1
|
Duignan KM, Luu H, Delgado JH, London S, Ratzan RM. Drowning incidents precipitated by unusual causes (DIPUCs): A narrative review of their diagnoses, evaluation and management. Resusc Plus 2024; 20:100770. [PMID: 39309751 PMCID: PMC11415818 DOI: 10.1016/j.resplu.2024.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Drowning is a cause of significant morbidity and mortality worldwide. In most circumstances, the proximate cause is attributable to human factors, such as inexperience, fatigue, intoxication, or hazardous water conditions. The phenomenon of drowning incidents precipitated by unusual circumstances (DIPUCs) - either fatal or nonfatal - involving otherwise healthy individuals under generally safe conditions has not been comprehensively addressed in the medical and drowning literature to date. In this review, we discuss etiologies of DIPUCs, diagnostic clues, suggested workup, suggested postmortem testing, and implications for surviving patients and families. Identifying the cause of a drowning incident can be extremely challenging for the initially treating physician, relying perforce on historical context, environmental clues, physical exam, medical history, eyewitness accounts or video recordings. If no clear explanation for a drowning incident emerges despite a thorough investigation, clinicians should consider some of the less common diagnoses we describe in this paper, and, when appropriate, refer for an autopsy with postmortem molecular genetic testing. While time-consuming, these efforts can prove life-saving for some non-fatal drowning victims and the families of all victims of DIPUCs.
Collapse
Affiliation(s)
- Kevin M. Duignan
- University of Connecticut School of Medicine, Emergency Medicine Residency, MC 1930, 263 Farmington Ave., Farmington, CT 06030-1930, United States
| | - Hannah Luu
- University of Connecticut School of Medicine, Emergency Medicine Residency, MC 1930, 263 Farmington Ave., Farmington, CT 06030-1930, United States
| | - João H. Delgado
- Hartford Hospital, 80 Seymour St, Hartford, CT 06102, United States
| | - Shawn London
- Hartford Hospital, 80 Seymour St, Hartford, CT 06102, United States
| | | |
Collapse
|
2
|
Treur JL, Thijssen AB, Smit DJA, Tadros R, Veeneman RR, Denys D, Vermeulen JM, Barc J, Bergstedt J, Pasman JA, Bezzina CR, Verweij KJH. Associations of schizophrenia with arrhythmic disorders and electrocardiogram traits: genetic exploration of population samples. Br J Psychiatry 2024:1-9. [PMID: 39512114 PMCID: PMC7616879 DOI: 10.1192/bjp.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
BACKGROUND An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. Arrhythmic disorders may play an important role herein, but the nature of the relationship between schizophrenia and arrhythmia is unclear. AIMS To assess shared genetic liability and potential causal effects between schizophrenia and arrhythmic disorders and electrocardiogram (ECG) traits. METHOD We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53 386 cases, 77 258 controls), arrhythmic disorders (atrial fibrillation, 55 114 cases, 482 295 controls; Brugada syndrome, 2820 cases, 10 001 controls) and ECG traits (heart rate (variability), PR interval, QT interval, JT interval and QRS duration, n = 46 952-293 051). We examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Bidirectional causal relations between schizophrenia and arrhythmic disorders and ECG traits were explored using Mendelian randomisation. RESULTS There was no evidence for global genetic correlation, except between schizophrenia and Brugada syndrome (rg = 0.14, 95% CIs = 0.06-0.22, P = 4.0E-04). In contrast, strong positive and negative local correlations between schizophrenia and all cardiac traits were found across the genome. In the most strongly associated regions, genes related to immune and viral response mechanisms were overrepresented. Mendelian randomisation indicated that liability to schizophrenia causally increases Brugada syndrome risk (beta = 0.14, CIs = 0.03-0.25, P = 0.009) and heart rate during activity (beta = 0.25, CIs = 0.05-0.45, P = 0.015). CONCLUSIONS Despite little evidence for global genetic correlation, specific genomic regions and biological pathways emerged that are important for both schizophrenia and arrhythmia. The putative causal effect of liability to schizophrenia on Brugada syndrome warrants increased cardiac monitoring and early medical intervention in people with schizophrenia.
Collapse
Affiliation(s)
- Jorien L Treur
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Anaïs B Thijssen
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Dirk J A Smit
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montréal Heart Institute, Faculty of Medicine, Montréal, Canada
| | - Rada R Veeneman
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jentien M Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Jacob Bergstedt
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joëlle A Pasman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
3
|
Jia H, Chang Y, Song J. The pig as an optimal animal model for cardiovascular research. Lab Anim (NY) 2024; 53:136-147. [PMID: 38773343 DOI: 10.1038/s41684-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
4
|
Frosio A, Micaglio E, Polsinelli I, Calamaio S, Melgari D, Prevostini R, Ghiroldi A, Binda A, Carrera P, Villa M, Mastrocinque F, Presi S, Salerno R, Boccellino A, Anastasia L, Ciconte G, Ricagno S, Pappone C, Rivolta I. Unravelling Novel SCN5A Mutations Linked to Brugada Syndrome: Functional, Structural, and Genetic Insights. Int J Mol Sci 2023; 24:15089. [PMID: 37894777 PMCID: PMC10606416 DOI: 10.3390/ijms242015089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Emanuele Micaglio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Ivan Polsinelli
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Andrea Ghiroldi
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy;
| | - Paola Carrera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.C.); (S.P.)
| | - Marco Villa
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Flavio Mastrocinque
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Silvia Presi
- Laboratory of Clinical Molecular Genetics and Cytogenetics, Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.C.); (S.P.)
| | - Raffaele Salerno
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Antonio Boccellino
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Giuseppe Ciconte
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy;
| |
Collapse
|
5
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
6
|
Cai D, Wang X, Sun Y, Fan H, Zhou J, Yang Z, Qiu H, Wang J, Su J, Gong T, Jiang C, Liang P. Patient-specific iPSC-derived cardiomyocytes reveal aberrant activation of Wnt/β-catenin signaling in SCN5A-related Brugada syndrome. Stem Cell Res Ther 2023; 14:241. [PMID: 37679791 PMCID: PMC10486057 DOI: 10.1186/s13287-023-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Mutations in the cardiac sodium channel gene SCN5A cause Brugada syndrome (BrS), an arrhythmic disorder that is a leading cause of sudden death and lacks effective treatment. An association between SCN5A and Wnt/β-catenin signaling has been recently established. However, the role of Wnt/β-catenin signaling in BrS and underlying mechanisms remains unknown. METHODS Three healthy control subjects and one BrS patient carrying a novel frameshift mutation (T1788fs) in the SCN5A gene were recruited in this study. Control and BrS patient-specific induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts using nonintegrated Sendai virus. All iPSCs were differentiated into cardiomyocytes using monolayer-based differentiation protocol. Action potentials and sodium currents were recorded from control and BrS iPSC-derived cardiomyocytes (iPSC-CMs) by single-cell patch clamp. RESULTS BrS iPSC-CMs exhibited increased burden of arrhythmias and abnormal action potential profile featured by slower depolarization, decreased action potential amplitude, and increased beating interval variation. Moreover, BrS iPSC-CMs showed cardiac sodium channel (Nav1.5) loss-of-function as compared to control iPSC-CMs. Interestingly, the electrophysiological abnormalities and Nav1.5 loss-of-function observed in BrS iPSC-CMs were accompanied by aberrant activation of Wnt/β-catenin signaling. Notably, inhibition of Wnt/β-catenin significantly rescued Nav1.5 defects and arrhythmic phenotype in BrS iPSC-CMs. Mechanistically, SCN5A-encoded Nav1.5 interacts with β-catenin, and reduced expression of Nav1.5 leads to re-localization of β-catenin in BrS iPSC-CMs, which aberrantly activates Wnt/β-catenin signaling to suppress SCN5A transcription. CONCLUSIONS Our findings suggest that aberrant activation of Wnt/β-catenin signaling contributes to the pathogenesis of SCN5A-related BrS and point to Wnt/β-catenin as a potential therapeutic target.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Zongkuai Yang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hangyuan Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
7
|
Katz A, Balasubramanian S, Freedman Z. Procainamide-Provoked Brugada Pattern in a Patient Presenting with New-Onset Atrial Fibrillation or Flutter: When Does it Matter? J Emerg Med 2023; 65:e229-e233. [PMID: 37495422 DOI: 10.1016/j.jemermed.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited disease that can lead to sudden cardiac death. Medications, such as antidysrhythmics, and fevers can unmask or induce the Brugada pattern on an electrocardiogram (ECG). This case report highlights a patient who developed drug-induced Brugada type I pattern after a procainamide infusion for the treatment of new-onset atrial fibrillation (AF) or flutter and discusses the implications for this incidental but potentially lethal finding. CASE REPORT We report a case of a young man who presented to the emergency department (ED) with new-onset AF with rapid ventricular response that began within 12 h of presentation. ED treatments included a crystalloid IV fluid bolus, diltiazem pushes, synchronized electrical cardioversion, and a procainamide infusion. After the procainamide infusion, the patient developed ECG findings consistent with Brugada pattern. Both the AF and Brugada pattern resolved spontaneously within 24 h. The patient was discharged without implantable cardioverter defibrillator placement due to presumed isolated procainamide-induced Brugada pattern and lack of concerning features, such as inducible dysrhythmia during electrophysiology study, family history of sudden death, and history of syncope. The patient was counseled to follow-up with genetics and avoid BrS-inducing medications. WHY SHOULD AN EMERGENCY PHYSICIANS BE AWARE OF THIS?: Procainamide, an option for the treatment of AF in the ED, can provoke Brugada pattern. If encountered, it is important to recall that some patients may not be diagnosed with BrS if determined to be low risk according to the Shanghai criteria. All patients should be referred to cardiology for further evaluation.
Collapse
Affiliation(s)
- Anne Katz
- Department of Emergency Medicine, Weill Cornell Medicine, New York, New York
| | - Shriman Balasubramanian
- Department of Emergency Medicine, New York-Presbyterian Hospital Cornell and Columbia, New York, New York
| | - Zachary Freedman
- Department of Emergency Medicine, New York-Presbyterian Hospital Cornell and Columbia, New York, New York
| |
Collapse
|
8
|
Liantonio A, Bertini M, Mele A, Balla C, Dinoi G, Selvatici R, Mele M, De Luca A, Gualandi F, Imbrici P. Brugada Syndrome: More than a Monogenic Channelopathy. Biomedicines 2023; 11:2297. [PMID: 37626795 PMCID: PMC10452102 DOI: 10.3390/biomedicines11082297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac channelopathy first diagnosed in 1992 but still considered a challenging disease in terms of diagnosis, arrhythmia risk prediction, pathophysiology and management. Despite about 20% of individuals carrying pathogenic variants in the SCN5A gene, the identification of a polygenic origin for BrS and the potential role of common genetic variants provide the basis for applying polygenic risk scores for individual risk prediction. The pathophysiological mechanisms are still unclear, and the initial thinking of this syndrome as a primary electrical disease is evolving towards a partly structural disease. This review focuses on the main scientific advancements in the identification of biomarkers for diagnosis, risk stratification, pathophysiology and therapy of BrS. A comprehensive model that integrates clinical and genetic factors, comorbidities, age and gender, and perhaps environmental influences may provide the opportunity to enhance patients' quality of life and improve the therapeutic approach.
Collapse
Affiliation(s)
- Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Matteo Bertini
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Antonietta Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Cristina Balla
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Rita Selvatici
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Marco Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
- Cardiothoracic Department, Policlinico Riuniti Foggia, 71122 Foggia, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| |
Collapse
|
9
|
Zaveri S, Qu YS, Chahine M, Boutjdir M. Ethnic and racial differences in Asian populations with ion channelopathies associated with sudden cardiac death. Front Cardiovasc Med 2023; 10:1253479. [PMID: 37600027 PMCID: PMC10436680 DOI: 10.3389/fcvm.2023.1253479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cardiovascular diseases are associated with several morbidities and are the most common cause of worldwide disease-related fatalities. Studies show that treatment and outcome-related differences for cardiovascular diseases disproportionately affect minorities in the United States. The emergence of ethnic and racial differences in sudden cardiac death (SCD) and related ion channelopathies complicates cardiovascular disease prevention, diagnosis, management, prognosis, and treatment objectives for patients and physicians alike. This review compiles and synthesizes current research in cardiac ion channelopathies and genetic disorders in Asian populations, an underrepresented population in cardiovascular literature. We first present a brief introduction to SCD, noting relevant observations and statistics from around the world, including Asian populations. We then examined existing differences between Asian and White populations in research, treatment, and outcomes related to cardiac ion channelopathies and SCD, showing progression in thought and research over time for each ion channelopathy. The review also identifies research that explored phenotypic abnormalities, device usage, and risk of death in Asian patients. We touch upon the unique genetic risk factors in Asian populations that lead to cardiac ion channelopathies and SCD while comparing them to White and Western populations, particularly in the United States, where Asians comprise approximately 7% of the total population. We also propose potential solutions such as improving early genetic screening, addressing barriers affecting access to medical care and device utilization, physician training, and patient education on risks.
Collapse
Affiliation(s)
- Sahil Zaveri
- Department of Medicine, Cell Biology, and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Department of Medicine, Cell Biology, and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mohamed Boutjdir
- Department of Medicine, Cell Biology, and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
van der Werf C, Postema PG. The psychological impact of receiving a Brugada syndrome diagnosis. Europace 2023; 25:euad293. [PMID: 37738638 PMCID: PMC10540668 DOI: 10.1093/europace/euad293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Affiliation(s)
- Christian van der Werf
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Pieter G Postema
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| |
Collapse
|
11
|
Nakamura T, Aiba T, Shimizu W, Furukawa T, Sasano T. Prediction of the Presence of Ventricular Fibrillation From a Brugada Electrocardiogram Using Artificial Intelligence. Circ J 2023; 87:1007-1014. [PMID: 36372400 DOI: 10.1253/circj.cj-22-0496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Brugada syndrome is a potential cause of sudden cardiac death (SCD) and is characterized by a distinct ECG, but not all patients with A Brugada ECG develop SCD. In this study we sought to examine if an artificial intelligence (AI) model can predict a previous or future ventricular fibrillation (VF) episode from a Brugada ECG. METHODS AND RESULTS We developed an AI-enabled algorithm using a convolutional neural network. From 157 patients with suspected Brugada syndrome, 2,053 ECGs were obtained, and the dataset was divided into 5 datasets for cross-validation. In the ECG-based evaluation, the precision, recall, and F1score were 0.79±0.09, 0.73±0.09, and 0.75±0.09, respectively. The average area under the receiver-operating characteristic curve (AUROC) was 0.81±0.09. On per-patient evaluation, the AUROC was 0.80±0.07. This model predicted the presence of VF with a precision of 0.93±0.02, recall of 0.77±0.14, and F1score of 0.81±0.11. The negative predictive value was 0.94±0.11 while its positive predictive value was 0.44±0.29. CONCLUSIONS This proof-of-concept study showed that an AI-enabled algorithm can predict the presence of VF with a substantial performance. It implies that the AI model may detect a subtle ECG change that is undetectable by humans.
Collapse
Affiliation(s)
- Tomofumi Nakamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| |
Collapse
|
12
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Treur JL, Thijssen AB, Smit DJ, Tadros R, Veeneman RR, Denys D, Vermeulen JM, Barc J, Bergstedt J, Pasman JA, Bezzina CR, Verweij KJH. Associations of schizophrenia with arrhythmic disorders and electrocardiogram traits: an in-depth genetic exploration of population samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.21.23290286. [PMID: 37292618 PMCID: PMC10246121 DOI: 10.1101/2023.05.21.23290286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. While arrhythmic disorders play an important role in this, the nature of the relation between schizophrenia and arrhythmia is not fully understood. Methods We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53,386 cases 77,258 controls), arrhythmic disorders (atrial fibrillation, 55,114 cases 482,295 controls; Brugada syndrome, 2,820 cases 10,001 controls) and electrocardiogram traits (heart rate (variability), PR interval, QT interval, JT interval, and QRS duration, n=46,952-293,051). First, we examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Next, we explored bidirectional causal relations between schizophrenia and arrhythmic disorders and electrocardiogram traits using Mendelian randomization. Outcomes There was no evidence for global genetic correlations, except between schizophrenia and Brugada (rg=0·14, p=4·0E-04). In contrast, strong positive and negative local genetic correlations between schizophrenia and all cardiac traits were found across the genome. In the strongest associated regions, genes related to immune system and viral response mechanisms were overrepresented. Mendelian randomization indicated a causal, increasing effect of liability to schizophrenia on Brugada syndrome (OR=1·15, p=0·009) and heart rate during activity (beta=0·25, p=0·015). Interpretation While there was little evidence for global genetic correlations, specific genomic regions and biological pathways important for both schizophrenia and arrhythmic disorders and electrocardiogram traits emerged. The putative causal effect of liability to schizophrenia on Brugada warrants increased cardiac monitoring and potentially early medical intervention in patients with schizophrenia. Funding European Research Council Starting Grant.
Collapse
Affiliation(s)
- Jorien L Treur
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Anaiïs B Thijssen
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Dirk Ja Smit
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Rada R Veeneman
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Jentien M Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 Quai Moncousu, 44007 Nantes, France
| | - Jacob Bergstedt
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Joëlle A Pasman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
14
|
Ghafouri P, Taaghi S, Keykhavani A, Bozorgi A, diz AA. Cascade screening can be life-saving: a family with multiple cases of brugada syndrome and sudden cardiac death. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2023. [DOI: 10.1186/s42444-023-00089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
AbstractBrugada syndrome (BrS) may cause a spectrum of symptoms from asymptomatic patients to those who experience cardiac arrest and sudden cardiac death. The diagnosis is confirmed after observation of type I Brugada pattern on the electrocardiogram. Following the diagnosis, risk stratification can help select therapeutic options. Cascade screening should be started to find other family members with BrS. We present a 41-year-old woman diagnosed with BrS, and cascade screening of her relatives unveiled a pedigree of BrS among their family.
Collapse
|
15
|
Corrado D, Link MS, Schwartz PJ. Implantable defibrillators in primary prevention of genetic arrhythmias. A shocking choice? Eur Heart J 2022; 43:3029-3040. [PMID: 35725934 PMCID: PMC9443985 DOI: 10.1093/eurheartj/ehac298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Many previously unexplained life-threatening ventricular arrhythmias and sudden cardiac deaths (SCDs) in young individuals are now recognized to be genetic in nature and are ascribed to a growing number of distinct inherited arrhythmogenic diseases. These include hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (VT), and short QT syndrome. Because of their lower frequency compared to coronary disease, risk factors for SCD are not very precise in patients with inherited arrhythmogenic diseases. As randomized studies are generally non-feasible and may even be ethically unjustifiable, especially in the presence of effective therapies, the risk assessment of malignant arrhythmic events such as SCD, cardiac arrest due to ventricular fibrillation (VF), appropriate implantable cardioverter defibrillator (ICD) interventions, or ICD therapy on fast VT/VF to guide ICD implantation is based on observational data and expert consensus. In this document, we review risk factors for SCD and indications for ICD implantation and additional therapies. What emerges is that, allowing for some important differences between cardiomyopathies and channelopathies, there is a growing and disquieting trend to create, and then use, semi-automated systems (risk scores, risk calculators, and, to some extent, even guidelines) which then dictate therapeutic choices. Their common denominator is a tendency to favour ICD implantation, sometime with reason, sometime without it. This contrasts with the time-honoured approach of selecting, among the available therapies, the best option (ICDs included) based on the clinical judgement for the specific patient and after having assessed the protection provided by optimal medical treatment.
Collapse
Affiliation(s)
- Domenico Corrado
- Inherited Arrhythmogenic Cardiomyopathies and Sports Cardiology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Mark S Link
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| |
Collapse
|
16
|
Wei HT, Liu W, Ma YR, Chen S. Performance of Multiparametric Models in Patients With Brugada Syndrome: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:859771. [PMID: 35497979 PMCID: PMC9047913 DOI: 10.3389/fcvm.2022.859771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMultiparametric models have shown better risk stratification in Brugada syndrome. Recently, these models have been validated in different populations.AimsTo perform a systematic review and meta-analysis of the predictive performance of three validated multiparametric models (Delise model, Sieria model, and Shanghai score).MethodsWe searched PubMed, Embase, MEDLINE, Web of Science, and Ovid for studies validating the risk multiparametric model. A Sieria score > 2 and Shanghai score ≥ 4 were considered to indicate higher risk. Performance estimates were summarized using a random-effects model.ResultsSeven studies were included, with sample sizes of 111–1,613. The follow-up duration was 3.3–10.18 years. The Sieria model had a pooled area under the curve (AUC), sensitivity, and specificity of 0.71 [95% confidence interval (CI): 0.67–0.75], 57% (95% CI: 35–76), and 71% (95% CI: 62–79), respectively. The Shanghai score had an AUC of 0.63–0.71, 68.97–90.67% sensitivity, and 43.53–63.43% specificity. The AUC of the Delise model was 0.77–0.87; however, the optimal cut-off was not identified.ConclusionsThe three models exhibited moderate discriminatory ability for Brugada syndrome. The Sieria model has poor sensitivity and moderate specificity, whereas the Shanghai score has poor specificity and moderate sensitivity.
Collapse
Affiliation(s)
- Hui-ting Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yue-Rong Ma
| | - Shi Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Shi Chen
| |
Collapse
|
17
|
Otto CM. Heartbeat: hypertension risk is higher when obesity onset occurs earlier in adult life. Heart 2022; 108:661-663. [PMID: 35396229 DOI: 10.1136/heartjnl-2022-321152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Aziz HM, Zarzecki MP, Garcia-Zamora S, Kim MS, Bijak P, Tse G, Won HH, Matusik PT. Pathogenesis and Management of Brugada Syndrome: Recent Advances and Protocol for Umbrella Reviews of Meta-Analyses in Major Arrhythmic Events Risk Stratification. J Clin Med 2022; 11:jcm11071912. [PMID: 35407520 PMCID: PMC8999897 DOI: 10.3390/jcm11071912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Brugada syndrome (BrS) is a primary electrical disease associated with life-threatening arrhythmias. It is estimated to cause at least 20% of sudden cardiac deaths (SCDs) in patients with normal cardiac anatomy. In this review paper, we discuss recent advances in complex BrS pathogenesis, diagnostics, and current standard approaches to major arrhythmic events (MAEs) risk stratification. Additionally, we describe a protocol for umbrella reviews to systematically investigate clinical, electrocardiographic, electrophysiological study, programmed ventricular stimulation, and genetic factors associated with BrS, and the risk of MAEs. Our evaluation will include MAEs such as sustained ventricular tachycardia, ventricular fibrillation, appropriate implantable cardioverter–defibrillator therapy, sudden cardiac arrest, and SCDs from previous meta-analytical studies. The protocol was written following the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) guidelines. We plan to extensively search PubMed, Embase, and Scopus databases for meta-analyses concerning risk-stratification in BrS. Data will be synthesized integratively with transparency and accuracy. Heterogeneity patterns across studies will be reported. The Joanna Briggs Institute (JBI) methodology, A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR 2), and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) are planned to be applied for design and execution of our evidence-based research. To the best of our knowledge, these will be the first umbrella reviews to critically evaluate the current state of knowledge in BrS risk stratification for life-threatening ventricular arrhythmias, and will potentially contribute towards evidence-based guidance to enhance clinical decisions.
Collapse
Affiliation(s)
- Hasina Masha Aziz
- Faculty of Medicine, Jagiellonian University Medical College, 31-530 Kraków, Poland;
| | - Michał P. Zarzecki
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Kraków, Poland;
| | | | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul 06351, Korea;
| | - Piotr Bijak
- John Paul II Hospital, 31-202 Kraków, Poland;
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China;
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300070, China
- Kent and Medway Medical School, University of Kent and Canterbury Christ Church University, Canterbury CT2 7FS, UK
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
- Correspondence:
| |
Collapse
|