1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Lehrich BM, Delgado ER, Yasaka TM, Liu S, Cao C, Liu Y, Taheri MN, Guan X, Koeppen H, Singh S, Meadows V, Liu JJ, Singh-Varma A, Krutsenko Y, Poddar M, Hitchens TK, Foley LM, Liang B, Rialdi A, Rai RP, Patel P, Riley M, Bell A, Raeman R, Dadali T, Luke JJ, Guccione E, Ebrahimkhani MR, Lujambio A, Chen X, Maier M, Wang Y, Broom W, Tao J, Monga SP. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. Nat Commun 2025; 16:5009. [PMID: 40442146 PMCID: PMC12122713 DOI: 10.1038/s41467-025-60457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in CTNNB1 (encoding for β-catenin), AXIN1/2, or APC, and demonstrate heterogeneous and limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting CTNNB1 (LNP-CTNNB1). Both single-cell and spatial transcriptomics reveal cellular and zonal reprogramming, along with activation of immune regulatory transcription factors IRF2 and POU2F1, re-engaged type I/II interferon signaling, and alterations in both innate and adaptive immunity upon β-catenin suppression with LNP-CTNNB1 at early- and advanced-stage disease. Moreover, ICI enhances response to LNP-CTNNB1 in advanced-stage disease by preventing T cell exhaustion and through formation of lymphoid aggregates (LA). In fact, expression of an LA-like gene signature prognosticates survival for patients receiving atezolizumab plus bevacizumab in the IMbrave150 phase III trial and inversely correlates with CTNNB1-mutatational status in this patient cohort. In conclusion, LNP-CTNNB1 is efficacious as monotherapy and in combination with ICI in CTNNB1-mutated HCCs through impacting tumor cell-intrinsic signaling and remodeling global immune surveillance, providing rationale for clinical investigations.
Collapse
MESH Headings
- beta Catenin/genetics
- beta Catenin/metabolism
- beta Catenin/antagonists & inhibitors
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Animals
- Mice
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Bevacizumab/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- Cell Line, Tumor
- Mutation
- Nanoparticles/chemistry
- Female
- Cellular Reprogramming
Collapse
Affiliation(s)
- Brandon M Lehrich
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Evan R Delgado
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Catherine Cao
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuqing Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad N Taheri
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Hartmut Koeppen
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Sucha Singh
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vik Meadows
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jia-Jun Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anya Singh-Varma
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yekaterina Krutsenko
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lesley M Foley
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Rialdi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi P Rai
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Panari Patel
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madeline Riley
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reben Raeman
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Jason J Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mo R Ebrahimkhani
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | | | - Junyan Tao
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Satdarshan P Monga
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Zhou H, Lao M, Liang Z, Zhao H, Wang Y, Huang Q, Ou C. Identification of M0 macrophage associated lipid metabolism genes for prognostic and immunotherapeutic response prediction in hepatocellular carcinoma. Discov Oncol 2025; 16:781. [PMID: 40377731 DOI: 10.1007/s12672-025-02620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 05/08/2025] [Indexed: 05/18/2025] Open
Abstract
PURPOSE Liver cancer prognosis is associated with M0 macrophages and lipid metabolism reprogramming; however, the prognostic role of M0 macrophage-related lipid metabolism genes in hepatocellular carcinoma (HCC) remains unclear. METHODS We identified 153 lipid metabolism genes associated with M0 macrophage infiltration in HCC from The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB). Prognostic genes were selected, and a model was constructed using least absolute shrinkage and selection operator (LASSO) and Cox regression analyses. The model was validated using the International Cancer Genome Consortium (ICGC) database. We assessed the expression levels of prognostic genes by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS A prognostic model was developed based on five characteristic genes. Receiver operating characteristic curve analysis demonstrated that the model had good accuracy, with area under the curve values of 0.796, 0.732, and 0.728 for predicting survival at 1, 3, and 5 years, respectively. The high-risk group exhibited increased sensitivity to common chemotherapy drugs, including sorafenib, dasatinib, and 5-fluorouracil, compared with the low-risk group (P < 0.05). Additionally, the high-risk group had significantly more infiltrating M0 macrophages, resting dendritic cells, follicular helper T cells, and regulatory T cells than did the low-risk group (P < 0.05). The qRT‒PCR results confirmed the upregulation of these five characteristic genes in HCC tissues. CONCLUSIONS M0 macrophage-associated lipid metabolism genes may serve as biomarkers for the prognosis of patients with HCC and as targets for immunotherapy.
Collapse
Affiliation(s)
- Huanjie Zhou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Ming Lao
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Zhengui Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Huiliu Zhao
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Ying Wang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Qiongqing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Chao Ou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
4
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
5
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
6
|
Lin P, Qin Q, Gan XY, Pang JS, Wen R, He Y, Yang H. Integrating single-cell and bulk RNA sequencing data to characterize the heterogeneity of glycan-lipid metabolism polarization in hepatocellular carcinoma. J Transl Med 2025; 23:358. [PMID: 40121455 PMCID: PMC11929990 DOI: 10.1186/s12967-025-06347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is high heterogeneity and remains an unmet medical challenge, but their metabolic heterogeneity has not been fully uncovered and required clinical applicable translational strategies. METHODS By analyzing the RNA sequencing data in the in-house cohort and public HCC cohorts, we identified a metabolic subtype of HCC associated with multi-omics features and prognosis. Multi-omics alterations and clinicopathological information between different subtypes were analyzed. Gene signature, radiomics, contrast-enhanced ultrasound (CEUS), serum biomarkers were tested as potential surrogate methods for high throughput technology-based subtyping. Single-cell RNA sequencing analyses were employed to evaluate the immune characteristics changes between subtypes. RESULTS By utilizing metabolic-related pathways, we identified two heterogeneous metabolic HCC subtypes, glycan-HCC and lipid-HCC, with distinct multi-omics features and prognosis. Kaplan-Meier and restricted mean survival time analyses revealed worse overall survival in glycan-HCCs. And glycan-HCCs were characterized with high genomic instability, proliferation-related pathways activation and exhausted immune microenvironment. Furthermore, we developed gene signatures, radiomics, CEUS and serum biomarkers for subtypes determination, which showed substantial agreement with high-throughput-based classification. Single-cell RNA-seq showed glycan-HCCs were associated with multifaceted immune distortion, including exhaustion of T cells and enriched SPP1 + macrophages. CONCLUSION Collectively, our analysis demonstrated the metabolic heterogeneity of HCCs and enabled the development of clinical translation strategies, thus promoting understanding and clinical applications about HCC metabolism heterogeneity.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Qiong Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiang-Yu Gan
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Shu Pang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Xu M, Xie P, Liu S, Gao X, Yang S, Hu Z, Zhao Y, Yi Y, Dong Q, Bruns C, Kong X, Hung MC, Ren N, Zhou C. LCAT deficiency promotes hepatocellular carcinoma progression and lenvatinib resistance by promoting triglyceride catabolism and fatty acid oxidation. Cancer Lett 2025; 612:217469. [PMID: 39842501 DOI: 10.1016/j.canlet.2025.217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Lecithin cholesterol acyltransferase (LCAT), a crucial enzyme in lipid metabolism, plays important yet poorly understood roles in tumours, especially in hepatocellular carcinoma (HCC). In this study, our investigation revealed that LCAT is a key downregulated metabolic gene and an independent risk factor for poor prognosis in patients with HCC. Functional experiments showed that LCAT inhibited HCC cell proliferation, migration and invasion. Mechanistically, LCAT interacts with caveolin-1 (CAV1) to promote the binding of CAV1 to PRKACA and inhibit its phosphorylation, thereby inhibiting triglyceride (TAG) catabolism. On the other hand, LCAT inhibits fatty acid oxidation (FAO) by interacting with CPT1A to promote its ubiquitination and degradation. These events result in an inadequate supply of raw materials and energy and inhibit the malignant behaviours of HCC cells. In addition, LCAT is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients, and the inhibition of FAO can increase lenvatinib sensitivity in patients with LCATlow HCC. This study revealed that LCAT plays a critical role in the regulation of lipid metabolic reprogramming and is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shiguang Yang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
8
|
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y, Li Y. Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol 2025; 16:1494788. [PMID: 40028341 PMCID: PMC11868052 DOI: 10.3389/fimmu.2025.1494788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghui Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiting Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, TongjiShanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
10
|
Chen X, Zhang YWQ, Ren H, Dai C, Zhang M, Li X, Xu K, Li J, Ju Y, Pan X, Xia P, Ma W, He W, Wu T, Yuan Y. RNF5 exacerbates steatotic HCC by enhancing fatty acid oxidation via the improvement of CPT1A stability. Cancer Lett 2024:217415. [PMID: 39734009 DOI: 10.1016/j.canlet.2024.217415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is expected to become the leading risk factor for liver cancer, surpassing viral hepatitis. Unlike viral hepatitis-related hepatocellular carcinoma (HCC), the role of excessive nutrient supply in steatotic HCC is not well understood, hindering effective prevention and treatment strategies. Therefore, it is crucial to identify key molecules in the pathogenesis of steatotic HCC, investigate changes in metabolic reprogramming due to excessive fatty acid (FA) supply, understand its molecular mechanisms, and find potential therapeutic targets. Trans-species transcriptome analysis identified Ring Finger Protein 5 (RNF5) as a critical regulator of steatotic HCC. RNF5 upregulation is associated with poor prognosis in steatotic HCC compared to canonical HCC. In vitro and in vivo studies showed that RNF5 exacerbates HCC in the presence of additional FA supply. Lipidomics and transcriptome analyses revealed that RNF5 significantly increases carnitine palmitoyltransferase 1A (CPT1A) mRNA levels and is positively correlated with fatty acid oxidation (FAO). Protein interaction analysis demonstrated that RNF5 promotes K63-type ubiquitination of insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), enhancing CPT1A mRNA stabilization through m6A modification. Additionally, peroxisome proliferator-activated receptor gamma (PPARγ) was found to activate RNF5 expression specifically in HCC cells. Mechanistically, excessive exogenous FAs reorganize FA metabolism in HCC cells, worsening steatotic HCC via the PPARγ-RNF5-IGF2BP1-CPT1A axis. This study highlights a distinct FA metabolism pattern in steatotic HCC, providing valuable insights for potential therapeutic targets.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Hui Ren
- The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Xiaomian Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Jinghua Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Yi Ju
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China; Department of Chemistry, The University of Chicago | Physical Sciences Division
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China
| | - Wenzhi He
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China.
| | - Tiangen Wu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China; Taikang Center for Life and Medical Sciences of Wuhan University.
| |
Collapse
|
11
|
Lehrich BM, Delgado ER, Yasaka TM, Liu S, Cao C, Liu Y, Taheri M, Guan X, Koeppen H, Singh S, Liu JJ, Singh-Varma A, Krutsenko Y, Poddar M, Hitchens TK, Foley LM, Liang B, Rialdi A, Rai RP, Patel P, Riley M, Bell A, Raeman R, Dadali T, Luke JJ, Guccione E, Ebrahimkhani MR, Lujambio A, Chen X, Maier M, Wang Y, Broom W, Tao J, Monga SP. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. RESEARCH SQUARE 2024:rs.3.rs-5494074. [PMID: 39711542 PMCID: PMC11661417 DOI: 10.21203/rs.3.rs-5494074/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in CTNNB1 (encoding for β-catenin), AXIN1/2, or APC, and demonstrate limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting CTNNB1 (LNP-CTNNB1). Both single-cell and spatial transcriptomics revealed cellular and zonal reprogramming of CTNNB1-mutated tumors, along with activation of immune regulatory transcription factors IRF2 and POU2F1, re-engaged type I/II interferon signaling, and alterations in both innate and adaptive immune responses upon β-catenin suppression with LNP-CTNNB1. Moreover, LNP-CTNNB1 synergized with ICI in advanced-stage disease through orchestrating enhanced recruitment of cytotoxic T cell aggregates. Lastly, CTNNB1-mutated patients treated with atezolizumab plus bevacizumab combination had decreased presence of lymphoid aggregates, which were prognostic for response and survival. In conclusion, LNP-CTNNB1 is efficacious as monotherapy and in combination with ICI in CTNNB1-mutated HCCs through impacting tumor cell intrinsic signaling and remodeling global immune surveillance, providing rationale for clinical investigations.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Taheri
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Hartmut Koeppen
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jia-Jun Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anya Singh-Varma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yekaterina Krutsenko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Rialdi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ravi P. Rai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Panari Patel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madeline Riley
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reben Raeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jason J. Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA
| | - Ernesto Guccione
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mo R. Ebrahimkhani
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | | | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
13
|
Liu W, Huang Y, Xu Y, Gao X, Zhao Y, Fan S, Geng Y, Zhu S. The combined signatures of programmed cell death and immune landscape provide a prognostic and therapeutic biomarker in the hepatocellular carcinoma. Front Chem 2024; 12:1484310. [PMID: 39600313 PMCID: PMC11591233 DOI: 10.3389/fchem.2024.1484310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fourth most common cause of mortality globally among all cancer types. Programmed cell death (PCD) is a crucial biological mechanism governing cancer progression, tumor expansion, and metastatic dissemination. Furthermore, the tumor microenvironment (TME) is critical in influencing overall survival (OS) and immune responses to immunotherapeutic interventions. From a multi-omics perspective, the combination of PCD and TME could help to predict the survival of HCC patient survival and immunotherapy response. Our study analyzed variations in the PCD- and TME-classifier used in the classification of HCC patients into two subgroups: PCD high-TME low and PCD low-TME high. In the following step, we compared the tumor somatic mutation (TMB), immunotherapy response, and functional annotation of both groups of patients. Lastly, Western Blot (WB) were conducted. The immunohistochemistry (IHC) was performed on the Human Protein Atlas (HPA). In the PCD-TME classifier, 23 PCD-related genes and three immune cell types were identified. Patients' prognoses and responses to therapy could be accurately predicted using this model. The findings of this study provide a new instrument for the clinical management of HCC patients, and they contribute to the development of accurate treatment strategies for these patients.
Collapse
Affiliation(s)
- Wanghu Liu
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xuanji Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Yifan Zhao
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Simin Fan
- Department of Nursing, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanzhi Geng
- Medicine School of Nantong University, Nantong, China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
14
|
Yu L, Qian J, Xue X, Pang M, Wang X, Li X, Tian M, Lu C, Xiao C, Liu Y. Application of galactosylated albumin for targeted delivery of triptolide to suppress hepatocellular carcinoma progression through inhibiting de novo lipogenesis. Biomed Pharmacother 2024; 179:117432. [PMID: 39255735 DOI: 10.1016/j.biopha.2024.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains the fourth leading cause of cancer-associated death globally with a lack of efficient therapy. The pathogenesis of HCC is a complex and multistep process, highly reliant on de novo lipogenesis, from which tumor cells can incorporate fatty acids to satisfy the necessary energy demands of rapid proliferation and provide survival advantages. Triptolide (TP) is a bioactive ingredient exhibiting potent abilities of anti-proliferation and lipid metabolism regulation, but its clinical application is constrained because of its toxicity and non-specific distribution. The present study has developed galactosylated bovine serum albumin nanoparticles loaded with TP (Gal-BSA-TP NPs) to alleviate systemic toxicity and increase tumor-targeting and antitumor efficacy. Furthermore, Gal-BSA-TP NPs could inhibit de novo lipogenesis via the p53-SREBP1C-FASN pathway to deprive the fuel supply of HCC, offering a specific strategy for HCC treatment. In general, this study provided a biocompatible delivery platform for targeted therapy for HCC from the perspective of de novo lipogenesis.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
15
|
Jin Z, Wang X, Zhang X, Cheng S, Liu Y. Identification of two heterogeneous subtypes of hepatocellular carcinoma with distinct pathway activities and clinical outcomes based on gene set variation analysis. Front Genet 2024; 15:1441189. [PMID: 39323867 PMCID: PMC11423295 DOI: 10.3389/fgene.2024.1441189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background High heterogeneity is an essential feature of malignant tumors. This study aims to reveal the drivers of hepatocellular carcinoma heterogeneity for prognostic stratification and to guide individualized treatment. Methods Omics data and clinical data for two HCC cohorts were derived from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Atlas (ICGC), respectively. CNV data and methylation data were downloaded from the GSCA database. GSVA was used to estimate the transcriptional activity of KEGG pathways, and consensus clustering was used to categorize the HCC samples. The pRRophetic package was used to predict the sensitivity of samples to anticancer drugs. TIMER, MCPcounter, quanTIseq, and TIDE algorithms were used to assess the components of TME. LASSO and COX analyses were used to establish a prognostic gene signature. The biological role played by genes in HCC cells was confirmed by in vitro experiments. Results We classified HCC tissues into two categories based on the activity of prognostic pathways. Among them, the transcriptional profile of cluster A HCC is similar to that of normal tissue, dominated by cancer-suppressive metabolic pathways, and has a better prognosis. In contrast, cluster B HCC is dominated by high proliferative activity and has significant genetic heterogeneity. Meanwhile, cluster B HCC is often poorly differentiated, has a high rate of serum AFP positivity, is prone to microvascular invasion, and has shorter overall survival. In addition, we found that mutations, copy number variations, and aberrant methylation were also crucial drivers of the differences in heterogeneity between the two HCC subtypes. Meanwhile, the TME of the two HCC subtypes is also significantly different, which offers the possibility of precision immunotherapy for HCC patients. Finally, based on the prognostic value of molecular subtypes, we developed a gene signature that could accurately predict patients' OS. The riskscore quantified by the signature could evaluate the heterogeneity of HCC and guide clinical treatment. Finally, we confirmed through in vitro experiments that RFPL4B could promote the progression of Huh7 cells. Conclusion The molecular subtypes we identified effectively exposed the heterogeneity of HCC, which is important for discovering new effective therapeutic targets.
Collapse
Affiliation(s)
- Zhipeng Jin
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Siqi Cheng
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
16
|
VanSant-Webb C, Low HK, Kuramoto J, Stanley CE, Qiang H, Su AY, Ross AN, Cooper CG, Cox JE, Summers SA, Evason KJ, Ducker GS. Phospholipid isotope tracing suggests β-catenin-driven suppression of phosphatidylcholine metabolism in hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159514. [PMID: 38795827 PMCID: PMC11864496 DOI: 10.1016/j.bbalip.2024.159514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Activating mutations in the CTNNB1 gene encoding β-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). Profound alterations in lipid metabolism, including increases in fatty acid oxidation and transformation of the phospholipidome, occur in HCC with CTNNB1 mutations, but it is unclear what mechanisms give rise to these changes. We employed untargeted lipidomics and targeted isotope tracing to measure phospholipid synthesis activity in an inducible human liver cell line expressing mutant β-catenin, as well as in transgenic zebrafish with activated β-catenin-driven HCC. In both models, activated β-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid isotope tracing analysis in human cells revealed a reduction in phosphatidylcholine (PC) production rates as assayed by choline incorporation. We developed lipid isotope tracing analysis for zebrafish tumors and observed reductions in phosphatidylcholine synthesis by both the CDP-choline and PEMT pathways. The observed changes in the β-catenin-driven HCC phospholipidome suggest that zebrafish can recapitulate conserved features of HCC lipid metabolism and may serve as a model for identifying future HCC-specific lipid metabolic targets.
Collapse
Affiliation(s)
- Chad VanSant-Webb
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Hayden K Low
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Junko Kuramoto
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Claire E Stanley
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hantao Qiang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Audrey Y Su
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexis N Ross
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Chad G Cooper
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Kimberley J Evason
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Gregory S Ducker
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
18
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
19
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
20
|
Li Y, Fang Y, Li D, Wu J, Huang Z, Liao X, Liu X, Wei C, Huang Z. Constructing a prognostic model for hepatocellular carcinoma based on bioinformatics analysis of inflammation-related genes. Front Med (Lausanne) 2024; 11:1420353. [PMID: 39055701 PMCID: PMC11269197 DOI: 10.3389/fmed.2024.1420353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background This study aims to screen inflammation-related genes closely associated with the prognosis of hepatocellular carcinoma (HCC) to accurately forecast the prognosis of HCC patients. Methods Gene expression matrices and clinical information for liver cancer samples were obtained from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An intersection of differentially expressed genes of HCC and normal and GeneCards yielded inflammation-related genes associated with HCC. Cox regression and the minor absolute shrinkage and selection operator (LASSO) regression analysis to filter genes associated with HCC prognosis. The prognostic value of the model was confirmed by drawing Kaplan-Meier and ROC curves. Select differentially expressed genes between the high-risk and low-risk groups and perform GO and KEGG pathways analyses. CIBERSORT analysis was conducted to assess associations of risk models with immune cells and verified using real-time qPCR. Results A total of six hub genes (C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1) were selected using multivariate Cox regression to construct a prognostic model. The validation evaluation of the prognostic model showed that it has an excellent ability to predict prognosis. A line plot was drawn to indicate the HCC patients' survival, and the calibration curve revealed satisfactory predictability. Among the six hub genes, C3 and DNASE1L3 are relatively low expressed in HCCLM3 and 97H liver cancer cell lines, while CTNNB1, CYBC1, IRAK1, and SERPINE1 are relatively overexpressed in liver cancer cell lines. Conclusion One new inflammatory factor-associated prognostic model was constructed in this study. The risk score can be an independent predictor for judging the prognosis of HCC patients' survival.
Collapse
Affiliation(s)
- Yinglian Li
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Fang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - DongLi Li
- Radiology Department, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Jiangtao Wu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zichong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xueyin Liao
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Liu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Chunxiao Wei
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Meroni M, Longo M, Dongiovanni P. Cardiometabolic risk factors in MASLD patients with HCC: the other side of the coin. Front Endocrinol (Lausanne) 2024; 15:1411706. [PMID: 38846491 PMCID: PMC11153718 DOI: 10.3389/fendo.2024.1411706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes the commonest cause of chronic liver disorder worldwide, whereby affecting around one third of the global population. This clinical condition may evolve into Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations may be crucial in influencing the risk of HCC and modifying its prognosis. However, the causative association between HCC onset and the presence of metabolic comorbidities is not completely clarified. Therefore, the present review aimed to summarize the main literature findings that correlate the presence of inherited or acquired hyperlipidemia and metabolic risk factors with the increased predisposition towards liver cancer in MASLD patients. Here, we gathered the evidence underlining the relationship between circulating/hepatic lipids, cardiovascular events, metabolic comorbidities and hepatocarcinogenesis. In addition, we reported previous studies supporting the impact of triglyceride and/or cholesterol accumulation in generating aberrancies in the intracellular membranes of organelles, oxidative stress, ATP depletion and hepatocyte degeneration, influencing the risk of HCC and its response to therapeutic approaches. Finally, our pursuit was to emphasize the link between HCC and the presence of cardiometabolic abnormalities in our large cohort of histologically-characterized patients affected by MASLD (n=1538), of whom 86 had MASLD-HCC by including unpublished data.
Collapse
|
22
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
23
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, Yuan H, Xing T, Zhang C, Tan HY, Feng Y, Wang N. Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer 2024; 23:74. [PMID: 38582885 PMCID: PMC10998324 DOI: 10.1186/s12943-024-01988-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND AIMS Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tingyuan Xing
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor-Yue Tan
- Centre for Chinese Medicine New Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
25
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
26
|
Wu K, Lin F. Lipid Metabolism as a Potential Target of Liver Cancer. J Hepatocell Carcinoma 2024; 11:327-346. [PMID: 38375401 PMCID: PMC10875169 DOI: 10.2147/jhc.s450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a severe malignant tumor with a profound impact on overall health, often accompanied by an unfavorable prognosis. Despite some advancements in the diagnosis and treatment of this disease, improving the prognosis of HCC remains a formidable challenge. It is noteworthy that lipid metabolism plays a pivotal role in the onset, development, and progression of tumor cells. Existing research indicates the potential application of targeting lipid metabolism in the treatment of HCC. This review aims to thoroughly explore the alterations in lipid metabolism in HCC, offering a detailed account of the potential advantages associated with innovative therapeutic strategies targeting lipid metabolism. Targeting lipid metabolism holds promise for potentially enhancing the prognosis of HCC.
Collapse
Affiliation(s)
- Kangze Wu
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Feizhuan Lin
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
27
|
Li B, Li Y, Zhou H, Xu Y, Cao Y, Cheng C, Peng J, Li H, Zhang L, Su K, Xu Z, Hu Y, Lu J, Lu Y, Qian L, Wang Y, Zhang Y, Liu Q, Xie Y, Guo S, Mehal WZ, Yu D. Multiomics identifies metabolic subtypes based on fatty acid degradation allocating personalized treatment in hepatocellular carcinoma. Hepatology 2024; 79:289-306. [PMID: 37540187 PMCID: PMC10789383 DOI: 10.1097/hep.0000000000000553] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.
Collapse
Affiliation(s)
- Binghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yunzheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huajun Zhou
- Department of Data Science & Bioinformatics, Crown Bioscience Inc., Suzhou, Jiangsu, China
| | - Yanchao Xu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Yajuan Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunxiao Cheng
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Laizhu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ke Su
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Hu
- Biobank of Nanjing Drum Tower Hospital, Department of Pathology, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liyuan Qian
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sheng Guo
- Department of Data Science & Bioinformatics, Crown Bioscience Inc., Suzhou, Jiangsu, China
| | - Wajahat Z. Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
29
|
Liu W, Wang S, Lin L, Zou R, Sun H, Zeng K, Wu Y, Li Y, Shigeaki K, Wang X, Wang C, Zhao Y. BAP18 acting as a novel peroxisome proliferator-activated receptor α co-regulator contributes to hepatocellular carcinoma progression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166974. [PMID: 38042310 DOI: 10.1016/j.bbadis.2023.166974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a poor prognosis. The therapeutic outcomes of HCC patients are urgently needed to be improved, and predictive biomarkers for the optimal treatment selection remains to be further defined. In the present study, our results showed that BPTF-associated protein of 18 KDa (BAP18) was highly expressed in HCC tissues. In cultured HCC cells, BAP18 regulated a subset of down-stream genes involved in different functions, particularly including peroxisome proliferator-activated receptor (PPAR) pathway and lipid metabolism. Furthermore, BAP18 co-activated PPARα-mediated transactivation and facilitated the recruitment of nucleosome acetyltransferase of H4 (NuA4)/tat interacting protein 60 (TIP60) complex, thereby increasing histone H4 acetylation on stearoyl-CoA desaturase 1 (SCD1) loci. In addition, BAP18 promoted HCC cell proliferation, increased intracellular lipid levels and enhanced cell survival under the metabolic stress conditions, such as glucose limitation or tyrosine kinase inhibitors (TKIs) treatment. Importantly, higher BAP18 expression was positively correlated with the postoperative recurrence and the poor disease-free survival in clinical patients receiving sorafenib treatment. Altogether, we discovered that BAP18 plays an oncogenic role in the survival and proliferation of HCC cells, and BAP18 may serve as a predictive biomarker for adjunct TKIs treatment in patients with HCC, and further facilitate the precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Yi Wu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of Pathogenic Biology, Shenyang Medical College, Shenyang City, Liaoning Province 110034, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province 110001, China
| | - Kato Shigeaki
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima 9708551, Japan
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China.
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| |
Collapse
|
30
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Liu F, Wu Y, Zhang B, Yang S, Shang K, Li J, Zhang P, Deng W, Chen L, Zheng L, Gai X, Zhang H. Oncogenic β-catenin-driven liver cancer is susceptible to methotrexate-mediated disruption of nucleotide synthesis. Chin Med J (Engl) 2024; 137:181-189. [PMID: 37612257 PMCID: PMC10798734 DOI: 10.1097/cm9.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for β-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS Constitutive β-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( β-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited β-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on β-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with β-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); β-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of β-catenin mutant liver cancer. RESULTS MTX was identified and validated as a preferential agent against the proliferation and tumor formation of β-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in β-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; β-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION MTX is a promising chemotherapeutic agent for β-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuting Wu
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Yang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kezhuo Shang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Li
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengju Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linlin Chen
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Xiaochen Gai
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
32
|
Hansen HH, Pors S, Andersen MW, Vyberg M, Nøhr-Meldgaard J, Nielsen MH, Oró D, Madsen MR, Lewinska M, Møllerhøj MB, Madsen AN, Feigh M. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci Rep 2023; 13:23056. [PMID: 38155202 PMCID: PMC10754821 DOI: 10.1038/s41598-023-50328-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.
Collapse
Affiliation(s)
| | - Susanne Pors
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | | | | | | | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| |
Collapse
|
33
|
Aspichueta P, Zeisel MB. miR-21p-5p coordinates biological pathways to promote MASLD progression. Liver Int 2023; 43:2343-2345. [PMID: 37846804 DOI: 10.1111/liv.15740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023]
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Mirjam B Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon (UCBL), Lyon, France
| |
Collapse
|
34
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
35
|
Xu YC, Zheng H, Hogstrand C, Tan XY, Zhao T, Song YF, Wei XL, Wu LX, Luo Z. Novel mechanism for zinc inducing hepatic lipolysis via the HDAC3-mediated deacetylation of β-catenin at lysine 311. J Nutr Biochem 2023; 121:109429. [PMID: 37591442 DOI: 10.1016/j.jnutbio.2023.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Zinc (Zn) is a multipurpose trace element indispensable for vertebrates and possesses essential regulatory roles in lipid metabolism, but the fundamental mechanism remains largely unknown. In the current study, we found that a high-Zn diet significantly increased hepatic Zn content and influenced the expression of Zn transport-relevant genes. Dietary Zn addition facilitated lipolysis, inhibited lipogenesis, and controlled β-catenin signal; Zn also promoted T-cell factor 7-like 2 (TCF7L2) to interact with β-catenin and regulating its transcriptional activity, thereby inducing lipolysis and inhibiting lipogenesis; Zn-induced lipid degradation was mediated by histone deacetylase 3 (HDAC3) which was responsible for β-catenin deacetylation and the regulation of β-catenin signal under the Zn treatment. Mechanistically, Zn promoted lipid degradation via stimulating HDAC3-mediated deacetylation of β-catenin at lysine 311 (K311), which enhanced the interaction between β-catenin and TCF7L2 and then transcriptionally inhibited fatty acid synthase (FAS), 2-acylglycerol O-acyltransferase 2 (MOGAT2), and sterol regulatory element-binding protein 1 (SREBP1) expression, but elevated the mRNA abundance of adipose triglyceride lipase (ATGL), hormone-sensitive lipase a (HSLA) and carnitine palmitoyltransferase 1a1b (CPT1A1B). Overall, our research reveals a novel mechanism into the important roles of HDAC3/β-catenin pathway in Zn promoting lipolysis and inhibiting lipogenesis, and highlights the essential roles of K311 deacetylation in β-catenin actions and lipolytic metabolism, and accordingly provides novel insight into the prevention and treatment of steatosis in the vertebrates.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE5 9RJ, UK
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Xiang Wu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
36
|
VanSant-Webb C, Low HK, Kuramoto J, Stanley CE, Qiang H, Su A, Ross AN, Cooper CG, Cox JE, Summers SA, Evason KJ, Ducker GS. Phospholipid isotope tracing reveals β-catenin-driven suppression of phosphatidylcholine metabolism in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562134. [PMID: 37904922 PMCID: PMC10614757 DOI: 10.1101/2023.10.12.562134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background and Aims Activating mutations in the CTNNB1 gene encoding β-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). HCC with CTNNB1 mutations show profound alterations in lipid metabolism including increases in fatty acid oxidation and transformation of the phospholipidome, but it is unclear how these changes arise and whether they contribute to the oncogenic program in HCC. Methods We employed untargeted lipidomics and targeted isotope tracing to quantify phospholipid production fluxes in an inducible human liver cell line expressing mutant β-catenin, as well as in transgenic zebrafish with activated β-catenin-driven HCC. Results In both models, activated β-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid flux analysis in human cells revealed a large reduction in phosphatidylcholine (PC) production rates as assayed by choline tracer incorporation. We developed isotope tracing lipid flux analysis for zebrafish and observed similar reductions in phosphatidylcholine synthesis flux accomplished by sex-specific mechanisms. Conclusions The integration of isotope tracing with lipid abundances highlights specific lipid class transformations downstream of β-catenin signaling in HCC and suggests future HCC-specific lipid metabolic targets.
Collapse
Affiliation(s)
- Chad VanSant-Webb
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Hayden K Low
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Junko Kuramoto
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Claire E Stanley
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Hantao Qiang
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Audrey Su
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Alexis N Ross
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Chad G Cooper
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health. Salt Lake City, UT 84112 USA
| | - Kimberley J Evason
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Huntsman Cancer Institute, University of Utah. Salt Lake City UT, 84112 USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Huntsman Cancer Institute, University of Utah. Salt Lake City UT, 84112 USA
| |
Collapse
|
37
|
Fujiwara N, Nakagawa H. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease. Cancer Sci 2023; 114:3825-3833. [PMID: 37545384 PMCID: PMC10551597 DOI: 10.1111/cas.15925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) continue to increase with the epidemics of obesity, and NAFLD is estimated to become the most prevalent etiology of hepatocellular carcinoma (HCC). Recently, NAFLD-HCC has been recognized to have clinico-histologically and molecularly distinct features from those from other etiologies, including a lower incidence rate of HCC and less therapeutic efficacy to immune checkpoint inhibitors (ICIs). Consistent with the clinical observations that up to 50% of NAFLD-HCC occurs in the absence of cirrhosis, the imbalance of pro- and antitumorigenic hepatic stellate cells termed as myHSC and cyHSC can contribute to the creation of an HCC-prone hepatic environment, independent of the absolute fibrosis abundance. Immune deregulations by accumulated metabolites in NAFLD-affected livers, such as a fatty-acid-induced loss of cytotoxic CD4 T cells serving for immune surveillance and "auto-aggressive" CXCR6+ CD8 T cells, may promote hepatocarcinogenesis and diminish therapeutic response to ICIs. Steatohepatitic HCC (SH-HCC), characterized by the presence of fat accumulation in tumor cells, ballooned tumor cells, Mallory-Denk body, interstitial fibrosis, and intratumor immune cell infiltration, may represent a metabolic reprogramming for adapting to a lipid-rich tumor microenvironment by downregulating CPT2 and leveraging its intermediates as an "oncometabolite." Genome-wide analyses suggested that SH-HCC may be more responsive to ICIs given its mutual exclusiveness with β-catenin mutation/activation that promotes immune evasion. Thus, further understanding of NAFLD-specific hepatocarcinogenesis and HCC would enable us to improve the current daily practice and eventually the prognoses of patients with NAFLD.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| | - Hayato Nakagawa
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| |
Collapse
|
38
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
39
|
Peñuelas‐Haro I, Espinosa‐Sotelo R, Crosas‐Molist E, Herranz‐Itúrbide M, Caballero‐Díaz D, Alay A, Solé X, Ramos E, Serrano T, Martínez‐Chantar ML, Knaus UG, Cuezva JM, Zorzano A, Bertran E, Fabregat I. The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression. Hepatology 2023; 78:416-433. [PMID: 35920301 PMCID: PMC10344438 DOI: 10.1002/hep.32702] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. APPROACH AND RESULTS Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4 -deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. CONCLUSIONS Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progression.
Collapse
Affiliation(s)
- Irene Peñuelas‐Haro
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
| | - Rut Espinosa‐Sotelo
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
| | - Eva Crosas‐Molist
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Macarena Herranz‐Itúrbide
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
| | - Daniel Caballero‐Díaz
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Solé
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Biology CORE, Center for Biomedical Diagnostics, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Emilio Ramos
- CIBEREHD, ISCIII, Madrid, Spain
- Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Serrano
- CIBEREHD, ISCIII, Madrid, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain
| | - María L. Martínez‐Chantar
- CIBEREHD, ISCIII, Madrid, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Spain
| | - Ulla G. Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - José M. Cuezva
- Center for Molecular Biology “Severo Ochoa,” Autonoma University of Madrid, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Antonio Zorzano
- Biochemistry and Molecular Biomedicine Department, University of Barcelona, Barcelona, Spain
- Institute of Research in Biomedicine, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBERDEM, ISCIII, Madrid, Spain
| | - Esther Bertran
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
| | - Isabel Fabregat
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBEREHD, ISCIII, Madrid, Spain
- Physiological Sciences Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Kopystecka A, Patryn R, Leśniewska M, Budzyńska J, Kozioł I. The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma-Literature Review. Int J Mol Sci 2023; 24:ijms24119342. [PMID: 37298294 DOI: 10.3390/ijms24119342] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is one of the leading causes of cancer-related deaths worldwide. Despite advances in medicine, it is still a cancer with a very poor prognosis. Both imaging and liver biopsy still have important limitations, especially in very small nodules and those which show atypical imaging features. In recent years, liquid biopsy and molecular analysis of tumor breakdown products have become an attractive source of new biomarkers. Patients with liver and biliary malignancies, including hepatocellular carcinoma (HCC), may greatly benefit from ctDNA testing. These patients are often diagnosed at an advanced stage of the disease, and relapses are common. Molecular analysis may indicate the best cancer treatment tailored to particular patients with specific tumor DNA mutations. Liquid biopsy is a minimally invasive technique that facilitates the early detection of cancer. This review summarizes the knowledge of ctDNA in liquid biopsy as an indicator for early diagnosis and monitoring of hepatocellular cancer.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Magdalena Leśniewska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
41
|
Fernández-García P, Malet-Engra G, Torres M, Hanson D, Rosselló CA, Román R, Lladó V, Escribá PV. Evolving Diagnostic and Treatment Strategies for Pediatric CNS Tumors: The Impact of Lipid Metabolism. Biomedicines 2023; 11:biomedicines11051365. [PMID: 37239036 DOI: 10.3390/biomedicines11051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.
Collapse
Affiliation(s)
- Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Gema Malet-Engra
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Derek Hanson
- Hackensack Meridian Health, 343 Thornall Street, Edison, NJ 08837, USA
| | - Catalina A Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Ramón Román
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| |
Collapse
|
42
|
May S, Müller M, Livingstone CR, Skalka GL, Walsh PJ, Nixon C, Hedley A, Shaw R, Clark W, Vande Voorde J, Officer-Jones L, Ballantyne F, Powley IR, Drake TM, Kiourtis C, Keith A, Rocha AS, Tardito S, Sumpton D, Le Quesne J, Bushell M, Sansom OJ, Bird TG. Absent expansion of AXIN2+ hepatocytes and altered physiology in Axin2CreERT2 mice challenges the role of pericentral hepatocytes in homeostatic liver regeneration. J Hepatol 2023; 78:1028-1036. [PMID: 36702176 DOI: 10.1016/j.jhep.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. METHODS We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. RESULTS We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/β-catenin signalling and related metabolomic disturbance. CONCLUSIONS We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. IMPACT AND IMPLICATIONS Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally.
Collapse
Affiliation(s)
- Stephanie May
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | | | | | - Peter J Walsh
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | | | | | | | - Ian R Powley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Thomas M Drake
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK; Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Andrew Keith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | | | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - John Le Quesne
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK; Department of Histopathology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK; MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, EH164TJ, UK.
| |
Collapse
|
43
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
44
|
Chen Z, Zhou X, Zhou X, Tang Y, Lu M, Zhao J, Tian C, Wu M, Liu Y, Prochownik EV, Wang F, Li Y. Phosphomevalonate Kinase Controls β-Catenin Signaling via the Metabolite 5-Diphosphomevalonate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204909. [PMID: 36808719 PMCID: PMC10131864 DOI: 10.1002/advs.202204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
β-catenin signaling is abnormally activated in cancer. Here, this work screens the mevalonate metabolic pathway enzyme PMVK to stabilize β-catenin signaling using a human genome-wide library. On the one hand, PMVK-produced MVA-5PP competitively binds to CKIα to prevent β-catenin Ser45 phosphorylation and degradation. On the other hand, PMVK functions as a protein kinase to directly phosphorylate β-catenin Ser184 to increase its protein nuclear localization. This synergistic effect of PMVK and MVA-5PP together promotes β-catenin signaling. In addition, PMVK deletion impairs mouse embryonic development and causes embryonic lethal. PMVK deficiency in liver tissue alleviates DEN/CCl4 -induced hepatocarcinogenesis. Finally, the small molecule inhibitor of PMVK, PMVKi5, is developed and PMVKi5 inhibits carcinogenesis of liver and colorectal tissues. These findings reveal a non-canonical function of a key metabolic enzyme PMVK and a novel link between the mevalonate pathway and β-catenin signaling in carcinogenesis providing a new target for clinical cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Xinyi Zhou
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Yi Tang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Mingzhu Lu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Jianhong Zhao
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Chenhui Tian
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Mingzhi Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| | - Yanliang Liu
- Department of Gastrointestinal SurgeryRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Edward V. Prochownik
- Division of Hematology/OncologyChildren's Hospital of Pittsburgh of UPMCDepartment of Microbiology and Molecular GeneticsPittsburgh Liver Research Center and Hillman Cancer Center of UPMCUniversity of Pittsburgh Medical CenterPittsburghPA15224USA
| | - Fubing Wang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid BiopsyZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071P. R. China
| | - Youjun Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
- Medical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
45
|
Huang H, Tsui YM, Ng IOL. Fueling HCC Dynamics: Interplay Between Tumor Microenvironment and Tumor Initiating Cells. Cell Mol Gastroenterol Hepatol 2023; 15:1105-1116. [PMID: 36736664 PMCID: PMC10036749 DOI: 10.1016/j.jcmgh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
46
|
Wu Y, Yang S, Han L, Shang K, Zhang B, Gai X, Deng W, Liu F, Zhang H. β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer. J Transl Med 2023; 21:50. [PMID: 36703130 PMCID: PMC9879242 DOI: 10.1186/s12967-023-03914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. CONCLUSIONS β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
Collapse
Affiliation(s)
- Yuting Wu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Shuhui Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Luyang Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Kezhuo Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Baohui Zhang
- grid.412449.e0000 0000 9678 1884Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Xiaochen Gai
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Weiwei Deng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Fangming Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| |
Collapse
|
47
|
Akl MG, Widenmaier SB. Immunometabolic factors contributing to obesity-linked hepatocellular carcinoma. Front Cell Dev Biol 2023; 10:1089124. [PMID: 36712976 PMCID: PMC9877434 DOI: 10.3389/fcell.2022.1089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.
Collapse
Affiliation(s)
- May G. Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, University of Alexandria, Alexandria, Egypt
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, Qiu S, Zhou J, Fan J, Huang H, Gao Q. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab 2023; 5:61-79. [PMID: 36593272 DOI: 10.1038/s42255-022-00710-w] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023]
Abstract
Enhanced glycolysis and accumulation of lactate is a common feature in various types of cancer. Intracellular lactate drives a recently described type of posttranslational modification, lysine lactylation (Kla), on core histones. However, the impact of lactylation on biological processes of tumour cells remains largely unknown. Here we show a global lactylome profiling on a prospectively collected hepatitis B virus-related hepatocellular carcinoma (HCC) cohort. Integrative lactylome and proteome analysis of the tumours and adjacent livers identifies 9,275 Kla sites, with 9,256 sites on non-histone proteins, indicating that Kla is a prevalent modification beyond histone proteins and transcriptional regulation. Notably, Kla preferentially affects enzymes involved in metabolic pathways, including the tricarboxylic acid cycle, and carbohydrate, amino acid, fatty acid and nucleotide metabolism. We further verify that lactylation at K28 inhibits the function of adenylate kinase 2, facilitating the proliferation and metastasis of HCC cells. Our study therefore reveals that Kla plays an important role in regulating cellular metabolism and may contribute to HCC progression.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Panpan Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangli Cai
- Medical Department, Burning Rock Biotech, Guangdong, China
| | - Xia Shen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Wang H, Zhou Y, Xu H, Wang X, Zhang Y, Shang R, O'Farrell M, Roessler S, Sticht C, Stahl A, Evert M, Calvisi DF, Zeng Y, Chen X. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 2022; 76:951-966. [PMID: 35076948 PMCID: PMC9309180 DOI: 10.1002/hep.32359] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Hongwei Xu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | | | | | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| |
Collapse
|
50
|
Tao Q, Zhu K, Zhan Y, Zhang R, Lang Z, Yu Z, Wang M. Construction of a novel exosomes-related gene signature in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:997734. [PMID: 36105354 PMCID: PMC9465081 DOI: 10.3389/fcell.2022.997734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Exosomes are extracellular vesicles between 40 and 150 nm in diameter and are cargoes for a wide range of small biological molecules. Recent studies have reported that lncRNAs, miRNAs, circRNAs in serum exosomes may serve as biomarkers to predict hepatocellular carcinoma (HCC) prognosis. However, the prognostic values of exosomes-related mRNAs in HCC are still unclear.Methods: Data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The serum exosome sequencing data of HCC patients and healthy individuals were obtained from the exobase database. Univariate cox regression analysis was used to identify prognostic exosomes-related genes. LASSO and multivariate cox regression analyses were applied to construct prognostic signature.Results: 22 exosomes-related mRNAs differentially expressed between HCC tissues and normal tissues were identified. Then, 8 prognostic exosomes-related mRNAs were screened. Subsequently, G6PD and ADAMTS5, selected by LASSO and multivariate cox regression analyses, were used to construct a prognostic signature. The patients with high-risk scores had a poor prognosis in TCGA cohort as well as ICGC cohort. Notably, this prognostic signature was also validated in a local cohort collected from the First Affiliated Hospital of Wenzhou Medical University. Receiver Operating Characteristic (ROC) analyses indicated that the signature had a good performance in all the cohorts. The gene set enrichment analysis revealed that this signature was associated with cell cycle and metabolism pathways. Immune infiltration analysis indicated that the patients with high-risk scores had a higher M0 macrophages infiltration. The univariate and multivariate cox regression analyses identified that the risk score is an independent risk factor for HCC. In addition, a nomogram containing age, gender, stage and risk score was constructed to precisely predict HCC prognosis.Conclusion: In conclusion, we develop a novel exosomes-related gene signature that helps to predict HCC prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Wang
- *Correspondence: Zhengping Yu, ; Meng Wang,
| |
Collapse
|