in LNM (p < 0.001, ESr = -0.478), while VEGF was not (p = 1.00, ESr = -0.109 and - 0.152, respectively). CONCLUSION GPNMB expression is higher than EGFR in untreated HNSCC PT and corresponding LNM, while VEGF expression is comparable to EGFR. GPNMB is a promising target for fluorescent imaging in HNSCC.
Collapse
Affiliation(s)
- Jeroen E van Schaik
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Lorian Slagter-Menkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Saskia H Hanemaaijer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Gyorgi B Halmos
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Max J H Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Boudewijn E C Plaat
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| |
Collapse
|
10
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
11
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
12
|
Marcazzan S, Braz Carvalho MJ, Nguyen NT, Strangmann J, Slotta-Huspenina J, Tenditnaya A, Tschurtschenthaler M, Rieder J, Proaño-Vasco A, Ntziachristos V, Steiger K, Gorpas D, Quante M, Kossatz S. PARP1-targeted fluorescence molecular endoscopy as novel tool for early detection of esophageal dysplasia and adenocarcinoma. J Exp Clin Cancer Res 2024; 43:53. [PMID: 38383387 PMCID: PMC10880256 DOI: 10.1186/s13046-024-02963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Clinical Radiology, Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Marcos J Braz Carvalho
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Nghia T Nguyen
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Julia Strangmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Anna Tenditnaya
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Markus Tschurtschenthaler
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, TUM School of Medicine and Health, Klinikum rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Jonas Rieder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Andrea Proaño-Vasco
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Comparative Experimental Pathology (CEP) and IBioTUM tissue biobank, TUM School of Medicine and Health, Technical University of Munich, München, 81675, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Michael Quante
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, 85748, Germany.
| |
Collapse
|
13
|
Sun J, Sheng J, Zhang LJ. Gastrointestinal tract. TRANSPATHOLOGY 2024:281-296. [DOI: 10.1016/b978-0-323-95223-1.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Shi NQ, Cui XY, Zhou C, Tang N, Cui DX. Application of near-infrared fluorescence imaging in theranostics of gastrointestinal tumors. Gastroenterol Rep (Oxf) 2023; 11:goad055. [PMID: 37781571 PMCID: PMC10533422 DOI: 10.1093/gastro/goad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gastrointestinal cancers have become an important cause of cancer-related death in humans. Improving the early diagnosis rate of gastrointestinal tumors and improving the effect of surgical treatment can significantly improve the survival rate of patients. The conventional diagnostic method is high-definition white-light endoscopy, which often leads to missed diagnosis. For surgical treatment, intraoperative tumor localization and post-operative anastomotic state evaluation play important roles in the effect of surgical treatment. As a new imaging method, near-infrared fluorescence imaging (NIRFI) has its unique advantages in the diagnosis and auxiliary surgical treatment of gastrointestinal tumors due to its high sensitivity and the ability to image deep tissues. In this review, we focus on the latest advances of NIRFI technology applied in early diagnosis of gastrointestinal tumors, identification of tumor margins, identification of lymph nodes, and assessment of anastomotic leakage. In addition, we summarize the advances of NIRFI systems such as macro imaging and micro imaging systems, and also clearly describe the application process of NIRFI from system to clinical application, and look into the prospect of NIRFI applied in the theranostics of gastrointestinal tumors.
Collapse
Affiliation(s)
- Nan-Qing Shi
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin-Yuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Cheng Zhou
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ning Tang
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Da-Xiang Cui
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Engineering Center for Nanotechnology, Shanghai, P. R. China
| |
Collapse
|
15
|
Amirshaghaghi A, Chang WC, Chhay B, Bartolomeu AR, Clapper ML, Cheng Z, Tsourkas A. Phthalocyanine-Blue Nanoparticles for the Direct Visualization of Tumors with White Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33373-33381. [PMID: 37395349 PMCID: PMC10724988 DOI: 10.1021/acsami.3c05140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The current standard of care for colon cancer surveillance relies heavily on white light endoscopy (WLE). However, dysplastic lesions that are not visible to the naked eye are often missed when conventional WLE equipment is used. Although dye-based chromoendoscopy shows promise, current dyes cannot delineate tumor tissues from surrounding healthy tissues accurately. The goal of the present study was to screen various phthalocyanine (PC) dye-loaded micelles for their ability to improve the direct visualization of tumor tissues under white light following intravenous administration. Zinc PC (tetra-tert-butyl)-loaded micelles were identified as the optimal formulation. Their accumulation within syngeneic breast tumors led the tumors to turn dark blue in color, making them clearly visible to the naked eye. These micelles were similarly able to turn spontaneous colorectal adenomas in Apc+/Min mice a dark blue color for easy identification and could enable clinicians to more effectively detect and remove colonic polyps.
Collapse
Affiliation(s)
- Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Bonirath Chhay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariane R. Bartolomeu
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Liang M, Wang L, Xiao Y, Yang M, Mei C, Zhang Y, Shan H, Li D. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 2023; 50:2787-2801. [PMID: 37145165 DOI: 10.1007/s00259-023-06250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE This study aimed to establish a near infrared fluorescent (NIRF) probe based on an EGFR&c-Met bispecific antibody for visualization of esophageal cancer (EC) and metastatic lymph nodes (mLNs). METHODS EGFR and c-Met expression were assessed by immunohistochemistry. EGFR&c-Met bispecific antibody EMB01 was labeled with IRDye800cw. The binding of EMB01-IR800 was assessed by enzyme linked immunosorbent assay, flow cytometry, and immunofluorescence. Subcutaneous tumors, orthotopic tumors, and patient-derived xenograft (PDX) were established for in vivo fluorescent imaging. PDX models using lymph nodes with or without metastasis were constructed to assess the performance of EMB01-IR800 in differential diagnosis of lymph nodes. RESULTS The prevalence of overexpressing EGFR or c-Met was significantly higher than single marker either in EC or corresponding mLNs. The bispecific probe EMB01-IR800 was successfully synthesized, with strong binding affinity. EMB01-IR800 showed strong cellular binding to both Kyse30 (EGFR overexpressing) and OE33 (c-Met overexpressing) cells. In vivo fluorescent imaging showed prominent EMB01-IR800 uptake in either Kyse30 or OE33 subcutaneous tumors. Likewise, EMB01-IR800 exhibited superior tumor enrichment in both thoracic orthotopic esophageal squamous cell carcinoma and abdominal orthotopic esophageal adenocarcinoma models. Moreover, EMB01-IR800 produced significantly higher fluorescence in patient-derived mLNs than in benign lymph nodes. CONCLUSION This study demonstrated the complementary overexpression of EGFR and c-Met in EC. Compared to single-target probes, the EGFR&c-Met bispecific NIRF probe can efficiently depict heterogeneous esophageal tumors and mLNs, which greatly increased the sensitivity of tumor and mLN identification.
Collapse
Affiliation(s)
- Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Lizhu Wang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
17
|
Sikkenk DJ, Sterkenburg AJ, Schmidt I, Gorpas D, Nagengast WB, Consten ECJ. Detection of Tumour-Targeted IRDye800CW Tracer with Commercially Available Laparoscopic Surgical Systems. Diagnostics (Basel) 2023; 13:diagnostics13091591. [PMID: 37174982 PMCID: PMC10178288 DOI: 10.3390/diagnostics13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Introduction: Near-infrared fluorescence (NIRF) combined with tumour-targeted tracers, such as bevacizumab-800CW, could aid surgical decision-making. This study explored the use of IRDye800CW, conjugated to bevacizumab, with four commercially available NIRF laparoscopes optimised for indocyanine green (ICG). (2) Methods: A (lymph node) phantom was made from a calibration device for NIRF and tissue-mimicking material. Serial dilutions of bevacizumab-800CW were made and ICG functioned as a reference. System settings, working distance, and thickness of tissue-mimicking material were varied to assess visibility of the fluorescence signal and tissue penetration. Tests were performed with four laparoscopes: VISERA ELITE II, Olympus; IMAGE1 S™ 4U Rubina, KARL STORZ; ENDOCAM Logic 4K platform, Richard Wolf; da Vinci Xi, Intuitive Surgical. (3) Results: The lowest visible bevacizumab-800CW concentration ranged between 13-850 nM (8-512 times diluted stock solution) for all laparoscopes, but the tracer was not visible through 0.8 cm of tissue in all systems. In contrast, ICG was still visible at a concentration of 0.4 nM (16,384 times diluted) and through 1.6-2.4 cm of tissue. Visibility and tissue penetration generally improved with a reduced working distance and manually adjusted system settings. (4) Conclusion: Depending on the application, bevacizumab-800CW might be sufficiently visible with current laparoscopes, but optimisation would widen applicability of tumour-targeted IRDye800CW tracers.
Collapse
Affiliation(s)
- Daan J Sikkenk
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - Andrea J Sterkenburg
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Ismaninger Straße 22, D-81675 Munich, Germany
| | - Wouter B Nagengast
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Esther C J Consten
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| |
Collapse
|
18
|
van der Laan JJH, van der Putten JA, Zhao X, Karrenbeld A, Peters FTM, Westerhof J, de With PHN, van der Sommen F, Nagengast WB. Optical Biopsy of Dysplasia in Barrett's Oesophagus Assisted by Artificial Intelligence. Cancers (Basel) 2023; 15:cancers15071950. [PMID: 37046611 PMCID: PMC10093622 DOI: 10.3390/cancers15071950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Optical biopsy in Barrett's oesophagus (BE) using endocytoscopy (EC) could optimize endoscopic screening. However, the identification of dysplasia is challenging due to the complex interpretation of the highly detailed images. Therefore, we assessed whether using artificial intelligence (AI) as second assessor could help gastroenterologists in interpreting endocytoscopic BE images. First, we prospectively videotaped 52 BE patients with EC. Then we trained and tested the AI pm distinct datasets drawn from 83,277 frames, developed an endocytoscopic BE classification system, and designed online training and testing modules. We invited two successive cohorts for these online modules: 10 endoscopists to validate the classification system and 12 gastroenterologists to evaluate AI as second assessor by providing six of them with the option to request AI assistance. Training the endoscopists in the classification system established an improved sensitivity of 90.0% (+32.67%, p < 0.001) and an accuracy of 77.67% (+13.0%, p = 0.020) compared with the baseline. However, these values deteriorated at follow-up (-16.67%, p < 0.001 and -8.0%, p = 0.009). Contrastingly, AI-assisted gastroenterologists maintained high sensitivity and accuracy at follow-up, subsequently outperforming the unassisted gastroenterologists (+20.0%, p = 0.025 and +12.22%, p = 0.05). Thus, best diagnostic scores for the identification of dysplasia emerged through human-machine collaboration between trained gastroenterologists with AI as the second assessor. Therefore, AI could support clinical implementation of optical biopsies through EC.
Collapse
Affiliation(s)
- Jouke J H van der Laan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Joost A van der Putten
- Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Frans T M Peters
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jessie Westerhof
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter H N de With
- Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
19
|
In Vitro Antibody Quantification with Hyperspectral Imaging in a Large Field of View for Clinical Applications. Bioengineering (Basel) 2023; 10:bioengineering10030370. [PMID: 36978761 PMCID: PMC10045535 DOI: 10.3390/bioengineering10030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Hyperspectral imaging (HSI) is a non-invasive, contrast-free optical-based tool that has recently been applied in medical and basic research fields. The opportunity to use HSI to identify exogenous tumor markers in a large field of view (LFOV) could increase precision in oncological diagnosis and surgical treatment. In this study, the anti-high mobility group B1 (HMGB1) labeled with Alexa fluorophore (647 nm) was used as the target molecule. This is the proof-of-concept of HSI’s ability to quantify antibodies via an in vitro setting. A first test was performed to understand whether the relative absorbance provided by the HSI camera was dependent on volume at a 1:1 concentration. A serial dilution of 1:1, 10, 100, 1000, and 10,000 with phosphatase-buffered saline (PBS) was then used to test the sensitivity of the camera at the minimum and maximum volumes. For the analysis, images at 640 nm were extracted from the hypercubes according to peak signals matching the specificities of the antibody manufacturer. The results showed a positive correlation between relative absorbance and volume (r = 0.9709, p = 0.0013). The correlation between concentration and relative absorbance at min (1 µL) and max (20 µL) volume showed r = 0.9925, p < 0.0001, and r = 0.9992, p < 0.0001, respectively. These results demonstrate the HSI potential in quantifying HMGB1, hence deserving further studies in ex vivo and in vivo settings.
Collapse
|
20
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
21
|
Stibbe JA, Hoogland P, Achterberg FB, Holman DR, Sojwal RS, Burggraaf J, Vahrmeijer AL, Nagengast WB, Rogalla S. Highlighting the Undetectable - Fluorescence Molecular Imaging in Gastrointestinal Endoscopy. Mol Imaging Biol 2023; 25:18-35. [PMID: 35764908 PMCID: PMC9971088 DOI: 10.1007/s11307-022-01741-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Flexible high-definition white-light endoscopy is the current gold standard in screening for cancer and its precursor lesions in the gastrointestinal tract. However, miss rates are high, especially in populations at high risk for developing gastrointestinal cancer (e.g., inflammatory bowel disease, Lynch syndrome, or Barrett's esophagus) where lesions tend to be flat and subtle. Fluorescence molecular endoscopy (FME) enables intraluminal visualization of (pre)malignant lesions based on specific biomolecular features rather than morphology by using fluorescently labeled molecular probes that bind to specific molecular targets. This strategy has the potential to serve as a valuable tool for the clinician to improve endoscopic lesion detection and real-time clinical decision-making. This narrative review presents an overview of recent advances in FME, focusing on probe development, techniques, and clinical evidence. Future perspectives will also be addressed, such as the use of FME in patient stratification for targeted therapies and potential alliances with artificial intelligence. KEY MESSAGES: • Fluorescence molecular endoscopy is a relatively new technology that enables safe and real-time endoscopic lesion visualization based on specific molecular features rather than on morphology, thereby adding a layer of information to endoscopy, like in PET-CT imaging. • Recently the transition from preclinical to clinical studies has been made, with promising results regarding enhancing detection of flat and subtle lesions in the colon and esophagus. However, clinical evidence needs to be strengthened by larger patient studies with stratified study designs. • In the future fluorescence molecular endoscopy could serve as a valuable tool in clinical workflows to improve detection in high-risk populations like patients with Barrett's esophagus, Lynch syndrome, and inflammatory bowel syndrome, where flat and subtle lesions tend to be malignant up to five times more often. • Fluorescence molecular endoscopy has the potential to assess therapy responsiveness in vivo for targeted therapies, thereby playing a role in personalizing medicine. • To further reduce high miss rates due to human and technical factors, joint application of artificial intelligence and fluorescence molecular endoscopy are likely to generate added value.
Collapse
Affiliation(s)
- Judith A Stibbe
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Petra Hoogland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Friso B Achterberg
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Derek R Holman
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raoul S Sojwal
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Stephan Rogalla
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Young EJ, Rajandran A, Philpott HL, Sathananthan D, Hoile SF, Singh R. Mucosal imaging in colon polyps: New advances and what the future may hold. World J Gastroenterol 2022; 28:6632-6661. [PMID: 36620337 PMCID: PMC9813932 DOI: 10.3748/wjg.v28.i47.6632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/19/2022] Open
Abstract
An expanding range of advanced mucosal imaging technologies have been developed with the goal of improving the detection and characterization of lesions in the gastrointestinal tract. Many technologies have targeted colorectal neoplasia given the potential for intervention prior to the development of invasive cancer in the setting of widespread surveillance programs. Improvement in adenoma detection reduces miss rates and prevents interval cancer development. Advanced imaging technologies aim to enhance detection without significantly increasing procedural time. Accurate polyp characterisation guides resection techniques for larger polyps, as well as providing the platform for the “resect and discard” and “do not resect” strategies for small and diminutive polyps. This review aims to collate and summarise the evidence regarding these technologies to guide colonoscopic practice in both interventional and non-interventional endoscopists.
Collapse
Affiliation(s)
- Edward John Young
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Arvinf Rajandran
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
| | - Hamish Lachlan Philpott
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Dharshan Sathananthan
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Sophie Fenella Hoile
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Rajvinder Singh
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| |
Collapse
|
23
|
Refaat A, Yap ML, Pietersz G, Walsh APG, Zeller J, Del Rosal B, Wang X, Peter K. In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications. J Nanobiotechnology 2022; 20:450. [PMID: 36243718 PMCID: PMC9571426 DOI: 10.1186/s12951-022-01648-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in diagnostic imaging have provided unprecedented opportunities to detect diseases at early stages and with high reliability. Diagnostic imaging is also crucial to monitoring the progress or remission of disease and thus is often the central basis of therapeutic decision-making. Currently, several diagnostic imaging modalities (computed tomography, magnetic resonance imaging, and positron emission tomography, among others) are routinely used in clinics and present their own advantages and limitations. In vivo near-infrared (NIR) fluorescence imaging has recently emerged as an attractive imaging modality combining low cost, high sensitivity, and relative safety. As a preclinical tool, it can be used to investigate disease mechanisms and for testing novel diagnostics and therapeutics prior to their clinical use. However, the limited depth of tissue penetration is a major challenge to efficient clinical use. Therefore, the current clinical use of fluorescence imaging is limited to a few applications such as image-guided surgery on tumors and retinal angiography, using FDA-approved dyes. Progress in fluorophore development and NIR imaging technologies holds promise to extend their clinical application to oncology, cardiovascular diseases, plastic surgery, and brain imaging, among others. Nanotechnology is expected to revolutionize diagnostic in vivo fluorescence imaging through targeted delivery of NIR fluorescent probes using antibody conjugation. In this review, we discuss the latest advances in in vivo fluorescence imaging technologies, NIR fluorescent probes, and current and future clinical applications.
Collapse
Affiliation(s)
- Ahmed Refaat
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia.,Pharmaceutics Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - May Lin Yap
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Aidan Patrick Garing Walsh
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | | | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Uno K, Koike T, Hatta W, Saito M, Tanabe M, Masamune A. Development of Advanced Imaging and Molecular Imaging for Barrett's Neoplasia. Diagnostics (Basel) 2022; 12:2437. [PMID: 36292126 PMCID: PMC9600913 DOI: 10.3390/diagnostics12102437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Barrett esophagus (BE) is a precursor to a life-threatening esophageal adenocarcinoma (EAC). Surveillance endoscopy with random biopsies is recommended for early intervention against EAC, but its adherence in the clinical setting is poor. Dysplastic lesions with flat architecture and patchy distribution in BE are hardly detected by high-resolution endoscopy, and the surveillance protocol entails issues of time and labor and suboptimal interobserver agreement for diagnosing dysplasia. Therefore, the development of advanced imaging technologies is necessary for Barrett's surveillance. Recently, non-endoscopic or endoscopic technologies, such as cytosponge, endocytoscopy, confocal laser endomicroscopy, autofluorescence imaging, and optical coherence tomography/volumetric laser endomicroscopy, were developed, but most of them are not clinically available due to the limited view field, expense of the equipment, and significant time for the learning curve. Another strategy is focused on the development of molecular biomarkers, which are also not ready to use. However, a combination of advanced imaging techniques together with specific biomarkers is expected to identify morphological abnormalities and biological disorders at an early stage in the surveillance. Here, we review recent developments in advanced imaging and molecular imaging for Barrett's neoplasia. Further developments in multiple biomarker panels specific for Barrett's HGD/EAC include wide-field imaging systems for targeting 'red flags', a high-resolution imaging system for optical biopsy, and a computer-aided diagnosis system with artificial intelligence, all of which enable a real-time and accurate diagnosis of dysplastic BE in Barrett's surveillance and provide information for precision medicine.
Collapse
Affiliation(s)
- Kaname Uno
- Division of Gastroenterology, Tohoku University Hospital, Sendai 981-8574, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Chen J, Jiang Y, Chang TS, Rubenstein JH, Kwon RS, Wamsteker EJ, Prabhu A, Zhao L, Appelman HD, Owens SR, Beer DG, Turgeon DK, Seibel EJ, Wang TD. Detection of Barrett's neoplasia with a near-infrared fluorescent heterodimeric peptide. Endoscopy 2022; 54:1198-1204. [PMID: 35299273 PMCID: PMC9718637 DOI: 10.1055/a-1801-2406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a molecularly heterogeneous disease with poor prognosis that is rising rapidly in incidence. We aimed to demonstrate specific binding by a peptide heterodimer to Barrett's neoplasia in human subjects. METHODS Peptide monomers specific for EGFR and ErbB2 were arranged in a heterodimer configuration and labeled with IRDye800. This near-infrared (NIR) contrast agent was topically administered to patients with Barrett's esophagus (BE) undergoing either endoscopic therapy or surveillance. Fluorescence images were collected using a flexible fiber accessory passed through the instrument channel of an upper gastrointestinal endoscope. Fluorescence images were collected from 31 BE patients. A deep learning model was used to segment the target (T) and background (B) regions. RESULTS The mean target-to-background (T/B) ratio was significantly greater for high grade dysplasia (HGD) and EAC versus BE, low grade dysplasia (LGD), and squamous epithelium. At a T/B ratio of 1.5, sensitivity and specificity of 94.1 % and 92.6 %, respectively, were achieved for the detection of Barrett's neoplasia with an area under the curve of 0.95. No adverse events attributed to the heterodimer were found. EGFR and ErbB2 expression were validated in the resected specimens. CONCLUSIONS This "first-in-human" clinical study demonstrates the feasibility of detection of early Barrett's neoplasia using a NIR-labeled peptide heterodimer.
Collapse
Affiliation(s)
- Jing Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Jiang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Tse-Shao Chang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel H. Rubenstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard S. Kwon
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erik J. Wamsteker
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anoop Prabhu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry D. Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott R. Owens
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - D. Kim Turgeon
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric J. Seibel
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022; 49:2364-2376. [PMID: 35102436 PMCID: PMC9165240 DOI: 10.1007/s00259-022-05705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imaging using exogenous tumour-specific fluorescent agents has shown particular benefit in improving complete resection of tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tissue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.
Collapse
Affiliation(s)
- L J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - T C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - P B A A Van Driel
- Department of Orthopedic Surgery, Isala Hospital, Zwolle, Netherlands
| | - J A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - I P Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - S Koljenović
- Department of Pathology, Antwerp University Hospital/Antwerp University, Antwerp, Belgium
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - G J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
27
|
Zhao X, Gabriëls RY, Hooghiemstra WTR, Koller M, Meersma GJ, Buist-Homan M, Visser L, Robinson DJ, Tenditnaya A, Gorpas D, Ntziachristos V, Karrenbeld A, Kats-Ugurlu G, Fehrmann RSN, Nagengast WB. Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to Detect Dysplasia in Barrett's Esophagus. Cancers (Basel) 2022; 14:cancers14102462. [PMID: 35626066 PMCID: PMC9139936 DOI: 10.3390/cancers14102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Barrett’s esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ruben Y. Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gert Jan Meersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Dominic J. Robinson
- Center for Optic Diagnostics and Therapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Anna Tenditnaya
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Arend Karrenbeld
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Rudolf S. N. Fehrmann
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Correspondence: ; Tel.: +31-(50)-361-6161
| |
Collapse
|
28
|
Josserand V, Bernard C, Michy T, Guidetti M, Vollaire J, Coll JL, Hurbin A. Tumor-Specific Imaging with Angiostamp800 or Bevacizumab-IRDye 800CW Improves Fluorescence-Guided Surgery over Indocyanine Green in Peritoneal Carcinomatosis. Biomedicines 2022; 10:biomedicines10051059. [PMID: 35625796 PMCID: PMC9138305 DOI: 10.3390/biomedicines10051059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Complete surgical removal of lesions improves survival of peritoneal carcinomatosis and can be enhanced by intraoperative near-infrared fluorescence imaging. Indocyanine green (ICG) is the only near-infrared fluorescent dye approved for clinical use, but it lacks specificity for tumor cells, highlighting the need for tumor-selective targeting agents. We compared the tumor-specific near-infrared fluorescent probes Bevacizumab-IRDye 800CW and Angiostamp800, which target tumor angiogenesis and cancer cells, to ICG for fluorescence-guided surgery in peritoneal carcinomatosis of ovarian origin. The probes were administered to mice with orthotopic peritoneal carcinomatosis prior to conventional and fluorescence-guided surgery. The influence of neoadjuvant chemotherapy was also assessed. Conventional surgery removed 88.0 ± 1.2% of the total tumor load in mice. Fluorescence-guided surgery allowed the resection of additional nodules, enhancing the total tumor burden resection by 9.8 ± 0.7%, 8.5 ± 0.8%, and 3.9 ± 1.2% with Angiostamp800, Bevacizumab-IRDye 800CW and ICG, respectively. Interestingly, among the resected nodules, 15% were false-positive with ICG, compared to only 1.4% with Angiostamp800 and 3.5% with Bevacizumab-IRDye 800CW. Furthermore, conventional surgery removed only 69.0 ± 3.9% of the total tumor burden after neoadjuvant chemotherapy. Fluorescence-guided surgery with Angiostamp800 and Bevacizumab-IRDye 800CW increased the total tumor burden resection to 88.7 ± 4.3%, whereas ICG did not improve surgery at all. Bevacizumab-IRDye 800CW and Angiostamp800 better detect ovarian tumors and metastases than the clinically used fluorescent tracer ICG, and can help surgeons completely remove tumors, especially after surgery neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Véronique Josserand
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Claire Bernard
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Thierry Michy
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Mélanie Guidetti
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Julien Vollaire
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Amandine Hurbin
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
29
|
Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, Witjes MJH, van Dam GM. Intraoperative imaging in pathology-assisted surgery. Nat Biomed Eng 2022; 6:503-514. [PMID: 34750537 DOI: 10.1038/s41551-021-00808-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The pathological assessment of surgical specimens during surgery can reduce the incidence of positive resection margins, which otherwise can result in additional surgeries or aggressive therapeutic regimens. To improve patient outcomes, intraoperative spectroscopic, fluorescence-based, structural, optoacoustic and radiological imaging techniques are being tested on freshly excised tissue. The specific clinical setting and tumour type largely determine whether endogenous or exogenous contrast is to be detected and whether the tumour specificity of the detected biomarker, image resolution, image-acquisition times or penetration depth are to be prioritized. In this Perspective, we describe current clinical standards for intraoperative tissue analysis and discuss how intraoperative imaging is being implemented. We also discuss potential implementations of intraoperative pathology-assisted surgery for clinical decision-making.
Collapse
Affiliation(s)
- Floris J Voskuil
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Vonk
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Center for Translational Cancer Research, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pieter J van der Zaag
- Phillips Research Laboratories, Eindhoven, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,AxelaRx/TRACER BV, Groningen, The Netherlands.
| |
Collapse
|
30
|
Wang L, Liang M, Xiao Y, Chen J, Mei C, Lin Y, Zhang Y, Li D. NIR-II Navigation with an EGFR-Targeted Probe Improves Imaging Resolution and Sensitivity of Detecting Micrometastases in Esophageal Squamous Cell Carcinoma Xenograft Models. Mol Pharm 2022; 19:3563-3575. [PMID: 35420035 DOI: 10.1021/acs.molpharmaceut.2c00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The survival rate of esophageal squamous carcinoma (ESCC) after surgical resection is estimated to be only 30.3% due to the difficulty in identifying microinfiltration and subtle metastases. In this study, we explored the value of near-infrared fluorescence in the second window (NIR-II) using an epidermal growth factor receptor (EGFR)-targeted probe (cetuximab-IR800) for the intraoperative navigation of ESCC in xenograft mouse models. Immunohistochemical results showed that EGFR was aberrantly expressed in 94.49% (120/127) of ESCC tissues and 90.63% (58/64) of metastatic lymph nodes. Western blot results demonstrated that EGFR protein was highly expressed in ESCC cell lines. Flow cytometry data revealed that cetuximab-IR800 showed a stronger binding specificity in EGFR-positive KYSE-30 cells than in A2780 control cells (P < 0.01). In vivo imaging data showed that the ratio of mean fluorescent intensity (MFI) and tumor to background (TBR) was significantly higher in KYSE-30 subcutaneous tumors with the infusion of cetuximab-IR800 than in those with the infusion of IgG1-IR800 (P < 0.05). Surgical navigation with NIR-II imaging showed that the TBR in orthotopic ESCC was significantly higher than that of NIR in the first window (NIR-I) (2.11 ± 0.46 vs 1.58 ± 0.31, P < 0.05), and NIR-II was more sensitive than NIR-I in detecting subcentimeter metastases (94.87% (37/39) vs 58.97% (23/39), P < 0.001). In conclusion, cetuximab-IR800 with high specificity for ESCC was first used in NIR-II surgical navigation. This probe showed better imaging resolution and higher sensitivity in detecting subtle metastases derived from an orthotopic ESCC model than NIR-I, which indicates that NIR-II has promise in guiding precise surgery for ESCC patients.
Collapse
Affiliation(s)
- Lizhu Wang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yitai Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayao Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
31
|
Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW. Mol Imaging 2022; 2022:9589820. [PMID: 35517713 PMCID: PMC9042373 DOI: 10.1155/2022/9589820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is overexpressed in a variety of human cancers (including squamous cell carcinoma of head and neck, colon cancer, and some breast cancers) and therefore is regarded as an ideal target for cancer therapy or imaging purposes. In the current study, we produced a scFv-based near-infrared probe (called cet.Hum.scFv-IRDye-800CW) and evaluated its ability in recognizing and imaging of EGFR-overexpressing tumors in a mouse model. Like the molecular probe consisting of its parental antibody (cetuximab, an FDA-approved monoclonal antibody) and IRD800CW, cet.Hum.scFv-IRDye-800CW was able to recognize EGFR-overexpressing tumors in mice. cet.Hum.scFv-IRDye-800CW was found to be superior to the cetuximab-based probe in imaging of mouse tumors. The tumor-to-background ratio and blood clearance rate were higher when cet.Hum.scFv-IRDye-800CW was used as an imaging probe.
Collapse
|
32
|
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science 2022; 375:eaay9040. [PMID: 35298272 DOI: 10.1126/science.aay9040] [Citation(s) in RCA: 330] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.
Collapse
Affiliation(s)
| | - Sangeeta Bhatia
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisa M Coussens
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence at the University of Manchester and University College London, University of Manchester, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Sadik Esener
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Peter Kuhn
- USC Michelson Center Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Timothy R Rebbeck
- Division of Population Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
34
|
Marcazzan S, Braz Carvalho MJ, Konrad M, Strangmann J, Tenditnaya A, Baumeister T, Schmid RM, Wester HJ, Ntziachristos V, Gorpas D, Wang TC, Schottelius M, Quante M. CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett's esophagus. EJNMMI Res 2022; 12:2. [PMID: 35006394 PMCID: PMC8748556 DOI: 10.1186/s13550-021-00875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Near-infrared (NIR) fluorescence imaging has been emerging as a promising strategy to overcome the high number of early esophageal adenocarcinomas missed by white light endoscopy and random biopsy collection. We performed a preclinical assessment of fluorescence imaging and endoscopy using a novel CXCR4-targeted fluorescent peptide ligand in the L2-IL1B mouse model of Barrett’s esophagus. Methods Six L2-IL1B mice with advanced stage of disease (12–16 months old) were injected with the CXCR4-targeted, Sulfo-Cy5-labeled peptide (MK007), and ex vivo wide-field imaging of the whole stomach was performed 4 h after injection. Before ex vivo imaging, fluorescence endoscopy was performed in three L2-IL1B mice (12–14 months old) by a novel imaging system with two L2-IL1B mice used as negative controls. Results Ex vivo imaging and endoscopy in L2-IL1B mice showed that the CXCR4-targeted MK007 accumulated mostly in the dysplastic lesions with a mean target-to-background ratio > 2. The detection of the Sulfo-Cy5 signal in dysplastic lesions and its co-localization with CXCR4 stained cells by confocal microscopy further confirmed the imaging results. Conclusions This preliminary preclinical study shows that CXCR4-targeted fluorescence endoscopy using MK007 can detect dysplastic lesions in a mouse model of Barrett’s esophagus. Further investigations are needed to assess its use in the clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00875-7.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany.,Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020, Innsbruck, Austria
| | - Marcos J Braz Carvalho
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Matthias Konrad
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | - Anna Tenditnaya
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Roland M Schmid
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Margret Schottelius
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany.,Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michael Quante
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany. .,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
35
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
36
|
Fang HY, Stangl S, Marcazzan S, Carvalho MJB, Baumeister T, Anand A, Strangmann J, Huspenina JS, Wang TC, Schmid RM, Feith M, Friess H, Ntziachristos V, Multhoff G, Gorpas D, Quante M. Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett's esophagus. Eur J Nucl Med Mol Imaging 2022; 49:2049-2063. [PMID: 34882260 PMCID: PMC9016004 DOI: 10.1007/s00259-021-05582-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/03/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Sabrina Marcazzan
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Marcos J. Braz Carvalho
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | | | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Roland M. Schmid
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Marcus Feith
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Michael Quante
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
37
|
Privitera L, Paraboschi I, Dixit D, Arthurs OJ, Giuliani S. Image-guided surgery and novel intraoperative devices for enhanced visualisation in general and paediatric surgery: a review. Innov Surg Sci 2021; 6:161-172. [PMID: 35937852 PMCID: PMC9294338 DOI: 10.1515/iss-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Fluorescence guided surgery, augmented reality, and intra-operative imaging devices are rapidly pervading the field of surgical interventions, equipping the surgeon with powerful tools capable of enhancing the surgical visualisation of anatomical normal and pathological structures. There is a wide range of possibilities in the adult population to use these novel technologies and devices in the guidance for surgical procedures and minimally invasive surgeries. Their applications and their use have also been increasingly growing in the field of paediatric surgery, where the detailed visualisation of small anatomical structures could reduce procedure time, minimising surgical complications and ultimately improve the outcome of surgery. This review aims to illustrate the mechanisms underlying these innovations and their main applications in the clinical setting.
Collapse
Affiliation(s)
- Laura Privitera
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, London, UK
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, London, UK
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Divyansh Dixit
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Owen J Arthurs
- Department of Clinical Radiology, NHS Foundation Trust, Great Ormond Street Hospital for Children, London, UK
- NIHR GOSH Biomedical Research Centre, NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, London, UK
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Specialist Neonatal and Paediatric Surgery, NHS Foundation Trust, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
38
|
Fluorescence grid analysis for the evaluation of piecemeal surgery in sinonasal inverted papilloma: a proof-of-concept study. Eur J Nucl Med Mol Imaging 2021; 49:1640-1649. [PMID: 34738141 PMCID: PMC8940828 DOI: 10.1007/s00259-021-05567-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Purpose Local recurrence occurs in ~ 19% of sinonasal inverted papilloma (SNIP) surgeries and is strongly associated with incomplete resection. During surgery, it is technically challenging to visualize and resect all SNIP tissue in this anatomically complex area. Proteins that are overexpressed in SNIP, such as vascular endothelial growth factor (VEGF), may serve as a target for fluorescence molecular imaging to guide surgical removal of SNIP. A proof-of-concept study was performed to investigate if the VEGF-targeted near-infrared fluorescent tracer bevacizumab-800CW specifically localizes in SNIP and whether it could be used as a clinical tool to guide SNIP surgery. Methods In five patients diagnosed with SNIP, 10 mg of bevacizumab-800CW was intravenously administered 3 days prior to surgery. Fluorescence molecular imaging was performed in vivo during surgery and ex vivo during the processing of the surgical specimen. Fluorescence signals were correlated with final histopathology and VEGF-A immunohistochemistry. We introduced a fluorescence grid analysis to assess the fluorescence signal in individual tissue fragments, due to the nature of the surgical procedure (i.e., piecemeal resection) allowing the detection of small SNIP residues and location of the tracer ex vivo. Results In all patients, fluorescence signal was detected in vivo during endoscopic SNIP surgery. Using ex vivo fluorescence grid analysis, we were able to correlate bevacizumab-800CW fluorescence of individual tissue fragments with final histopathology. Fluorescence grid analysis showed substantial variability in mean fluorescence intensity (FImean), with SNIP tissue showing a median FImean of 77.54 (IQR 50.47–112.30) compared to 35.99 (IQR 21.48–57.81) in uninvolved tissue (p < 0.0001), although the diagnostic ability was limited with an area under the curve of 0.78. Conclusions A fluorescence grid analysis could serve as a valid method to evaluate fluorescence molecular imaging in piecemeal surgeries. As such, although substantial differences were observed in fluorescence intensities, VEGF-A may not be the ideal target for SNIP surgery. Trial registration NCT03925285. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05567-x.
Collapse
|
39
|
Schouw HM, Huisman LA, Janssen YF, Slart RHJA, Borra RJH, Willemsen ATM, Brouwers AH, van Dijl JM, Dierckx RA, van Dam GM, Szymanski W, Boersma HH, Kruijff S. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur J Nucl Med Mol Imaging 2021; 48:4272-4292. [PMID: 34633509 PMCID: PMC8566445 DOI: 10.1007/s00259-021-05504-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Purpose The aim of this review is to give an overview of the current status of targeted optical fluorescence imaging in the field of oncology, cardiovascular, infectious and inflammatory diseases to further promote clinical translation. Methods A meta-narrative approach was taken to systematically describe the relevant literature. Consecutively, each field was assigned a developmental stage regarding the clinical implementation of optical fluorescence imaging. Results Optical fluorescence imaging is leaning towards clinical implementation in gastrointestinal and head and neck cancers, closely followed by pulmonary, neuro, breast and gynaecological oncology. In cardiovascular and infectious disease, optical imaging is in a less advanced/proof of concept stage. Conclusion Targeted optical fluorescence imaging is rapidly evolving and expanding into the clinic, especially in the field of oncology. However, the imaging modality still has to overcome some major challenges before it can be part of the standard of care in the clinic, such as the provision of pivotal trial data. Intensive multidisciplinary (pre-)clinical joined forces are essential to overcome the delivery of such compelling phase III registration trial data and subsequent regulatory approval and reimbursement hurdles to advance clinical implementation of targeted optical fluorescence imaging as part of standard practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05504-y.
Collapse
Affiliation(s)
- H M Schouw
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - L A Huisman
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Y F Janssen
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - R J H Borra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Radiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - J M van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - R A Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - G M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,AxelaRx/TRACER Europe BV, Groningen, The Netherlands
| | - W Szymanski
- Department of Radiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre of Groningen, Groningen, The Netherlands
| | - S Kruijff
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands. .,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
40
|
Development and Characterisation of Antibody-Based Optical Imaging Probes for Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2021; 14:ph14090922. [PMID: 34577622 PMCID: PMC8468533 DOI: 10.3390/ph14090922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 01/07/2023] Open
Abstract
Monoclonal antibodies are an important addition to the medicinal treatment paradigm for IBD patients. While effective, these agents show a high degree of primary and secondary non-response, and methods to predict response are highly desired. Information on drug distribution at the target level is often lacking. Fluorescent endoscopic imaging using labelled antibody drugs may provide insight regarding drug distribution, target engagement and drug response, but these assessments require stable and functional fluorescently-conjugated probes. Infliximab, vedolizumab, adalimumab and ustekinumab were conjugated to IRDye 800CW, IRDye 680LT and ZW800-1. The resulting 12 tracer candidates were analysed and characterised on SE-HPLC, SDS-PAGE, iso-electric focussing (IEF) and ELISA in order to evaluate their feasibility as candidate clinical tracers for cGMP development. Major differences in the conjugation results could be seen for each conjugated drug. For Infliximab, 2 conjugates (800CW and 680LT) showed formation of aggregates, while conjugates of all drugs with ZW800-1 showed reduced fluorescent brightness, reduced purification yield and formation of fragments. All 6 of these candidates were considered unfeasible. From the remaining 6, ustekinumab-680LT showed reduced binding to IL23, and was therefore considered unfeasible. Out of 12 potential tracer candidates, 5 were considered feasible for further development: vedolizumab-800CW, vedolizumab-680LT, adalimumab-800CW, adalimumab-680LT and ustekinumab-800CW. Infliximab-680LT and ustekinumab-680LT failed to meet the standards for this panel, but may be rendered feasible if tracer production methods were further optimized.
Collapse
|
41
|
Noltes ME, van Dam GM, Nagengast WB, van der Zaag PJ, Slart RHJA, Szymanski W, Kruijff S, Dierckx RAJO. Let's embrace optical imaging: a growing branch on the clinical molecular imaging tree. Eur J Nucl Med Mol Imaging 2021; 48:4120-4128. [PMID: 34463808 DOI: 10.1007/s00259-021-05476-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Milou E Noltes
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gooitzen M van Dam
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,AxelaRx/TRACER B.V, Groningen, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter J van der Zaag
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede, Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, the Netherlands.,Medical Imaging Center, Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Schelto Kruijff
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands. .,Medical Imaging Center, Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
42
|
Zhao X, Huang Q, Koller M, Linssen MD, Hooghiemstra WTR, de Jongh SJ, van Vugt MATM, Fehrmann RSN, Li E, Nagengast WB. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int J Mol Sci 2021; 22:9270. [PMID: 34502178 PMCID: PMC8431213 DOI: 10.3390/ijms22179270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Qingfeng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Matthijs D. Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| |
Collapse
|
43
|
Yang Z, Yang F, Yang M, Qi Y, Jiang M, Xuan J, Liu Y, Tao H, Liu Y, Wang F. Prediction of overall survival in patients with Stage I esophageal cancer: A novel web-based calculator. J Surg Oncol 2021; 124:767-779. [PMID: 34263466 DOI: 10.1002/jso.26594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS In this study, we aimed to develop a convenient web-based calculator to predict the overall survival (OS) of patients with Stage I esophageal cancer (EC). METHODS Data of 1664 patients, between 2004 and 2015, were extracted from the Surveillance, Epidemiology, and End Results database. Least absolute shrinkage and selection operator regression was employed to sift variables; subsequently, Cox proportional hazards regression model was built. We applied the enhanced bootstrap validation to appraise the discrimination and calibration of the model. Clinical benefit was measured using decision curve analysis (DCA). Thereafter, a web-based calculator based on the model, which could be used to predict the 1-, 3-, and 5-year OS rates, was developed. RESULTS Race, age, histologic type, grade, N stage, and therapeutic methods were selected. C-indices of the prediction model in the training and validation groups were 0.726 (95% confidence interval [CI], 0.679-0.773) and 0.724 (95% CI, 0.679-0.769), respectively. Calibration curves showed good agreement between the groups. The DCA demonstrated that the prediction model is clinically useful. CONCLUSIONS The prediction model we developed showed a good performance in calculating the OS rates in patients with Stage I EC. The web-based calculator is available at https://championship.shinyapps.io/dynnomapp/.
Collapse
Affiliation(s)
- Zhuoxin Yang
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fengwu Yang
- Department of Laboratory Medicine, Shandong Guoxin Healthcare Group Zibo Hospital, Zibo, China
| | - Miaofang Yang
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Qi
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Xuan
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Tao
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxiu Liu
- Data and Statistics Unit of Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Wartak A, Kelada AK, Leon Alarcon PA, Bablouzian AL, Ahsen OO, Gregg AL, Wei Y, Bollavaram K, Sheil CJ, Farewell E, VanTol S, Smith R, Grahmann P, Baillargeon AR, Gardecki JA, Tearney GJ. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4308-4323. [PMID: 34457416 PMCID: PMC8367220 DOI: 10.1364/boe.422453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
OCT tethered capsule endomicroscopy (TCE) is an emerging noninvasive diagnostic imaging technology for gastrointestinal (GI) tract disorders. OCT measures tissue reflectivity that provides morphologic image contrast, and thus is incapable of ascertaining molecular information that can be useful for improving diagnostic accuracy. Here, we introduce an extension to OCT TCE that includes a fluorescence (FL) imaging channel for attaining complementary, co-registered molecular contrast. We present the development of an OCT-FL TCE capsule and a portable, plug-and-play OCT-FL imaging system. The technology is validated in phantom experiments and feasibility is demonstrated in a methylene blue (MB)-stained swine esophageal injury model, ex vivo and in vivo.
Collapse
Affiliation(s)
- Andreas Wartak
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Alfred K. Kelada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paola A. Leon Alarcon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ara L. Bablouzian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Osman O. Ahsen
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Abigail L. Gregg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yuxiao Wei
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Keval Bollavaram
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Conor J. Sheil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Edward Farewell
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Schuyler VanTol
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Smith
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Patricia Grahmann
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron R. Baillargeon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
45
|
Chen J, Jiang Y, Chang TS, Joshi B, Zhou J, Rubenstein JH, Wamsteker EJ, Kwon RS, Appelman H, Beer DG, Turgeon DK, Seibel EJ, Wang TD. Multiplexed endoscopic imaging of Barrett's neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut 2021; 70:1010-1013. [PMID: 33028666 PMCID: PMC8108279 DOI: 10.1136/gutjnl-2020-322945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Chen
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Jiang
- Biomedical Engineering, University of Washington, Seattle, WA, USA
| | - Tse-Shao Chang
- Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishnu Joshi
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan Zhou
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Erik J Wamsteker
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard S Kwon
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry Appelman
- Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Beer
- Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Eric J Seibel
- Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas D Wang
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA .,Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Kurbegovic S, Juhl K, Sørensen KK, Leth J, Willemoe GL, Christensen A, Adams Y, Jensen AR, von Buchwald C, Skjøth-Rasmussen J, Ploug M, Jensen KJ, Kjaer A. IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Am J Cancer Res 2021; 11:7159-7174. [PMID: 34158842 PMCID: PMC8210614 DOI: 10.7150/thno.49787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating cancer with basically no curative treatment. Even with aggressive treatment, the median survival is disappointing 14 months. Surgery remains the key treatment and the postoperative survival is determined by the extent of resection. Unfortunately, the invasive growth with irregular infiltrating margins complicates an optimal surgical resection. Precise intraoperative tumor visualization is therefore highly needed and molecular targeted near-infrared (NIR) fluorescence imaging potentially constitutes such a tool. The urokinase-type Plasminogen Activator Receptor (uPAR) is expressed in most solid cancers primarily at the invading front and the adjacent activated peritumoral stroma making it an attractive target for targeted fluorescence imaging. The purpose of this study was to develop and evaluate a new uPAR-targeted optical probe, IRDye800CW-AE344, for fluorescence guided surgery (FGS). Methods: In the present study we characterized the fluorescent probe with regard to binding affinity, optical properties, and plasma stability. Further, in vivo imaging characterization was performed in nude mice with orthotopic human patient derived glioblastoma xenografts, and we performed head-to-head comparison within FGS between our probe and the traditional procedure using 5-ALA. Finally, the blood-brain barrier (BBB) penetration was characterized in a 3D BBB spheroid model. Results: The probe effectively visualized GBM in vivo with a tumor-to-background ratio (TBR) above 4.5 between 1 to 12 h post injection and could be used for FGS of orthotopic human glioblastoma xenografts in mice where it was superior to 5-ALA. The probe showed a favorable safety profile with no evidence of any acute toxicity. Finally, the 3D BBB model showed uptake of the probe into the spheroids indicating that the probe crosses the BBB. Conclusion: IRDye800CW-AE344 is a promising uPAR-targeted optical probe for FGS and a candidate for translation into human use.
Collapse
|
47
|
Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Evaluation of Ac-Lys 0(IRDye800CW)Tyr 3-octreotate as a novel tracer for SSTR 2-targeted molecular fluorescence guided surgery in meningioma. J Neurooncol 2021; 153:211-222. [PMID: 33768405 PMCID: PMC8211583 DOI: 10.1007/s11060-021-03739-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Purpose Meningioma recurrence rates can be reduced by optimizing surgical resection with the use of intraoperative molecular fluorescence guided surgery (MFGS). We evaluated the potential of the fluorescent tracer 800CW-TATE for MFGS using in vitro and in vivo models. It targets somatostatin receptor subtype 2 (SSTR2), which is overexpressed in all meningiomas. Methods Binding affinity of 800CW-TATE was evaluated using [177Lu] Lu-DOTA-Tyr3-octreotate displacement assays. Tumor uptake was determined by injecting 800CW-TATE in (SSTR2-positive) NCI-H69 or (SSTR2-negative) CH-157MN xenograft bearing mice and FMT2500 imaging. SSTR2-specific binding was measured by comparing tumor uptake in NCI-H69 and CH-157MN xenografts, blocking experiments and non-targeted IRDye800CW-carboxylate binding. Tracer distribution was analyzed ex vivo, and the tumor-to-background ratio (TBR) was calculated. SSTR2 expression was determined by immunohistochemistry (IHC). Lastly, 800CW-TATE was incubated on frozen and fresh meningioma specimens and analyzed by microscopy. Results 800CW-TATE binding affinity assays showed an IC50 value of 72 nM. NCI-H69 xenografted mice showed a TBR of 21.1. 800CW-TATE detection was reduced after co-administration of non-fluorescent DOTA-Tyr3-octreotate or administration of IRDye800CW. CH-157MN had no tumor specific tracer staining due to absence of SSTR2 expression, thereby serving as a negative control. The tracer bound specifically to SSTR2-positive meningioma tissues representing all WHO grades. Conclusion 800CW-TATE demonstrated sufficient binding affinity, specific SSTR2-mediated tumor uptake, a favorable biodistribution, and high TBR. These features make this tracer very promising for use in MFGS and could potentially aid in safer and a more complete meningioma resection, especially in high-grade meningiomas or those at complex anatomical localizations. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03739-1.
Collapse
Affiliation(s)
- Bianca M Dijkstra
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marcus C M Stroet
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Fritz Andreae
- piCHEM Forschungs und EntwicklungsGmbH, Raaba-Grambach, Graz, Austria
| | - Sebastiaan E Dulfer
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rob J M Groen
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands.
| |
Collapse
|
48
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
49
|
Liang M, Yang M, Wang F, Wang X, He B, Mei C, He J, Lin Y, Cao Q, Li D, Shan H. Near-infrared fluorescence-guided resection of micrometastases derived from esophageal squamous cell carcinoma using a c-Met-targeted probe in a preclinical xenograft model. J Control Release 2021; 332:171-183. [PMID: 33636245 DOI: 10.1016/j.jconrel.2021.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
The postoperative survival of esophageal squamous cell carcinoma (eSCC) is notably hindered by cancer recurrence due to difficulty in identifying occult metastases. Cellular mesenchymal-epithelial transition factor (c-Met), which is highly expressed in different cancers, including eSCC, has become a target for the development of imaging probes and therapeutic antibodies. In this study, we synthesized an optical probe (SHRmAb-IR800) containing a near-infrared fluorescence (NIRF) dye and c-Met antibody, which may help in NIRF-guided resection of micrometastases derived from eSCC. Cellular uptake of SHRmAb-IR800 was assessed by flow cytometry and confocal microscopy. In vivo accumulation of SHRmAb-IR800 and the potential application of NIRF-guided surgery were evaluated in eSCC xenograft tumor models. c-Met expression in human eSCC samples and lymph node metastases (LNMs) was analyzed via immunohistochemistry (IHC). Cellular accumulation of SHRmAb-IR800 was higher in c-Met-positive EC109 eSCC cells than in c-Met-negative A2780 cells. Infusion of SHRmAb-IR800 produced higher fluorescence intensity and a higher tumor-to-background ratio (TBR) than the control probe in EC109 subcutaneous tumors (P < 0.05). The TBRs of orthotopic EC109 tumors and LNMs were 3.01 ± 0.17 and 2.77 ± 0.56, respectively. The sensitivity and specificity of NIRF-guided resection of metastases derived from orthotopic cancers were 92.00% and 89.74%, respectively. IHC results demonstrated positive staining in 97.64% (124/127) of eSCC samples and 91.67% (55/60) of LNMs. Notably, increased c-Met expression was observed in LNMs compared to normal lymph nodes (P < 0.0001). Taken together, the results of this study indicated that SHRmAb-IR800 facilitated the resection of micrometastases of eSCC in the xenograft tumor model. This c-Met-targeted probe possesses translational potential in NIRF-guided surgery due to the high positive rate of c-Met protein in human eSCCs.
Collapse
Affiliation(s)
- Mingzhu Liang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Xiaojin Wang
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bailiang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Qingdong Cao
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
50
|
Huisman LA, Steinkamp PJ, Hillebrands JL, Zeebregts CJ, Linssen MD, Jorritsma-Smit A, Slart RHJA, van Dam GM, Boersma HH. Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW. Sci Rep 2021; 11:2899. [PMID: 33536498 PMCID: PMC7858611 DOI: 10.1038/s41598-021-82568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Lydian A. Huisman
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Pieter J. Steinkamp
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Clark J. Zeebregts
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs D. Linssen
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annelies Jorritsma-Smit
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.6214.10000 0004 0399 8953Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gooitzen M. van Dam
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrikus H. Boersma
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|